首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have produced four monoclonal antibodies against type IV collagen obtained from human placenta. An antibody with a high titer by ELISA, named JK-199, reacted not only with type IV collagen in the triple-helical conformation but also with thermally denatured chains. After affinity chromatography on JK-199 antibody-coupled resin, the amino acid composition and CD spectrum of the affinity-purified peptides from the crude pepsin extract of human placenta were typical of those of human type IV collagen in the triple-helical conformation. On SDS-polyacrylamide gel electrophoresis, the purified protein showed only one broad band with a molecular weight of approximately 260,000 before reduction and six smaller peptide bands after reduction. On immunoelectroblotting, JK-199 reacted with all six peptide bands. Immunohistochemically, typical basement membranes were exclusively and strongly stained with JK-199 on frozen sections of PLP-fixed human placentas without any enzymatic pretreatment in the routine immunoperoxidase method. Judging from these findings, it is concluded that the epitopes of type IV collagen that reacted with JK-199 are exposed on the surface of basement membranes. This antibody should be useful for identification of type IV collagen in normal or pathological basement membranes or other structures.  相似文献   

2.
Summary This paper describes two new monoclonal antibodies reactive with human specific type IV collagen epitopes in frozen as well as routinely fixed and processed tissue sections. The antibodies (1042 and 1043) were raised against human placental type IV collagen and were shown by immunoblotting and ELISA tests to react exclusively with type IV collagen determinants. Extensive immunohistochemical survey studies on panels of tissues from various species, using unfixed cryosat sections, demonstrated that antibody 1042 reacted only with human type IV collagen whereas antibody 1043 in addition reacted with rabbit type IV collagen. All tissues showed homogeneous staining of the basement membrane, indicating that the detected epitopes did not show organ-specific distribution.Tissue processing protocols for using these monoclonal antibodies on routinely processed paraffin embedded tissues were developed. It was found that whereas polyclonal antitype IV collagen antisera required pepsin digestion, our monoclonal antibodies required pronase or papain digestion to restore type IV collagen immunoreactivity in paraffin sections.It is concluded that these monoclonal anti-type IV collagen antibodies detect species specific epitopes which can be detected in routinely processed paraffin embedded tissues after appropriate enzyme pretreatment.  相似文献   

3.
This paper describes two new monoclonal antibodies reactive with human specific type IV collagen epitopes in frozen as well as routinely fixed and processed tissue sections. The antibodies (1042 and 1043) were raised against human placental type IV collagen and were shown by immunoblotting and ELISA tests to react exclusively with type IV collagen determinants. Extensive immunohistochemical survey studies on panels of tissues from various species, using unfixed cryostat sections, demonstrated that antibody 1042 reacted only with human type IV collagen whereas antibody 1043 in addition reacted with rabbit type IV collagen. All tissues showed homogeneous staining of the basement membrane, indicating that the detected epitopes did not show organ-specific distribution. Tissue processing protocols for using these monoclonal antibodies on routinely processed paraffin embedded tissues were developed. It was found that whereas polyclonal anti-type IV collage antisera required pepsin digestion, our monoclonal antibodies required pronase or papain digestion to restore type IV collagen immunoreactivity in paraffin sections. It is concluded that these monoclonal anti-type IV collagen antibodies detect species specific epitopes which can be detected in routinely processed paraffin embedded tissues after appropriate enzyme pretreatment.  相似文献   

4.
Our previous reports showed that cultured human cells secrete non-disulfide-bonded non-helical alpha1(IV) and alpha2(IV) chains under physiological conditions. In the present report we show that the alpha(IV) chains in non-helical form were reactive to lectin ABA (Agaricus bisporus agglutinin), whereas the alpha(IV) chains secreted in triple-helical form were not. These results indicate that ABA could be used to distinguish the two conformational isomers of type IV collagen polypeptides. An alpha1(IV) chain isolated from human placenta with an antibody-coupled column showed a positive reaction to ABA, indicating that gelatin form of the type IV collagen alpha1(IV) chain is produced and retained in the tissue in vivo. A possible significance of the gelatin form is discussed from the finding that the non-helical alpha1(IV) chain purified with EDTA-free buffer contained degraded polypeptides including NC1-size domain and showed an apparent inhibition against activated pro-MMP-9. This is the first report to show that a gelatin form of protein exists in vivo.  相似文献   

