首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chaotic dynamics appear to be prevalent in short-lived organisms including plankton and may limit long-term predictability. However, few studies have explored how dynamical stability varies through time, across space and at different taxonomic resolutions. Using plankton time series data from 17 lakes and 4 marine sites, we found seasonal patterns of local instability in many species, that short-term predictability was related to local instability, and that local instability occurred most often in the spring, associated with periods of high growth. Taxonomic aggregates were more stable and more predictable than finer groupings. Across sites, higher latitude locations had higher Lyapunov exponents and greater seasonality in local instability, but only at coarser taxonomic resolution. Overall, these results suggest that prediction accuracy, sensitivity to change and management efficacy may be greater at certain times of year and that prediction will be more feasible for taxonomic aggregates.  相似文献   

2.
Phytoplankton communities reveal an astonishing biodiversity, whereas classical competition theory seems to suggest that only a few competing species can survive. Recently we suggested a new solution to this plankton paradox. In theory, at least, competition between multiple species can generate complex dynamics that can support a large number of species. How likely is it then, in reality, that competitive chaos indeed promotes biodiversity? To obtain some insight, we simulated multispecies competition according to five different physiological scenarios. For random species parameters, biodiversity was generally low. Assuming plausible physiological trade‐offs, the simulations revealed switches back and forth between equilibrium and nonequilibrium dynamics, and a higher biodiversity. An extremely high biodiversity, with sometimes more than 100 species on three resources, was observed in simulations that assumed a cyclic relation between competitive abilities and resource contents. We conclude that physiological and life‐history patterns have a major impact on the likelihood of nonequilibrium dynamics and on the biodiversity of plankton communities.  相似文献   

3.
An investigation of the effects of mosquitofish (Gambusia affinis) predation was conducted in 12 experimental ponds in southern California over a period of 10 months.Gambusia essentially eliminatedDaphnia pulex andCeriodaphnia sp. populations, reducedDiaptomus pallidus andKeratella quadrata populations, had little impact onCyclops vernalis, and caused large increases inK. cochlearis, Polyarthra sp.,Synchaeta sp., andTrichocerca spp. populations and in total phytoplankton.Gambusia caused a decrease in the PIE (probability of interspecific encounter) of the planktonic crustaceans and an increase in the PIE of the planktonic rotifers. Hemiptera, such as neustonicMicrovelia sp. and nektonicBuenoa sp. andNotonecta sp., andHyla regilla tadpoles were absent from fish ponds but sometimes abundant in control ponds.Gambusia caused higher pH and oxygen levels, presumably via its effect on the phytoplankton. The impact ofGambusia on the pond ecosystems was less in winter, when fish numbers and feeding rates were low, than in summer. Results of other fish-plankton studies are summarized in tabular form. A model is proposed to account for variation in the calanoid/cyclopoid ratio; evidence is summarized suggesting that in general calanoids are more susceptible to predation by predaceous zooplankters while cyclopoids are more susceptible to fish predation. Some parallels are drawn between the effects ofGambusia predation and those of insecticide treatments.  相似文献   

4.
Lyche  Anne  Faafeng  Bjørn A.  Brabrand  Åge 《Hydrobiologia》1990,(1):251-261

The predictability of plankton response to reductions of planktivorous fish was investigated by comparing the plankton community in three biomanipulated lakes and ten unmanipulated lakes differing in intensity of fish predation. Data collected on total phosphorus, phytoplankton and zooplankton biomass and share of cyanobacteria and large grazers, as well as specific growth rate of phytoplankton, were further used to test some of the proposed underlying response-mechanisms. In the biomanipulated lakes the algal biomass and share of cyanobacteria decreased, specific growth rate of phytoplankton increased, and zooplankton biomass and share of large grazers increased or remained unchanged. This pattern was largely reflected in the differences in food-chain structure between the unmanipulated lakes with highversus those with low fish predation. The qualitative response to planktivorous fish reduction thus seems largely predictable. The biomanipulated lakes differed, however, in magnitude of response: the smallest hypertrophic, rotenone-treated lake (Helgetjern) showed the most dramatic response, whereas the large, deep mesotrophic lake (Gjersjøen), which was stocked with piscivorous fish, showed more moderate response, probably approaching a new steady state. These differences in response magnitude may be related to different perturbation intensity (rotenone-treatmentversus stocking with piscivores), food-chain complexity and trophic state. Both decreased phosphorus concentration and increased zooplankton grazing are probably important mechanisms underlying plankton response to biomanipulation in many lakes. The results provide tentative support to the hypothesis that under conditions of phosphorus limitation, increased zooplankton grazing can decrease algal biomassvia two separate mechanisms: reduction of the phosphorus pool in the phytoplankton, and reduction of the internal C:P-ratio in the phytoplankton cells.

