首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Nearly one-quarter of all avian species is either threatened or nearly threatened. Of these, 73 species are currently being rescued from going extinct in wildlife sanctuaries. One of the previously most critically-endangered is the crested ibis, Nipponia nippon. Once widespread across North-East Asia, by 1981 only seven individuals from two breeding pairs remained in the wild. The recovering crested ibis populations thus provide an excellent example for conservation genomics since every individual bird has been recruited for genomic and demographic studies.

Results

Using high-quality genome sequences of multiple crested ibis individuals, its thriving co-habitant, the little egret, Egretta garzetta, and the recently sequenced genomes of 41 other avian species that are under various degrees of survival threats, including the bald eagle, we carry out comparative analyses for genomic signatures of near extinction events in association with environmental and behavioral attributes of species. We confirm that both loss of genetic diversity and enrichment of deleterious mutations of protein-coding genes contribute to the major genetic defects of the endangered species. We further identify that genetic inbreeding and loss-of-function genes in the crested ibis may all constitute genetic susceptibility to other factors including long-term climate change, over-hunting, and agrochemical overuse. We also establish a genome-wide DNA identification platform for molecular breeding and conservation practices, to facilitate sustainable recovery of endangered species.

Conclusions

These findings demonstrate common genomic signatures of population decline across avian species and pave a way for further effort in saving endangered species and enhancing conservation genomic efforts.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0557-1) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Categories of imperilment like the global IUCN Red List have been transformed to probabilities of extinction and used to rank species by the amount of imperiled evolutionary history they represent (e.g. by the Edge of Existence programme). We investigate the stability of such lists when ranks are converted to probabilities of extinction under different scenarios.

Methodology and Principal Findings

Using a simple example and computer simulation, we show that preserving the categories when converting such list designations to probabilities of extinction does not guarantee the stability of the resulting lists.

Significance

Care must be taken when choosing a suitable transformation, especially if conservation dollars are allocated to species in a ranked fashion. We advocate routine sensitivity analyses.  相似文献   

3.

Background

Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation.

Methodology/Principal Findings

Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions.

Conclusions/Significance

We find strong quantitative support for the Sabah government’s proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests.  相似文献   

4.

Background

Prioritization schemes usually highlight species-rich areas, where many species are at imminent risk of extinction. To be ecologically relevant these schemes should also include species biological traits into area-setting methods. Furthermore, in a world of limited funds for conservation, conservation action is constrained by land acquisition costs. Hence, including economic costs into conservation priorities can substantially improve their conservation cost-effectiveness.

Methodology/Principal Findings

We examined four global conservation scenarios for carnivores based on the joint mapping of economic costs and species biological traits. These scenarios identify the most cost-effective priority sets of ecoregions, indicating best investment opportunities for safeguarding every carnivore species, and also establish priority sets that can maximize species representation in areas harboring highly vulnerable species. We compared these results with a scenario that minimizes the total number of ecoregions required for conserving all species, irrespective of other factors. We found that cost-effective conservation investments should focus on 41 ecoregions highlighted in the scenario that consider simultaneously both ecoregion vulnerability and economic costs of land acquisition. Ecoregions included in priority sets under these criteria should yield best returns of investments since they harbor species with high extinction risk and have lower mean land cost.

Conclusions/Significance

Our study highlights ecoregions of particular importance for the conservation of the world''s carnivores defining global conservation priorities in analyses that encompass socioeconomic and life-history factors. We consider the identification of a comprehensive priority-set of areas as a first step towards an in-situ biodiversity maintenance strategy.  相似文献   

5.

Background

Climate change is affecting many physical and biological processes worldwide. Anticipating its effects at the level of populations and species is imperative, especially for organisms of conservation or management concern. Previous studies have focused on estimating future species distributions and extinction probabilities directly from current climatic conditions within their geographical ranges. However, relationships between climate and population parameters may be so complex that to make these high-level predictions we need first to understand the underlying biological processes driving population size, as well as their individual response to climatic alterations. Therefore, the objective of this study is to investigate the influence that climate change may have on species population dynamics through altering breeding season.