5.
Collagen type IV provides a biomechanically stable scaffold into which the other constituents of basement membranes are incorporated, but it also plays an important role in cell adhesion. This occurs with collagen type IV mainly via the alpha1beta1 integrin, and the proposed epitope involved in this type of collagen/integrin interaction corresponds to a non-sequential R/Xaa/D motif, where the arginine and aspartate residues are provided by the alpha2 and alpha1 chains of the collagen molecule, respectively. Since the stagger of the three alpha chains in native collagen type IV is still unknown and different alignments of the chains lead to different spatial epitopes, two heterotrimeric collagen peptides containing the natural 457-469 sequences of the cell adhesion site were synthesized in which the single chains were assembled via disulfide bonds into the two most plausible alpha1alpha2alpha1' and alpha2alpha1alpha1' registers. The differentiated triple-helical stabilities of the two heterotrimers suggest a significant structural role of the chain register in collagen, although the binding to alpha1beta1 integrin is apparently less affected as indicated by preliminary experiments.  相似文献   

6.
Our previous report showed that human fetal lung fibroblasts secreted non-disulfide-bonded, non-helical collagenous polypeptides of alpha1(IV) and alpha2(IV) chains depending on culture conditions [Connective Tissue (1999) 31, 161-168]. The secretion of non-helical collagenous polypeptides is unexpected from the current consensus that such polypeptides are not secreted under physiological conditions. The absence of interchain disulfide bonds among alpha1(IV) and alpha2(IV) chains was always correlated with the absence of triple-helical structure of the type IV collagen. The finding corresponds with the fact that the interchain disulfide bonds are formed at or close to the completion of the type IV collagen triple-helix formation. The present report shows that ascorbate is the primary factor for the triple-helix formation of the type IV collagen. When human mesangial cells were cultured with ascorbate, only the triple-helical type IV collagen was secreted. However, when the cells were cultured without ascorbate, the non-helical alpha1(IV) and alpha2(IV) chains were secreted. Relative amounts of the secreted products were unchanged with or without ascorbate, suggesting that ascorbate is required for the step of the triple-helix formation. The ascorbate-dependency of the triple-helix formation of the type IV collagen was observed in all the human cells examined. The non-helical alpha1(IV) chain produced by the ascorbate-free culture contained about 80% less hydroxyproline than the alpha1(IV) chain from the triple-helical type IV collagen. The evidence for the non-association of the non-helical alpha1(IV) and alpha2(IV) chains in the conditioned medium was obtained by an anti-alpha1(IV) antibody-coupled affinity column chromatography for the conditioned medium. Although all the non-helical alpha1(IV) chains were found in the bound fraction, all the non-helical alpha2(IV) chains were recovered in the flow-through fraction. The present findings suggest that ascorbate plays a key role in the trimerization step of three alpha chains and/or in the subsequent triple-helix formation of the type IV collagen.  相似文献   