  相似文献   

5.
1. To improve mechanistic understanding of plankton responses to eutrophication, a mesocosm experiment was performed in the shallow littoral zone of a south Swedish lake, in which nutrient and fish gradients were crossed in a fully factorial design. 2. Food chain theory accurately predicted total biomass development of both phyto‐ and zooplankton. However, separating zooplankton and algae into finer taxonomic groups revealed a variety of responses to both nutrient and fish gradients. 3. That both nutrients and fish are important for phytoplankton dynamics was seen more clearly when viewing each algal group separately, than drawing conclusions only from broad system variables such as chlorophyll a concentration or total phytoplankton biovolume. 4. In some taxa, physiological constraints (e.g. sensitivity to high pH and low concentrations of free CO2) and differences in competitive ability may be more important for the biomass development than fish predation, grazing by herbivorous zooplankton, and nutrient availability. 5. We conclude that food chain theory accurately predicted responses in system variables, such as total zooplankton or algal biomass, which are shaped by the dynamics of certain strong interactors (‘keystone species’), such as large cladocerans, cyanobacteria and edible algae (<50 μm), whereas responses at finer taxonomic levels cannot be predicted from current theory.  相似文献   

6.
微塑料作为一种新型的环境污染物,大量存在于水环境中,给水生生物带来了极大的危害.浮游生物是水生食物链的基础,是水生生态系统物质循环和能量流动的重要环节;同时,浮游生物也是对各种环境污染物最敏感的类群.了解微塑料对浮游生物的影响是评价其生态风险的重要依据.本文介绍了环境中微塑料来源、特征及水生态系统微塑料污染现状,阐述了...  相似文献   

7.
8.
We examined the impact of five silver carp biomass levels (0, 8, 16, 20, and 32 g m−3) on plankton communities and water quality of Villerest eutrophic reservoir (France). We realized the experiments using outdoor mesocosms. The presence of silver carp led to changes in zooplankton and phytoplankton assemblages. High fish biomass strongly reduced cladoceran abundance (through predation). Silver carp inefficiently grazed down particles < 20 μm. More importantly, however, the suppression of herbivorous cladocerans resulted in the increase of small size algae which were relieved from grazing and benefit from high nutrient concentrations. In contrast, in mesocosms without fish, the dominance of cladocerans (mainly Daphnia) controlled small size algae and probably also larger size algae (colonial chlorophytes, cyanobacteria). Thus, the Secchi disc transparency increased markedly. Through cascade effects, the modification of grazers communities led to changes in the utilization patterns of the added nutrients by phytoplankton communities. In high fish biomass treatments, nutrients were more efficiently accumulated into particulate fractions compared with no-fish and low-fish biomass treatments that were characterized by higher dissolved nutrients concentrations. Zooplankton was an essential source of food for silver carp. The productivity of zooplankton sustained a moderate silver carp biomass (up to 16 g m−3). In the presence of the highest fish biomass, the productivity of zooplankton was not large enough and silver carps fed on additional phytoplankton. Although mesocosms with high fish biomass were characterized by a slight cyanobacteria development compared with other fish mesocosms, silver carp was not effective in reducing cyanobacteria dominance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Global warming increasingly pressures species to show adaptive migratory responses. We hypothesized that warming increases invasion of alpine lakes by low-elevation montane zooplankton by suppressing native competitors and predators. This hypothesis was tested by conducting a two-factor experiment, consisting of a warming treatment (13 vs. 20°C) crossed with three invasion levels (alpine only, alpine+montane, montane only), in growth chambers over a 28-day period. Warming significantly reduced total consumer biomass owing to the decline of large alpine species, resulting in greater autotrophic abundance. Significant temperature-invasion interactions occurred as warming suppressed alpine zooplankton, while stimulating certain imported species. Herbivorous invaders suppressed functionally similar alpine species while larger native omnivores reduced invasion by smaller taxa. Warming did not affect total invader biomass because imported species thrived under ambient and warmed alpine conditions. Our findings suggest that the adaptability of remote alpine lake communities to global warming is limited by species dispersal from lower valleys, or possibly nearby warmer alpine ponds.  相似文献   