Methodology/Principal Findings

We used a mechanistic model based on drivers of rabbit reproductive physiology together with demographic simulations to show how future climate-driven changes in breeding season result in contrasting rabbit population trends across Europe. In the Iberian Peninsula, where rabbits are a native species of high ecological and economic value, breeding seasons will shorten and become more variable leading to population declines, higher extinction risk, and lower resilience to perturbations. Whereas towards north-eastern countries, rabbit numbers are expected to increase through longer and more stable reproductive periods, which augment the probability of new rabbit invasions in those areas.

Conclusions/Significance

Our study reveals the type of mechanisms through which climate will cause alterations at the species level and emphasizes the need to focus on them in order to better foresee large-scale complex population trends. This is especially important in species like the European rabbit whose future responses may aggravate even further its dual keystone/pest problematic. Moreover, this approach allows us to predict not only distribution shifts but also future population status and growth, and to identify the demographic parameters on which to focus to mitigate global change effects.  相似文献   

6.

Background and Aims

In heterostylous plant species, skewed morph ratios are not uncommon and may arise from a range of factors. Despite the recognized importance of skewed morph ratios on overall reproductive success within populations, little is known about the impact of skewed morph ratios on population genetic diversity and differentiation in heterostylous species. This study specifically aimed to clarify the effect of population size and morph bias on population genetic diversity and differentiation in the temperate forest herb Pulmonaria officinalis. This species is characterized by a distylous breeding system and shows morph-specific differences in reproductive success.

Methods

Genetic diversity was determined for 27 P. officinalis populations in northern Belgium by using eight recently developed microsatellite markers. Multiple regressions were used to assess the relationship between genetic diversity, morph bias and population size, and FST-values were calculated for short- and long-styled morphs separately to study genetic differentiation as a function of morph type.

Key Results

For all genetic measures used, morph bias was more important in explaining patterns of genetic diversity than population size, and in all cases patterns of population genetic diversity followed a quadratic function, which showed a symmetrical decrease in genetic diversity with increasing morph bias. However, probably due to the reproductive advantage of L-morphs relative to S-morphs, maximum genetic diversity was found in populations showing an excess of L-morphs (60·7 % L-morph). On the other hand, no significant difference in pairwise genetic distances between populations was observed between L- (0·107) and S-morphs (0·106).

Conclusions

Our results indicate that significant deviations from equal morph ratios not only affect plant reproductive success but also population genetic diversity of heterostylous plant species. Hence, when defining conservation measures for populations of heterostylous plant species, morph ratios should be considered as an important trait affecting their long-term population viability.  相似文献   

7.

Background

Old World vultures are likely polyphyletic, representing two subfamilies, the Aegypiinae and Gypaetinae, and some genera of the latter may be of independent origin. Evidence concerning the origin, as well as the timing of the divergence of each subfamily and even genera of the Gypaetinae has been elusive.

Methodology/Principal Findings

Compared with the Old World, the New World has an unexpectedly diverse and rich fossil component of Old World vultures. Here we describe a new accipitriform bird, Anchigyps voorhiesi gen. et sp. nov., from the Ash Hollow Formation (Upper Clarendonian, Late Miocene) of Nebraska. It represents a form close in morphology to the Old World vultures. Characteristics of its wing bones suggest it was less specialized for soaring than modern vultures. It was likely an opportunistic predator or scavenger having a grasping foot and a mandible morphologically similar to modern carrion-feeding birds.

Conclusions/Significance

The new fossil reported here is intermediate in morphology between the bulk of accipitrids and the Old World gypaetine vultures, representing a basal lineage of Accipitridae trending towards the vulturine habit, and of its Late Miocene age suggests the divergence of true gypaetine vultures, may have occurred during or slightly before the Miocene.  相似文献   

8.