7.
The organizational relationship between the recently identified alpha 3 chain of basement membrane collagen (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B.G. (1987) J. Biol. Chem. 262, 7874-7877) and collagen IV was determined. This was accomplished by the identification of subunits in hexamers of the NC1 domain of collagen IV that were immunoprecipitated with antibodies prepared against subunits M1, corresponding to alpha 1(IV)NC1 and alpha 2(IV)NC1, and M2, corresponding to alpha 3NC1, and by amino acid sequence analysis. The presence of at least two distinct types of hexamers was revealed, one enriched in M1 and the other enriched in M2, but in both types, M1 and M2 coexist. Evidence was also obtained for the existence of heterodimers comprised of M1 and M2. These results indicate that M2 is an integral component of the NC1 hexamer of collagen IV. The amino acid sequence of the NH2-terminal region of M2 was found to be highly related to the collagenous-NC1 junctional region of the alpha 1 chain of collagen IV. Therefore, M2 is designated alpha 3(IV)NC1 and its parent chain alpha 3(IV). These findings lead to a new concept about the structure of collagen IV: namely, 1) collagen IV is comprised of a third chain (alpha 3) together with the two classical ones (alpha 1 and alpha 2); the alpha 3(IV) chain exists within the same triple-helical molecule together with the alpha 1(IV) and alpha 2(IV) chains and/or within a separate triple-helical molecule, exclusive of alpha 1(IV) and alpha 2(IV) chains, but connected through the NC1 domains to the classical triple-helical molecule comprised of alpha 1(IV) and alpha 2(IV) chains. Additionally, a portion of those triple-helical molecules exclusive of alpha 1(IV) and alpha 2(IV) chains may be connected to each other through their NC1 domains; and 3) the epitope to which the major reactivity of autoantibodies are targeted in glomerular basement membrane in patients with Goodpasture syndrome is localized to the NC1 domain of the alpha 3(IV) chain.  相似文献   

8.
We cloned three overlapping cDNAs covering 2,452 base pairs encoding a new basement membrane collagen chain, alpha 4(IV), from rabbit corneal endothelial cell RNA. Nucleotide sequence analysis demonstrated that the clones encoded a triple-helical domain of 392 1/3 amino acid residues and a carboxyl non-triple-helical (NC1) domain of 231 residues. We also isolated a genomic DNA fragment for the human alpha 4(IV) chain, which contained two exons encoding from the carboxyl end of the triple-helical domain to the amino end of the NC1 domain. Identification of the clones was based on the amino acid sequence identity between the cDNA-deduced amino acid sequence and the reported amino acid sequence obtained from a fragment of the alpha 4(IV) collagen polypeptide M28+ (Butkowski, R. J., Shen, G.-Q., Wieslander, J., Michael, A. F., and Fish, A. J. (1990) J. Lab. Clin. Med. 115, 365-373). When compared with four other type IV collagen chains, the NC1 domain contained 12 cysteinyl residues in positions identical to those of the residues in those chains. The domain demonstrated 61, 70, 55, and 60% amino acid similarity with human alpha 1, human alpha 2, bovine alpha 3, and human alpha 5 chains, respectively. The human genomic DNA fragment allowed us to map the alpha 4(IV) gene (COL4A4) to the 2q35-2q37.1 region of the human genome.  相似文献   

9.
Goodpasture's (GP) disease is caused by autoantibodies that target the alpha3(IV) collagen chain in the glomerular basement membrane (GBM). Goodpasture autoantibodies bind two conformational epitopes (E(A) and E(B)) located within the non-collagenous (NC1) domain of this chain, which are sequestered within the NC1 hexamer of the type IV collagen network containing the alpha3(IV), alpha4(IV), and alpha5(IV) chains. In this study, the quaternary organization of these chains and the molecular basis for the sequestration of the epitopes were investigated. This was accomplished by physicochemical and immunochemical characterization of the NC1 hexamers using chain-specific antibodies. The hexamers were found to have a molecular composition of (alpha3)(2)(alpha4)(2)(alpha5)(2) and to contain cross-linked alpha3-alpha5 heterodimers and alpha4-alpha4 homodimers. Together with association studies of individual NC1 domains, these findings indicate that the alpha3, alpha4, and alpha5 chains occur together in the same triple-helical protomer. In the GBM, this protomer dimerizes through NC1-NC1 domain interactions such that the alpha3, alpha4, and alpha5 chains of one protomer connect with the alpha5, alpha4, and alpha3 chains of the opposite protomer, respectively. The immunodominant Goodpasture autoepitope, located within the E(A) region, is sequestered within the alpha3alpha4alpha5 protomer near the triple-helical junction, at the interface between the alpha3NC1 and alpha5NC1 domains, whereas the E(B) epitope is sequestered at the interface between the alpha3NC1 and alpha4NC1 domains. The results also reveal the network distribution of the six chains of collagen IV in the renal glomerulus and provide a molecular explanation for the absence of the alpha3, alpha4, alpha5, and alpha6 chains in Alport syndrome.  相似文献   