10.
1. For 13 years the response of the plankton and fish community to a decline in external phosphorus loading was studied in eight lakes with a mean depth <5 m. We conducted chi‐square analyses of sign of slope (positive or negative) of bimonthly averages of plankton variables for the eight lakes versus time. For fish, we compared results from two periods, i.e. 1989–1994 versus 1994–2001 as less data were available. 2. Fish community structure tended to respond to the lowered concentration of total phosphorus (TP), although not all changes were significant. While catch per unit effort (multi‐mesh sized gill nets) of cyprinids (especially bream, Abramis brama and roach, Rutilus rutilus) was highest in the first 5‐year period, the quantitative importance particularly of perch (Perca fluviatilis), pike (Esox lucius) and rudd (Scardinius erythropthalmus), a littoral species, increased significantly after 1994. 3. No changes occurred in zooplankton biomass, except for an increase in November and December. Biomass of small cladocerans, however, declined during summer and autumn, and the proportion of Daphnia to cladoceran biomass also increased. Average body weight of Daphnia and that of all cladocerans increased. The proportion of calanoids among copepods decreased in summer and the average body weight of cyclopoids and calanoids decreased during summer and autumn/early winter. 4. Total biovolume of phytoplankton declined significantly in March to June and tended to decline in November and December as well, while no significant changes were observed during summer and autumn. Non‐heterocystous cyanobacteria showed a decreasing trend during summer and autumn, while heterocystous cyanobacteria increased significantly in late summer. An increase in late summer was also evident for cryptophytes and chrysophytes, while diatoms tended to decline during most seasons. 5. We conclude that phytoplankton, and probably also fish, responded rapidly to reduced loading, whereas the effect on zooplankton was less pronounced. However, increases in body weight of cladocerans and the zooplankton to phytoplankton biomass ratio during summer indicate reduced top‐down control on zooplankton and enhanced grazing on phytoplankton. This conclusion is supported by a tendency for fish biomass to decline and a shift towards greater dominance by piscivores and, thus, an increased likelihood of predator control of zooplanktivorous cyprinids.  相似文献   

11.
We evaluated the effect of a fish removal from a shallow, turbid, eutrophic lake. By late May (following an October fish removal), the cladoceran community shifted from small-bodiedBosmina andChydorus (less than 100 l−1) to largerDaphnia (over 100 l−1). During the periods of peak daphnid abundance (late May–June) chlorophyll-a concentrations and edible diatoms were reduced and water transparency improved dramatically. Total phosphorus was not significantly lowered during this period. Although this clear-water phase was short-lived (May, June and early July), it corresponded to the critical period of plant growth and allowed dramatic increases in submergent macrophytes.  相似文献   

12.
Comments on a recently described moorable, automated plankton sampler are given, mainly because it was designed to capture large zooplankton. However, the need for automatic devices for sampling phyto- and zooplankton is stressed. A new design for such a device is presented. A preliminary test was made using standard continuous-flow (auto-analyser) equipment, a cultured flagellate and formalin as a fixative.  相似文献   

13.
Covariation in species richness and community structure across taxonomical groups (cross‐taxon congruence) has practical consequences for the identification of biodiversity surrogates and proxies, as well as theoretical ramifications for understanding the mechanisms maintaining and sustaining biodiversity. We found there to exist a high cross‐taxon congruence between phytoplankton, zooplankton, and fish in 73 large Scandinavian lakes across a 750 km longitudinal transect. The fraction of the total diversity variation explained by local environment alone was small for all trophic levels while a substantial fraction could be explained by spatial gradient variables. Almost half of the explained variation could not be resolved between local and spatial factors, possibly due to confounding issues between longitude and landscape productivity. There is strong consensus that the longitudinal gradient found in the regional fish community results from postglacial dispersal limitations, while there is much less evidence for the species richness and community structure gradients at lower trophic levels being directly affected by dispersal limitation over the same time scale. We found strong support for bidirectional interactions between fish and zooplankton species richness, while corresponding interactions between phytoplankton and zooplankton richness were much weaker. Both the weakening of the linkage at lower trophic levels and the bidirectional nature of the interaction indicates that the underlying mechanism must be qualitatively different from a trophic cascade.  相似文献   

