首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

DNA methylation of promoter CpG islands is associated with gene suppression, and its unique genome-wide profiles have been linked to tumor progression. Coupled with high-throughput sequencing technologies, it can now efficiently determine genome-wide methylation profiles in cancer cells. Also, experimental and computational technologies make it possible to find the functional relationship between cancer-specific methylation patterns and their clinicopathological parameters.

Methodology/Principal Findings

Cancer methylome system (CMS) is a web-based database application designed for the visualization, comparison and statistical analysis of human cancer-specific DNA methylation. Methylation intensities were obtained from MBDCap-sequencing, pre-processed and stored in the database. 191 patient samples (169 tumor and 22 normal specimen) and 41 breast cancer cell-lines are deposited in the database, comprising about 6.6 billion uniquely mapped sequence reads. This provides comprehensive and genome-wide epigenetic portraits of human breast cancer and endometrial cancer to date. Two views are proposed for users to better understand methylation structure at the genomic level or systemic methylation alteration at the gene level. In addition, a variety of annotation tracks are provided to cover genomic information. CMS includes important analytic functions for interpretation of methylation data, such as the detection of differentially methylated regions, statistical calculation of global methylation intensities, multiple gene sets of biologically significant categories, interactivity with UCSC via custom-track data. We also present examples of discoveries utilizing the framework.

Conclusions/Significance

CMS provides visualization and analytic functions for cancer methylome datasets. A comprehensive collection of datasets, a variety of embedded analytic functions and extensive applications with biological and translational significance make this system powerful and unique in cancer methylation research. CMS is freely accessible at: http://cbbiweb.uthscsa.edu/KMethylomes/.  相似文献   

2.

Background

Gene-set enrichment analysis is a useful technique to help functionally characterize large gene lists, such as the results of gene expression experiments. This technique finds functionally coherent gene-sets, such as pathways, that are statistically over-represented in a given gene list. Ideally, the number of resulting sets is smaller than the number of genes in the list, thus simplifying interpretation. However, the increasing number and redundancy of gene-sets used by many current enrichment analysis software works against this ideal.

Principal Findings

To overcome gene-set redundancy and help in the interpretation of large gene lists, we developed “Enrichment Map”, a network-based visualization method for gene-set enrichment results. Gene-sets are organized in a network, where each set is a node and edges represent gene overlap between sets. Automated network layout groups related gene-sets into network clusters, enabling the user to quickly identify the major enriched functional themes and more easily interpret the enrichment results.

Conclusions

Enrichment Map is a significant advance in the interpretation of enrichment analysis. Any research project that generates a list of genes can take advantage of this visualization framework. Enrichment Map is implemented as a freely available and user friendly plug-in for the Cytoscape network visualization software (http://baderlab.org/Software/EnrichmentMap/).  相似文献   

3.
4.

Background

In order to understand how biological systems function it is necessary to determine the interactions and associations between proteins. Gene fusion prediction is one approach to detection of such functional relationships. Its use is however known to be problematic in higher eukaryotic genomes due to the presence of large homologous domain families. Here we introduce CODA (Co-Occurrence of Domains Analysis), a method to predict functional associations based on the gene fusion idiom.

Methodology/Principal Findings

We apply a novel scoring scheme which takes account of the genome-specific size of homologous domain families involved in fusion to improve accuracy in predicting functional associations. We show that CODA is able to accurately predict functional similarities in human with comparison to state-of-the-art methods and show that different methods can be complementary. CODA is used to produce evidence that a currently uncharacterised human protein may be involved in pathways related to depression and that another is involved in DNA replication.

Conclusions/Significance

The relative performance of different gene fusion methodologies has not previously been explored. We find that they are largely complementary, with different methods being more or less appropriate in different genomes. Our method is the only one currently available for download and can be run on an arbitrary dataset by the user. The CODA software and datasets are freely available from ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_data/v6.1.0/CODA/. Predictions are also available via web services from http://funcnet.eu/.  相似文献   

5.

Background

Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates.

Methodology/Principal Findings

We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases.

Conclusion

Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes.  相似文献   

6.
7.

Background

Predication of gene regularity network (GRN) from expression data is a challenging task. There are many methods that have been developed to address this challenge ranging from supervised to unsupervised methods. Most promising methods are based on support vector machine (SVM). There is a need for comprehensive analysis on prediction accuracy of supervised method SVM using different kernels on different biological experimental conditions and network size.

Results

We developed a tool (CompareSVM) based on SVM to compare different kernel methods for inference of GRN. Using CompareSVM, we investigated and evaluated different SVM kernel methods on simulated datasets of microarray of different sizes in detail. The results obtained from CompareSVM showed that accuracy of inference method depends upon the nature of experimental condition and size of the network.

Conclusions

For network with nodes (<200) and average (over all sizes of networks), SVM Gaussian kernel outperform on knockout, knockdown, and multifactorial datasets compared to all the other inference methods. For network with large number of nodes (~500), choice of inference method depend upon nature of experimental condition. CompareSVM is available at http://bis.zju.edu.cn/CompareSVM/.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0395-x) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.