10.
The location of the epitopes for monoclonal antibodies against chicken type IV and type V collagens were directly determined in the electron microscope after rotary shadowing of antibody/collagen mixtures. Three monoclonal antibodies against type IV collagen were examined, each one of which was previously demonstrated to be specific for only one of the three pepsin-resistant fragments of the molecule. The three native fragments were designated (F1)2F2, F3, and 7S, and the antibodies that specifically recognize each fragment were called, respectively, IA8 , IIB12 , and ID2 . By electron microscopy, monoclonal antibody IA8 recognized an epitope located in the center of fragment (F1)2F2 and in tetramers of type IV collagen at a distance of 288 nm from the 7S domain, the region of overlap of four type IV molecules. Monoclonal antibody IIB12 , in contrast, recognized an epitope located only 73 nm from the 7S domain. This result therefore provides direct visual evidence that the F3 fragment is located closest to the 7S domain and the order of the fragments must be 7S-F3-(F1)2F2. The epitope for antibody ID2 was located in the overlap region of the 7S domain, and often several antibody molecules were observed to binding to a single 7S domain. The high frequency with which antibody molecules were observed to bind to fragments of type IV collagen suggests that there is a single population of type IV molecules of chain organization [alpha 1(IV)]2 alpha 2(IV), and that four identical molecules must form a tetramer that is joined in an antiparallel manner at the 7S domain. The monoclonal antibodies against type V collagen, called AB12 and DH2 , were both found to recognize epitopes close to one another, the epitopes being located 45-48 nm from one end of the type V collagen molecule. The significance of this result still remains uncertain, but suggests that this site is probably highly immunoreactive. It may also be related to the specific cleavage site of type V collagen by selected metalloproteinases and by alpha-thrombin. This cleavage site is also known to be located close to one end of the type V molecule.  相似文献   

11.
Several distinct epitopes on human type II collagen were defined by using mAb. The presence of species-specific and species-nonspecific (common) epitopes was thus clarified. Anti-idiotypic mAb (Ab2) was developed against one of the antibodies (Ab1) reactive with species-specific epitopes. Thus Ab2 was demonstrated to recognize an idiotope expressed on the Ag-binding site (paratope) of Ab1, since the binding of Ab1 to human type II collagen was blocked by Ab2, and the binding of Ab2 to Ab1 was inhibited by soluble human type II collagen, but not by murine and bovine type II collagens. DBA/1 mice immunized with Ab2 coupled to keyhole limpet hemocyanin produced an antibody (Ab3) specifically reactive with human type II collagen. It was also demonstrated that Ab3 expressed an idiotype similar to that of Ab1. These findings indicate that anti-idiotypic antibody directed against mAb to human type II collagen mimics a species-specific epitope on human type II collagen. The anti-idiotypic antibody bearing internal image of type II collagen will open the way to isolation of the arthritogenic epitope on type II collagen.  相似文献   

12.
Saccà B  Fiori S  Moroder L 《Biochemistry》2003,42(12):3429-3436
Collagen type IV is a specialized form of collagen that is found only in basement membranes. It is involved in integrin-mediated cell-adhesion processes, and the responsible binding sites for the alpha1beta1 integrin cell receptor have been identified as Asp461 of the two alpha1 chains and Arg461 of the alpha2 chain. In the most plausible stagger of native collagen type IV the alpha2 chain is the tailing one. This has recently been confirmed by the differentiated binding affinities of synthetic heterotrimeric collagen peptides in which the chains were staggered in this native register as well as in the less plausible alpha1alpha2alpha1' register with an artificial cystine knot. In the present work, two heterotrimeric collagen peptides with chain registers identical to the previous ones were synthesized for fluorescence resonance energy transfer and emission anisotropy measurements, exploiting the native Phe464 in the alpha2 chain as donor and an Ile467Tyr mutation in the alpha1' chain as acceptor fluorophore. This fluorophore pair allowed extraction of more detailed information on the conformational properties of the cell-adhesion epitope incorporated into the central part of the trimeric collagen model peptides. A comparison of the experimentally derived values of the interfluorophore distance and of the orientation factor kappa(2) with the values extracted from the molecular model of the trimer in the native stagger confirmed a triple-helical structure of the adhesion-site portion at low temperature. The thermal unfolding of this central domain was specifically monitored by emission anisotropy, allowing unambiguous assignment of the three structural domains of the trimeric collagen molecules detected by microcalorimetry, with the integrin binding site as the portion of weakest triple-helical stability flanked by two more stable triple-helical regions. The results are consistent with the picture of a conformational microheterogeneity as the responsible property for selective recognition of collagens by interacting proteins.  相似文献   