14.
Sommer U  Sommer F  Feuchtmayr H  Hansen T 《Protist》2004,155(3):295-304
We used marine phytoplankton from mesocosms seeded with different zooplankton densities to study the impact of mesozooplankton on phytoplankton nutrient limitation. After 7 d of grazing (copepod mesocosms) or 9 d (appendicularian mesocosms) phytoplankton nutrient limitation was studied by enrichment bioassays. After removal of mesozooplankton, bioassay bottles received either no nutrients, phosphorus or nitrogen alone, or a combination of nitrogen and phosphorus and were incubated for 2 d. Phytoplankton reproductive rates in the bottles without nutrient addition were calculated after correction for grazing by ciliates and indicated increasing nitrogen limitation with increasing copepod abundance. No nutrient limitation was found in the appendicularian mesocosms. The increase of nutrient limitation with increasing copepod density seems to be mainly the result of a trophic cascade effect: Copepods released nanoplankton from ciliate grazing pressure, and thereby enhanced nitrogen exhaustion by nanophytoplankton and reduced nitrogen excretion by ciliates. Nitrogen sequestration in copepod biomass, the mechanism predicted by the ecological stoichiometry theory, seems to have been a weaker effect because there was only little copepod growth during the experiment.  相似文献   

15.
Aim In this continental‐scale study, the biodiversity of benthic and planktonic algal communities was explored. A recent analysis of extinct and extant tree communities by Enquist et al. (2002) showed that richness of higher taxa was a power function of species richness, invariant across temporal and spatial scales. Here we examined whether the relationships between algal richness at hierarchical taxonomic levels conform to power laws as seen for trees, and if these relationships differ between benthic and planktonic habitats. Location Streams from more than 50 major watersheds in the United States. Method A total of 3698 samples were collected from 1277 locations by the National Water‐Quality Assessment Program. Three types of stream habitat were sampled: richest targeted habitats, depositional targeted habitats, and phytoplankton. The relationships between taxonomic richness at the species level vs. all higher categories from genus to phylum across the three habitats were examined by ordinary least squares (OLS) regressions after ln‐transformation of all variables. The slopes, b, of these regressions represent the exponents of the power functions that scaled the richness of higher taxonomic levels (T) to species richness (S) in the form: TSb. Results Algal richness at hierarchical taxonomic categories (genus to phylum) is a power function of species richness. The scaling exponent of this function, which captures the diversification of higher taxa, i.e. the rate of increase of their richness with the increase of species richness, is significantly different across environments. Main conclusions The differential algal diversification in the three studied habitats emphasizes the fundamental role of the environment in structuring the communities of simple organisms such as algae. The finding that the diversification of higher taxa is greater in the seemingly homogeneous planktonic environment, when compared to benthic habitats, encompassing an array of ecological niches, poses a new paradox of the plankton.  相似文献   

16.
1. The impact of whole-lake lime (slaked lime, Ca(OH)2, and/or calcite, CaCO3) addition on plankton communities was evaluated in eutrophic hardwater lakes on the North American Boreal Plain.
2. Two lakes received a single treatment of lime (Ca(OH)2 at 74 or 107 mg L–1), two lakes received multiple treatments with Ca(OH)2 and/or CaCO3 (5–78 mg L–1), and four lakes were untreated and served as reference systems.
3. Over the long-term (> 1 year), phytoplankton biomass was reduced in multiple-dose lakes, but not in single-dose lakes. Cyanobacteria typically dominated the algal community in the years before, during and after lime treatment in both single- and multiple-dose lakes.
4. In the single-dose lakes, randomized intervention analysis showed no significant change in the biomass of zooplankton after lime addition.  相似文献   

17.
SUMMARY 1. The POTAMON model [Everbecq E. et al . (2001) Water Research , 35 , 901] has been used to simulate the effect of benthic bivalves (mainly Dreissena polymorpha ) on the phytoplankton and zooplankton in a lowland Western European river (the Moselle). Here we use a modified version of the POTAMON model with five categories of phytoplankton ( Stephanodiscus , Cyclotella -like, large diatoms, Skeletonema and non-siliceous algae) to model filter-feeding effects of benthic bivalves in the Moselle. Zooplankton has been represented in the model by two categories, Brachionus -like and Keratella -like rotifers.
2. According to density estimates from field surveys (Bachmann V. et al . (1995) Hydroécologie Appliquée , 7 , 185, Bachmann V. & Usseglio-Polatera P. (1999) Hydrobiologia , 410 , 39), zebra mussel density varied among river stretches, and increased through the year to a maximum in summer. Dreissena filtration rates from the literature were used, and mussels have been assumed to feed on different phytoplankton categories (but less on large and filamentous diatoms) as well as on rotifers.
3. The simulations suggest a significant impact of benthic filter-feeders on potamoplankton and water quality in those stretches where the mussels are abundant, their impact being maximal in summer. Consequently, different plankton groups were not affected to the same extent, depending on their period of development and on indirect effects, such as predation by mussels on herbivorous zooplankton.
4. A daily carbon balance for a typical summer shows the effect of benthic filter-feeders on planktonic and benthic processes: the flux of organic matter to the bottom is greatly enhanced at high mussel density; conversely, production and breakdown of organic carbon in the water column are reduced. Mussel removal would drive the carbon balance of the river toward autotrophy only in the downstream stretches.  相似文献   