Background

The effects of landscape modifications on the long-term persistence of wild animal populations is of crucial importance to wildlife managers and conservation biologists, but obtaining experimental evidence using real landscapes is usually impossible. To circumvent this problem we used individual-based models (IBMs) of interacting animals in experimental modifications of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of four species with contrasting life-history characteristics: skylark (Alauda arvensis), vole (Microtus agrestis), a ground beetle (Bembidion lampros) and a linyphiid spider (Erigone atra). This allows us to quantify the population implications of experimental modifications of landscape configuration and composition.

Methodology/Principal Findings

Starting with a real agricultural landscape, we progressively reduced landscape complexity by (i) homogenizing habitat patch shapes, (ii) randomizing the locations of the patches, and (iii) randomizing the size of the patches. The first two steps increased landscape fragmentation. We assessed the effects of these manipulations on the long-term persistence of animal populations by measuring equilibrium population sizes and time to recovery after disturbance. Patch rearrangement and the presence of corridors had a large effect on the population dynamics of species whose local success depends on the surrounding terrain. Landscape modifications that reduced population sizes increased recovery times in the short-dispersing species, making small populations vulnerable to increasing disturbance. The species that were most strongly affected by large disturbances fluctuated little in population sizes in years when no perturbations took place.

Significance

Traditional approaches to the management and conservation of populations use either classical methods of population analysis, which fail to adequately account for the spatial configurations of landscapes, or landscape ecology, which accounts for landscape structure but has difficulty predicting the dynamics of populations living in them. Here we show how realistic and replicable individual-based models can bridge the gap between non-spatial population theory and non-dynamic landscape ecology. A major strength of the approach is its ability to identify population vulnerabilities not detected by standard population viability analyses.  相似文献   

9.

Aim

The study of the factors that influence population connectivity and spatial distribution of genetic variation is crucial for understanding speciation and for predicting the effects of landscape modification and habitat fragmentation, which are considered severe threats to global biodiversity. This dual perspective is obtained from analyses of subalpine mountain species, whose present distribution may have been shaped both by cyclical climate changes over ice ages and anthropogenic perturbations of their habitats. Here, we examine the phylogeography, population structure and genetic diversity of the lacertid lizard Iberolacerta monticola, an endemism considered to be facing a high risk of extinction in several populations.

Location

Northwestern quadrant of the Iberian Peninsula.

Methods

We analyzed the mtDNA variation at the control region (454 bp) and the cytochrome b (598 bp) loci, as well as at 10 nuclear microsatellite loci from 17 populations throughout the distribution range of the species.

Results

According to nuclear markers, most sampling sites are defined as distinct, genetically differentiated populations, and many of them show traces of recent bottlenecks. Mitochondrial data identify a relatively old, geographically restricted lineage, and four to six younger geographically vicariant sister clades, whose origin may be traced back to the mid-Pleistocene revolution, with several subclades possibly associated to the mid-Bruhnes transition. Geographic range fragmentation of one of these clades, which includes lowland sites, is very recent, and most likely due to the accelerated loss of Atlantic forests by human intervention.

Main Conclusions

Altogether, the data fit a “refugia within refugia” model, some lack of pattern uniformity notwithstanding, and suggest that these mountains might be the cradles of new species of Iberolacerta. However, the changes operated during the Holocene severely compromise the long-term survival of those genetic lineages more exposed to the anthropogenic perturbations of their habitats.  相似文献   

10.
《PloS one》2014,9(8)

Background

An understanding of the conservation status of Madagascar''s endemic reptile species is needed to underpin conservation planning and priority setting in this global biodiversity hotspot, and to complement existing information on the island''s mammals, birds and amphibians. We report here on the first systematic assessment of the extinction risk of endemic and native non-marine Malagasy snakes, lizards, turtles and tortoises.