Background

In somatic cancer genomes, delineating genuine driver mutations against a background of multiple passenger events is a challenging task. The difficulty of determining function from sequence data and the low frequency of mutations are increasingly hindering the search for novel, less common cancer drivers. The accumulation of extensive amounts of data on somatic point and copy number alterations necessitates the development of systematic methods for driver mutation analysis.

Results

We introduce a framework for detecting driver mutations via functional network analysis, which is applied to individual genomes and does not require pooling multiple samples. It probabilistically evaluates 1) functional network links between different mutations in the same genome and 2) links between individual mutations and known cancer pathways. In addition, it can employ correlations of mutation patterns in pairs of genes. The method was used to analyze genomic alterations in two TCGA datasets, one for glioblastoma multiforme and another for ovarian carcinoma, which were generated using different approaches to mutation profiling. The proportions of drivers among the reported de novo point mutations in these cancers were estimated to be 57.8% and 16.8%, respectively. The both sets also included extended chromosomal regions with synchronous duplications or losses of multiple genes. We identified putative copy number driver events within many such segments. Finally, we summarized seemingly disparate mutations and discovered a functional network of collagen modifications in the glioblastoma. In order to select the most efficient network for use with this method, we used a novel, ROC curve-based procedure for benchmarking different network versions by their ability to recover pathway membership.

Conclusions

The results of our network-based procedure were in good agreement with published gold standard sets of cancer genes and were shown to complement and expand frequency-based driver analyses. On the other hand, three sequence-based methods applied to the same data yielded poor agreement with each other and with our results. We review the difference in driver proportions discovered by different sequencing approaches and discuss the functional roles of novel driver mutations. The software used in this work and the global network of functional couplings are publicly available at http://research.scilifelab.se/andrej_alexeyenko/downloads.html.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-308) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Epigenome-wide association scans (EWAS) are an increasingly powerful and widely-used approach to assess the role of epigenetic variation in human complex traits. However, this rapidly emerging field lacks dedicated visualisation tools that can display features specific to epigenetic datasets.

Result

We developed coMET, an R package and online tool for visualisation of EWAS results in a genomic region of interest. coMET generates a regional plot of epigenetic-phenotype association results and the estimated DNA methylation correlation between CpG sites (co-methylation), with further options to visualise genomic annotations based on ENCODE data, gene tracks, reference CpG-sites, and user-defined features. The tool can be used to display phenotype association signals and correlation patterns of microarray or sequencing-based DNA methylation data, such as Illumina Infinium 450k, WGBS, or MeDIP-seq, as well as other types of genomic data, such as gene expression profiles. The software is available as a user-friendly online tool from http://epigen.kcl.ac.uk/cometand as an R Bioconductor package. Source code, examples, and full documentation are also available from GitHub.

Conclusion

Our new software allows visualisation of EWAS results with functional genomic annotations and with estimation of co-methylation patterns. coMET is available to a wide audience as an online tool and R package, and can be a valuable resource to interpret results in the fast growing field of epigenetics. The software is designed for epigenetic data, but can also be applied to genomic and functional genomic datasets in any species.  相似文献   

11.

Background

The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence.

Results

In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes.

Conclusions

The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.  相似文献   

12.
13.

Background

There has been a surge in studies linking genome structure and gene expression, with special focus on duplicated genes. Although initially duplicated from the same sequence, duplicated genes can diverge strongly over evolution and take on different functions or regulated expression. However, information on the function and expression of duplicated genes remains sparse. Identifying groups of duplicated genes in different genomes and characterizing their expression and function would therefore be of great interest to the research community. The ‘Duplicated Genes Database’ (DGD) was developed for this purpose.

Methodology

Nine species were included in the DGD. For each species, BLAST analyses were conducted on peptide sequences corresponding to the genes mapped on a same chromosome. Groups of duplicated genes were defined based on these pairwise BLAST comparisons and the genomic location of the genes. For each group, Pearson correlations between gene expression data and semantic similarities between functional GO annotations were also computed when the relevant information was available.

Conclusions

The Duplicated Gene Database provides a list of co-localised and duplicated genes for several species with the available gene co-expression level and semantic similarity value of functional annotation. Adding these data to the groups of duplicated genes provides biological information that can prove useful to gene expression analyses. The Duplicated Gene Database can be freely accessed through the DGD website at http://dgd.genouest.org.  相似文献   

14.
15.

Background

Sequencing datasets consist of a finite number of reads which map to specific regions of a reference genome. Most effort in modeling these datasets focuses on the detection of univariate differentially expressed genes. However, for classification, we must consider multiple genes and their interactions.