18.
Zooplankton (Copepoda, Cladocera, Ostracoda, Rotifera and Diptera larvae) in nine North African lakes was collected from open water areas over twenty months during 1997/99. The results were used to monitor changes in the pelagic micro-invertebrate fauna of these sites with the purpose of exploring diversity structure and regional species occurrences.The studied sites formed three distinct groups based on hydrology and water quality criteria: (i) acid water with no marine connection (Megene Chitane); (ii) alkaline freshwater/brackish with no marine connection (Merja Sidi Bou Rhaba and Merja Bokka); (iii) freshwater/brackish with marine connection (Merja Zerga, Lac de Korba, Garaet El Ichkeul and three Nile Delta lakes). However, cluster analysis of the zooplankton data alone indicated four groups with Korba being separated because of its prevalence of species tolerant of summer hypersalinity.The total regional zooplanktonic species richness found was 88 taxa and these were characterized by species tolerant of widely fluctuating environmental conditions. However, some recorded species were very rare for North African freshwaters (e.g. Alonella excisa, Leydigia quadrangularis and, Ilyocryptus sordidus) and generally indicate favourable environmental conditions of low salinity and temperature. The sites influenced by marine waters generally exhibited slightly lower numbers of species but which generally demonstrate cosmopolitan distributions. Distinct seasonal patterns in species distributions were more similar to those observed in European lakes rather than to those of lower latitudes sites.Zooplankton play a key role in maintaining aquatic ecosystem quality in the North African study lakes and the community distributions described for the late 20th century help set biodiversity base-line data for future studies. If the remaining wetland lakes in this region are to persist as important resources during the 21st century, they will need to be managed in a way that ensures that aquatic diversity is maintained.  相似文献   

19.
Seasonal variations in phytoplankton species composition (frequencies) and densities (cell numbers) in nine North African coastal lakes selected in Morocco (Merja Sidi Bou Rhaba, Zerga and Bokka), Tunisia (Chitane, Ichkeul and Korba lakes) and Egypt (Edku, Burullus and Manzala lakes) were investigated during 1998. The main aim was to provide gase-line information about overall phytoplankton diversity and how phytoplanktoncharacteristics differ between these contrasting aquatic systems.Water samples were collected at approximately three monthly intervals and phytoplankton analysis revealed marked seasonal and spatial differences in the quantitative and qualitative composition of the communities at each site. The Egyptian lakes generally had larger crops (Manzala and Burullus had mean crop densities of more than 104 cells ml–1) but in the western North African sites only Korba and Sidi Bou Rhaba had closely comparable densities. Algae belonging to Bacillariophyceae, Chlorophyceae, Chrysophyceae, Cyanophyceae, Dinophyceae and Euglenophyceae were recorded. Taxa representative of all these algal groups occurred in two lakes (Korba and Manzala) but at the other seven sites only some of the groups were present.The Chlorophyceae was the most dominant group in lakes Burullus, Manzala, Korba and Sidi Bou Rhaba whereas Bacillariophyceae were dominant in lakes Zerga, Bokka and Edku. In Ichkeul and acidic Chitane the Dinophyceae and the Cyanophyceae were the dominant groups, respectively. The maximum percentage of Euglenophyceae occurred in Edku Lake but this group was absent in Sidi Bou Rhaba and Ichkeul. Cyanophyceans were present in significant numbers in all investigated lakes except in Ichkeul. A total of fifty-three genera were recorded, 17 of Chlorophyceae, 18 of Bacillariophyceae, 11 of Cyanophyceae, 3 of Chrysophyceae, 2 of Euglenophyceae and 2 of Dinophyceae. The maximum number of species (34) occurred in Burullus Lake and the minimum (6) in Ichkeul Lake. Only one lake (acidic Chitane) possessed species indicative of oligotrophic conditions. The Nile Delta lakes were the most species diverse sites.The phytoplankton communities of the nine North African lakes were composed entirely of cosmopolitan species but with one new species (Cyclotella choctawatcheeana) was recorded for the region. The data presented provide a contemporary account of the levels of algal diversity present in these sites at the end of the 20th century. The relevance of phytoplankton communities to assessment of lake status and future monitoring studies in the region is emphasised.  相似文献   

20.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号