Methodology/Principal Findings

Species range maps from The IUCN Red List of Threatened Species were analysed to determine patterns in the distribution of threatened reptile species. These data, in addition to information on threats, were used to identify priority areas and actions for conservation. Thirty-nine percent of the data-sufficient Malagasy reptiles in our analyses are threatened with extinction. Areas in the north, west and south-east were identified as having more threatened species than expected and are therefore conservation priorities. Habitat degradation caused by wood harvesting and non-timber crops was the most pervasive threat. The direct removal of reptiles for international trade and human consumption threatened relatively few species, but were the primary threats for tortoises. Nine threatened reptile species are endemic to recently created protected areas.

Conclusions/Significance

With a few alarming exceptions, the threatened endemic reptiles of Madagascar occur within the national network of protected areas, including some taxa that are only found in new protected areas. Threats to these species, however, operate inside and outside protected area boundaries. This analysis has identified priority sites for reptile conservation and completes the conservation assessment of terrestrial vertebrates in Madagascar which will facilitate conservation planning, monitoring and wise-decision making. In sharp contrast with the amphibians, there is significant reptile diversity and regional endemism in the southern and western regions of Madagascar and this study highlights the importance of these arid regions to conserving the island''s biodiversity.  相似文献   

11.

Background

Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence.

Methodology/Principal Findings

We propose a systematic way to forecast patterns of future energy development and calculate impacts to species using spatially-explicit predictive modeling techniques to estimate oil and gas potential and create development build-out scenarios by seeding the landscape with oil and gas wells based on underlying potential. We illustrate our approach for the greater sage-grouse (Centrocercus urophasianus) in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area.

Conclusions/Significance

Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation.  相似文献   

12.

Background

Island faunas have played central roles in the development of evolutionary biology and ecology. Birds are among the most studied organisms on islands, in part because of their dispersal powers linked to migration. Even so, we lack of information about differences in the movement ecology of island versus mainland populations of birds.

Methodology/Principal Findings

Here we present a new general pattern indicating that large birds with deferred sexual maturity are sedentary on islands, and that they become so even when they are migratory on the mainland. Density-dependent variation in the age at first breeding affects the survivorship of insular populations and this, in turn, affects the movement ecology of large birds. Because density-dependent variation in the age of first breeding is critical to the long-term survival of small isolated populations of long-lived species, migratory forms can successfully colonize islands only if they become sedentary once there. Analyses of the movement ecology of continental and insular populations of 314 species of raptors, 113 species of Ciconiiformes and 136 species of passerines, along with individual-based population simulations confirm this prediction.

Conclusions

This finding has several consequences for speciation, colonization and survival of small isolated population of species with deferred sexual maturity.  相似文献   

13.

Background

Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms.

Methodology/Principal Findings

As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model.

Conclusions

Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.  相似文献   

14.

Background and Aims

Alpine plants are considered one of the groups of species most sensitive to the direct and indirect threats to ecosystems caused by land use and climate change. Collecting and banking seeds of plant species is recognized as an effective tool for providing propagating material to re-establish wild plant populations and for habitat repair. However, seeds from cold wet environments have been shown to be relatively short lived in storage, and therefore successful long-term seed conservation for alpine plants may be difficult. Here, the life spans of 69 seed lots representing 63 related species from alpine and lowland locations from northern Italy are compared.

Methods

Seeds were placed into experimental storage at 45 °C and 60 % relative humidity (RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50 % (p50) was determined using probit analysis and used as a measure of relative seed longevity between seed lots.

Key Results

Across species, p50 at 45 °C and 60 % RH varied from 4·7 to 95·5 d. Seed lots from alpine populations/species had significantly lower p50 values compared with those from lowland populations/species; the lowland seed lots showed a slower rate of loss of germinability, higher initial seed viability, or both. Seeds were progressively longer lived with increased temperature and decreased rainfall at the collecting site.