Results

Thus, we introduce a hierarchical multivariate Poisson model (MP) and the associated optimal Bayesian classifier (OBC) for classifying samples using sequencing data. Lacking closed-form solutions, we employ a Monte Carlo Markov Chain (MCMC) approach to perform classification. We demonstrate superior or equivalent classification performance compared to typical classifiers for two synthetic datasets and over a range of classification problem difficulties. We also introduce the Bayesian minimum mean squared error (MMSE) conditional error estimator and demonstrate its computation over the feature space. In addition, we demonstrate superior or leading class performance over an RNA-Seq dataset containing two lung cancer tumor types from The Cancer Genome Atlas (TCGA).

Conclusions

Through model-based, optimal Bayesian classification, we demonstrate superior classification performance for both synthetic and real RNA-Seq datasets. A tutorial video and Python source code is available under an open source license at http://bit.ly/1gimnss.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0401-3) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.

Background

So far many algorithms have been proposed towards the detection of significant genes in microarray analysis problems. Several of those approaches are freely available as R-packages though their engagement in gene expression analysis by non-bioinformaticians is usually a frustrating task. Besides, only some of those packages offer a complete suite of tools starting from initial data import and ending to analysis report. Here we present an R/Bioconductor package that implements a hybrid gene selection method along with a bunch of functions to facilitate a thorough and convenient gene expression profiling analysis.

Results

mAPKL is an open-source R/Bioconductor package that implements the mAP-KL hybrid gene selection method. The advantage of this method is that selects a small number of gene exemplars while achieving comparable classification results to other well established algorithms on a variety of datasets and dataset sizes. The mAPKL package is accompanied with extra functionalities including (i) solid data import; (ii) data sampling following a user-defined proportion; (iii) preprocessing through several normalization and transformation alternatives; (iv) classification with the aid of SVM and performance evaluation; (v) network analysis of the significant genes (exemplars), including degree of centrality, closeness, betweeness, clustering coefficient as well as the construction of an edge list table; (vi) gene annotation analysis, (vii) pathway analysis and (viii) auto-generated analysis reporting.

Conclusions

Users are able to run a thorough gene expression analysis in a timely manner starting from raw data and concluding to network characteristics of the selected gene exemplars. Detailed instructions and example data are provided in the R package, which is freely available at Bioconductor under the GPL-2 or later license http://www.bioconductor.org/packages/3.1/bioc/html/mAPKL.html.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0719-5) contains supplementary material, which is available to authorized users.  相似文献   

18.

Background

First pass methods based on BLAST match are commonly used as an initial step to separate the different phylogenetic histories of genes in microbial genomes, and target putative horizontal gene transfer (HGT) events. This will continue to be necessary given the rapid growth of genomic data and the technical difficulties in conducting large-scale explicit phylogenetic analyses. However, these methods often produce misleading results due to their inability to resolve indirect phylogenetic links and their vulnerability to stochastic events.

Results

A new computational method of rapid, exhaustive and genome-wide detection of HGT was developed, featuring the systematic analysis of BLAST hit distribution patterns in the context of a priori defined hierarchical evolutionary categories. Genes that fall beyond a series of statistically determined thresholds are identified as not adhering to the typical vertical history of the organisms in question, but instead having a putative horizontal origin. Tests on simulated genomic data suggest that this approach effectively targets atypically distributed genes that are highly likely to be HGT-derived, and exhibits robust performance compared to conventional BLAST-based approaches. This method was further tested on real genomic datasets, including Rickettsia genomes, and was compared to previous studies. Results show consistency with currently employed categories of HGT prediction methods. In-depth analysis of both simulated and real genomic data suggests that the method is notably insensitive to stochastic events such as gene loss, rate variation and database error, which are common challenges to the current methodology. An automated pipeline was created to implement this approach and was made publicly available at: https://github.com/DittmarLab/HGTector. The program is versatile, easily deployed, has a low requirement for computational resources.

Conclusions

HGTector is an effective tool for initial or standalone large-scale discovery of candidate HGT-derived genes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-717) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

In recent years, increasing amounts of genomic and clinical cancer data have become publically available through large-scale collaborative projects such as The Cancer Genome Atlas (TCGA). However, as long as these datasets are difficult to access and interpret, they are essentially useless for a major part of the research community and their scientific potential will not be fully realized. To address these issues we developed MEXPRESS, a straightforward and easy-to-use web tool for the integration and visualization of the expression, DNA methylation and clinical TCGA data on a single-gene level (http://mexpress.be).

Results

In comparison to existing tools, MEXPRESS allows researchers to quickly visualize and interpret the different TCGA datasets and their relationships for a single gene, as demonstrated for GSTP1 in prostate adenocarcinoma. We also used MEXPRESS to reveal the differences in the DNA methylation status of the PAM50 marker gene MLPH between the breast cancer subtypes and how these differences were linked to the expression of MPLH.

Conclusions

We have created a user-friendly tool for the visualization and interpretation of TCGA data, offering clinical researchers a simple way to evaluate the TCGA data for their genes or candidate biomarkers of interest.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1847-z) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号