13.
Goodpasture (GP) disease is an autoimmune disorder in which autoantibodies against the alpha3(IV) chain of type IV collagen bind to the glomerular and alveolar basement membranes, causing progressive glomerulonephritis and pulmonary hemorrhage. Two major conformational epitope regions have been identified on the noncollagenous domain of type IV collagen (NC1 domain) of the alpha3(IV) chain as residues 17-31 (E(A)) and 127-141 (E(B)) (Netzer, K.-O. et al. (1999) J. Biol. Chem. 274, 11267-11274). To determine whether these regions are two distinct epitopes or form a single epitope, three GP sera were fractionated by affinity chromatography on immobilized NC1 chimeras containing the E(A) and/or the E(B) region. Four subpopulations of GP antibodies with distinct epitope specificity for the alpha3(IV)NC1 domain were thus separated and characterized. They were designated GP(A), GP(B), GP(AB), and GP(X), to reflect their reactivity with E(A) only, E(B) only, both regions, and neither, respectively. Hence, regions E(A) and E(B) encompass critical amino acids that constitute three distinct epitopes for GP(A), GP(B), and GP(AB) antibodies, respectively, whereas the epitope for GP(X) antibodies is located in a different unknown region. The GP(A) antibodies were consistently immunodominant, accounting for 60-65% of the total immunoreactivity to alpha3(IV)NC1; thus, they probably play a major role in pathogenesis. Regions E(A) and E(B) are held in close proximity because they jointly form the epitope for Mab3, a monoclonal antibody that competes for binding with GP autoantibodies. All GP epitopes are sequestered in the hexamer configuration of the NC1 domain found in tissues and are inaccessible for antibody binding unless dissociation of the hexamer occurs, suggesting a possible mechanism for etiology of GP disease. GP antibodies have the capacity to extract alpha3(IV)NC1 monomers, but not dimers, from native human glomerular basement membrane hexamers, a property that may be of fundamental importance for the pathogenesis of the disease.  相似文献   

14.
The triple-helical domain of type VII collagen was isolated from human placental membranes by mild digestion with pepsin, and polyclonal antibodies were raised in rabbits against this protein. After affinity purification the antibodies specifically recognized type VII collagen in both the triple-helical and the unfolded state. They also reacted with the fragments P1 and P2, derived from the triple-helical domain by further proteolysis with pepsin, but did not crossreact with other biochemical components of the dermal connective tissue. In skin the presence of a fragment of type VII collagen, similar to that isolated from placenta, was demonstrated by SDS-PAGE and immunoblotting. Type VII collagen represented less than 0.001% of the total collagen extracted by pepsin digestion from newborn or adult skin. The tissue form of type VII collagen was obtained from dermis after artificial epidermolysis with strongly denaturing buffers under conditions reducing disulfide bonds. The protein was identified by immunoblotting with the antibodies. The molecule was composed of three polypeptides with an apparent molecular mass of about 250 kDa, each. Similar large-molecular-mass chains could be identified by immunoblotting in extracts of human fibroblasts in culture.  相似文献   