Conclusions

Seeds of alpine plants are short lived in storage compared with those from lowland populations/related taxa. The lower resistance to ageing in seeds of alpine plants may arise from low selection pressure for seed resistance to ageing and/or damage incurred during seed development due to the cool wet conditions of the alpine climate. Long-term seed conservation of several alpine species using conventional seed banking methods will be problematic.  相似文献   

15.

Background and Aims

The heterocarpic species Atriplex tatarica produces two types of seeds. In this study, how basic population genetic parameters correlate with seed germinability under various experimental conditions was tested.

Methods

Population genetic diversity was ascertained in eight populations of A. tatarica by assessing patterns of variation at nine allozyme loci. Germinability of both seed types from all sampled populations was determined by a common laboratory experiment under different salinity levels. Basic population genetic parameters, i.e. percentage of polymorphic loci, average number of alleles per locus and observed heterozygosity were correlated with observed population germination characteristics.

Key Results

Atriplex tatarica possesses a remarkable heterocarpy, i.e. one type of seed is non-dormant and the other shows different dormancy levels in relation to experimental conditions. Significant negative correlations have been detected between germination of both seed types and the coefficient of inbreeding, and a significant negative correlation between germination of dormant seeds and other population genetic parameters, i.e. percentage of polymorphic loci and average number of alleles per polymorphic locus. Moreover, populations from the region characterized by a shorter growing season manifested higher germinability, i.e. had lower dormancy, than those from the lower-latitude one.

Conclusions

In general, germination of non-dormant seeds is probably not under strong genetic control. Hence, they germinate as soon as conditions are favourable, thus ensuring survival in the short term, but populations risk local extinction if conditions become adverse (i.e. a high-risk strategy). In contrast, germination of the dormant type of seeds is under stronger genetic control and is significantly correlated with basic population genetic parameters. These seeds ensure long-term reproduction and survival in the field by protracted germination, albeit in low quantities (i.e. A. tatarica also adopts a low-risk strategy).Key words: Amaranthaceae, Atriplex, inbreeding depression, population genetics, seed dimorphism  相似文献   

16.

Background and Aims

To date, current research involving pollen viability has been evaluated in a relatively low number of orchid species. In the present study, we focused on five related Mediterranean orchid genera (Anacamptis, Orchis, Dactylorhiza, Ophrys and Serapias) that are characterized by different types of deceptive pollination.

Methods

The in vitro germination ability of increasingly aged pollinaria of eight food-, seven sexually and two shelter-deceptive species was evaluated. Pollination experiments on two food-, one sexually and one shelter-deceptive species were also performed and the percentage of embryonate seeds derived from the increasingly aged pollinaria was checked.

Key Results

All of the examined species showed long-term viabilities (=50 % pollen tube growth) that ranged from 8 to 35 d. Species with the same deceptive pollination strategies exhibited the same pollen viability trends. Interestingly, pollen viabilities of species groups with different deception types have shown significant differences, with sexually and shelter- deceptive species exhibiting a shorter life span than food-deceptive species.

Conclusions

This study confirms the prolonged germination and fertilization capacities of orchid pollinaria, and to our knowledge is the first report demonstrating a clear relationship between pollen viability and pollination system. It is proposed that this relationship is attributed to the different types of reproductive barriers, pre- or post-zygotic, that characterixe Ophrys and Serapias and the food-deceptive species, respectively.  相似文献   

17.

Background

Minimizing fishery bycatch threats might involve trade-offs between maintaining viable populations and economic benefits. Understanding these trade-offs can help managers reconcile conflicting goals. An example is a set of bycatch reduction measures for the Critically Endangered vaquita porpoise (Phocoena sinus), in the Northern Gulf of California, Mexico. The vaquita is an endemic species threatened with extinction by artisanal net bycatch within its limited range; in this area fisheries are the chief source of economic productivity.

Methodology/Principal Findings

We analyze trade-offs between conservation of the vaquita and fisheries, using an end-to-end Atlantis ecosystem model for the Northern Gulf of California. Atlantis is a spatially-explicit model intended as a strategic tool to test alternative management strategies. We simulated increasingly restrictive fisheries regulations contained in the vaquita conservation plan: implementing progressively larger spatial management areas that exclude gillnets, shrimp driftnets and introduce a fishing gear that has no vaquita bycatch. We found that only the most extensive spatial management scenarios recovered the vaquita population above the threshold necessary to downlist the species from Critically Endangered. The scenario that excludes existing net gear from the 2008 area of vaquita distribution led to moderate decrease in net present value (US$ 42 million) relative to the best-performing scenario and a two-fold increase in the abundance of adult vaquita over the course of 30 years.

Conclusions/Significance

Extended spatial management resulted in the highest recovery of the vaquita population. The economic cost of proposed management actions was unequally divided between fishing fleets; the loss of value from finfish gillnet fisheries was never recovered. Our analysis shows that managers will have to confront difficult trade-offs between management scenarios for vaquita conservation.  相似文献   

18.

Background

Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches.

Findings

By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model.

Conclusions

Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level.  相似文献   

19.

Background and Aims

Pollinator-limited seed-set in some terrestrial orchids is compensated for by the presence of long-lived flowers. This study tests the hypothesis that pollen from these insect-pollinated orchids should be desiccation tolerant and relatively long lived using four closely related UK terrestrial species; Anacamptis morio, Dactylorhiza fuchsii, D. maculata and Orchis mascula.

Methods

Pollen from the four species was harvested from inflorescences and germinated in vitro, both immediately and also after drying to simulate interflower transit. Their tolerance to desiccation and short-term survival was additionally assessed after 3 d equilibration at a range of relative humidities (RHs), and related to constructed sorption isotherms (RH vs. moisture content, MC). Ageing of D. fuchsii pollen was further tested over 2 months against temperature and RH, and the resultant survival curves were subjected to probit analysis, and the distribution of pollen death in time (σ) was determined. The viability and siring ability, following artificial pollinations, were determined in D. fuchsii pollen following storage for 6 years at –20 °C.

Key Results

The pollen from all four species exhibited systematic increases in germinability and desiccation tolerance as anthesis approached, and pollen from open flowers generally retained high germinability. Short-term storage revealed sensitivity to low RH, whilst optimum survival occurred at comparable RHs in all species. Similarly, estimated pollen life spans (σ) at differing temperatures were longest under the dry conditions. Despite a reduction in germination and seeds per capsule, long-term storage of D. fuchsii pollen did not impact on subsequent seed germination in vitro.

Conclusions

Substantial pollen desiccation tolerance and life span of the four entomophilous orchids reflects a resilient survival strategy in response to unpredictable pollinator visitation, and presents an alternative approach to germplasm conservation.  相似文献   

20.

Background

The risk of acute pancreatitis in patients on long-term peritoneal dialysis is higher as compared to the general population. However, the relationship between long-term hemodialysis and acute pancreatitis has never been established.

Objectives

We investigated the incidence of acute pancreatitis among patients on long-term hemodialysis in Taiwan to evaluate if there is a higher risk of acute pancreatitis in comparison to the general population.

Methods

We utilized a National Health Insurance (NHI) claims data sample containing one million beneficiaries. We followed all adult beneficiaries from January 1, 2007 until December 31, 2010 to see if they had been hospitalized for acute pancreatitis during this period. We further identified patients on chronic hemodialysis and compared their risk of acute pancreatitis with the general population.

Results

This study included 2603 patients with long-term hemodialysis and 773,140 patients without hemodialysis. After controlling for age, gender, Charlson Comorbidity Index Score, geographic region, socioeconomic status and urbanization level, the adjusted hazard ratio was 3.44 (95% Confidence interval, 2.5–4.7).

Conclusions

The risk of acute pancreatitis in patients on long-term hemodialysis is significantly higher in comparison to the general population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号