15.
 Invasive extravillous trophoblast cells of the human placenta are embedded in a self-secreted extracellular matrix, the matrix-type fibrinoid. The ultrastructure and molecular composition of the matrix-type fibrinoid of the term human placenta were studied by transmission electron microscopy and immunogold labelling. We used antibodies directed against different matrix proteins such as collagen type IV, laminin, vitronectin, heparan sulfate, various fibronectin isoforms, and against the oncofetal blood group antigen, ”i”. Immunogold labelling patterns of matrix proteins are the basis for the subdivision of the trophoblast-derived matrix-type fibrinoid into mosaic-like patches of structurally and immunocytochemically different compartments. Firstly, fine granular patches with structural similarities to basal lamina material are composed solely of collagen type IV and laminin. Secondly, an ultrastructurally amorphous glossy substance shows reactivity with antibodies against heparan sulfate and vitronectin. A third type of patches, fine fibrillar networks embedded in the above-mentioned glossy matrix, are reactive with antibodies against normal fibronectin isoforms (IST-4, IST-6, IST-9) and oncofetal isoforms (BC-1, FDC-6). The blood group precursor antigen ”i” was not only expressed on the surfaces of the extravillous trophoblast cells but was associated with the fibronectin-positive fibrils. In conclusion, within this extracellular matrix, clear compartments of different composition can be distinguished from each other. Glycosylation with ”i” in this matrix may be involved in immunological masking, thus preventing rejection of placenta and fetus. Accepted: 6 May 1996  相似文献   

16.
Porencephaly is a neurological disorder characterized by fluid-filled cysts or cavities in the brain that often cause hemiplegia. It has been suggested that porencephalic cavities result from focal cerebral degeneration involving hemorrhages. De novo or inherited heterozygous mutations in COL4A1, which encodes the type IV α1 collagen chain that is essential for structural integrity for vascular basement membranes, have been reported in individuals with porencephaly. Most mutations occurred at conserved Gly residues in the Gly-Xaa-Yaa repeats of the triple-helical domain, leading to alterations of the α1α1α2 heterotrimers. Here we report on two individuals with porencephaly caused by a heterozygous missense mutation in COL4A2, which encodes the type IV α2 collagen chain. Mutations c.3455G>A and c.3110G>A, one in each of the individuals, cause Gly residues in the Gly-Xaa-Yaa repeat to be substituted as p.Gly1152Asp and p.Gly1037Glu, respectively, probably resulting in alterations of the α1α1α2 heterotrimers. The c.3455G>A mutation was found in the proband's mother, who showed very mild monoparesis of the left upper extremity, and the maternal elder uncle, who had congenital hemiplegia. The maternal grandfather harboring the mutation is asymptomatic. The c.3110G>A mutation occurred de novo. Our study confirmed that abnormalities of the α1α1α2 heterotrimers of type IV collagen cause porencephaly and stresses the importance of screening for COL4A2 as well as for COL4A1.  相似文献   

17.
We have isolated and characterized overlapping cDNA clones which code for a previously unidentified human collagen chain. Although the cDNA-derived primary structure of this new polypeptide is very similar to the basement membrane collagen alpha 1(IV) and alpha 2(IV) chains, the carboxyl-terminal collagenous/non-collagenous junction sequence does not correspond to the junction sequence in either of the newly described alpha 3(IV) or alpha 4(IV) chains (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B. G. (1987) J. Biol. Chem. 262, 7874-7877). Thus the protein presented here has been designated the alpha 5 chain of type IV collagen. Four clones encode an open reading frame of 1602 amino acids that cover about 95% of the entire chain including half of the amino-terminal 7S domain and all of the central triple-helical region and carboxyl-terminal NC1 domain. The collagenous region of the alpha 5(IV) chain contains 22 interruptions which are in most cases identical in distribution to those in both the alpha 1(IV) and alpha 2(IV) chains. Despite the relatively low degree of conservation among the amino acids in the triple-helical region of the three type IV collagen chains, analysis of the sequences clearly showed that alpha 5(IV) is more related to alpha 1(IV) than to alpha 2(IV). This similarity between the alpha 5(IV) and alpha 1(IV) chains is particularly evident in the NC1 domains where the two polypeptides are 83% identical in contrast to the alpha 5(IV) and alpha 2(IV) identity of 63%. In addition to greatly increasing the complexity of basement membranes, the alpha 5 chain of type IV collagen may be responsible for specialized functions of some of these extracellular matrices. In this regard, it is important to note that we have recently assigned the alpha 5(IV) gene to the region of the X chromosome containing the locus for a familial type of hereditary nephritis known as Alport syndrome (Myers, J.C., Jones, T.A., Pohjalainen, E.-R., Kadri, A.S., Goddard, A.D., Sheer, D., Solomon, E., and Pihlajaniemi, T. (1990) Am. J. Hum. Genet. 46, 1024-1033). Consequently, the newly discovered alpha 5(IV) collagen chain may have a critical role in inherited diseases of connective tissue.  相似文献   

18.
Antisera against mouse and human basement-membrane type IV collagen showed in radioimmunoassays distinct binding with large pepsin fragments obtained from the C-terminal portions of alpha 1 (IV)- and alpha 2 (IV)-chains. These reactions were specific for each constituent polypeptide chain. The data were confirmed by immunoadsorption, allowing the separation of antibodies with restricted chain specificity. Inhibition assays with CNBr peptides demonstrated the different localizations of antigenic determinants, which were either species-specific or shared by the human and mouse antigens.  相似文献   

19.
During wound healing, pericellular proteolysis is thought to be essential for the detachment of keratinocytes from basement membrane and in their migration into the wound bed. We have characterized integrin-type cell adhesion/migration receptors in human mucosal keratinocytes and examined their function in the regulation of type IV collagenase gene expression. Two major integrins of the β1 class, α2β1 and αβ1, were found to function as collagen and fibronectin receptors, respectively. Antibodies against β1 and α3 integrin subunits were found to stimulate the expression of the 92 kDa type IV collagenase severalfold in a dosedependent manner. Keratinocytes expressed also the 72 kDa type IV collagenase, the synthesis of which remained, however, unchanged in keratinocytes treated with anti-integrin antibodies. Stimulation of 92 kDa enzyme was found to be caused directly by antibody binding to integrins, since Fab-fragments of anti-β1 antibodies alone were able to induce collagenase expression in the absence of secondary, clustering antibodies. Antibodies against α2β1 integrin caused no stimulation. Keratinocytes seeded on different substrata (plastic, collagen, fibronectin, laminin, or vitronectin) showed equal induction of type IV collagenase expression. Expression of 92 kDa type IV collagenase could not be induced by peptides (GRGDS, GRGES), proteins (fibronectin, laminin, fibrinogen., albumin), or antibodies to fibronectin. We suggest that proteolytic processes around keratinocytes can be regulated by extracellular factors signalling through integrin-type receptors. © 1993 Wiley-Liss, Inc.  相似文献   

20.
The globular domain of type IV collagen from bovine glomerular basement membrane was solubilized by collagenase digestion. Components of this domain include several monomer-size and structurally related dimer-size polypeptides. The monomer-size polypeptides were resolved into three fractions (M1, M2, and M3) with slightly different mobilities upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (nonreduced Mr = 24,500-28,300). Chemical and immunochemical studies indicate that each is a distinct component. M2 is reactive with antibodies from patients with Goodpasture syndrome. The molecular weight by sedimentation equilibrium was 32,000 for M2 and 28,000 for M1. The dimers were characterized as two classes, D1 and D2. D1 consists of two sets of nonreactive components (D1a-d and D1a,c) whereas D2 contains one set of four components (D2a-d), each of which is reactive with Goodpasture sera. Chemical and immunochemical studies indicate that a monomer-dimer relationship exists between M1 and D1 and between M2 and D2. The origin of M3 remains undetermined. Rabbit antibodies to type IV collagen alpha chains react with M1 and M2, and antibodies to M1 and M2 react with type IV collagen alpha chains, which provides additional evidence for the localization of the Goodpasture antigen to one of the chains of type IV collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号