首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10–40 µg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied.

Methods

The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting.

Results and conclusion

In the present findings we showed that low concentration of DC (<2.0 µg/mL) exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1–2 µg/mL) significantly (p < 0.001) attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 µg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01–16 µg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of caspase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 µg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0025-8) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Hematopoietic stem cells mobilize to the peripheral circulation in response to stroke. However, the mechanism by which the brain initiates this mobilization is uncharacterized.

Methods

Animals underwent a murine intraluminal filament model of focal cerebral ischemia and the SDF1-A pathway was evaluated in a blinded manner via serum and brain SDF1-A level assessment, Lin−/Sca1+ cell mobilization quantification, and exogenous cell migration confirmation; all with or without SDF1-A blockade.

Results

Bone marrow demonstrated a significant increase in Lin−/Sca1+ cell counts at 24 hrs (272±60%; P<0.05 vs sham). Mobilization of Lin−/Sca1+ cells to blood was significantly elevated at 24 hrs (607±159%; P<0.05). Serum SDF1-A levels were significant at 24 hrs (Sham (103±14), 4 hrs (94±20%, p = NS) and 24 hrs (130±17; p<0.05)). Brain SDF1-A levels were significantly elevated at both 4 hrs and 24 hrs (113±7 pg/ml and 112±10 pg/ml, respectively; p<0.05 versus sham 76±11 pg/ml). Following administration of an SDF1-A antibody, Lin−/Sca1+ cells failed to mobilize to peripheral blood following stroke, despite continued up regulation in bone marrow (stroke bone marrow cell count: 536±65, blood cell count: 127±24; p<0.05 versus placebo). Exogenously administered Lin−/Sca1+ cells resulted in a significant reduction in infarct volume: 42±5% (stroke alone), versus 21±15% (Stroke+Lin−/Sca1+ cells), and administration of an SDF1-A antibody concomitant to exogenous administration of the Lin−/Sca1+ cells prevented this reduction. Following stroke, exogenously administered Lin−/Sca1+ FISH positive cells were significantly reduced when administered concomitant to an SDF1-A antibody as compared to without SDF1-A antibody (10±4 vs 0.7±1, p<0.05).

Conclusions

SDF1-A appears to play a critical role in modulating Lin−/Sca1+ cell migration to ischemic brain.  相似文献   

3.

Study objectives

Nonspecific interstitial pneumonia (NSIP) has been identified as a distinct entity with a more favorable prognosis and better response to immunosuppressive therapies than usual interstitial pneumonia (UIP). However the inflammatory profile of NSIP has not been characterized.

Design

Using immunohistochemistry techniques on open lung biopsy specimens, the infiltrate in NSIP was characterized in terms of T and B cells, and macrophages, and the T cell population further identified as either CD4 (helper) or CD8 (suppressor-cytotoxic) T cells. The extent of Th1 and Th2 cytokine producing cells was determined and compared to specimens from patients with UIP.

Results

In ten NSIP tissue samples 41.4 ± 4% of mononuclear cells expressed CD3, 24.7 ± 1.8% CD4, 19.1 ± 2% CD8, 27.4 ± 3.9% CD20, and 14.3 ± 1.6% had CD68 expression. Mononuclear cells expressed INFγ 21.9 ± 1.9% of the time and IL-4 in 3.0 ± 1%. In contrast, biopsies from eight patients with UIP demonstrated substantially less cellular staining for either cytokine (INFγ; 4.6 ± 1.7% and IL-4; 0.6 ± 0.3%). Significant populations of CD20 positive B-cells were also identified.

Conclusion

The lymphocytic infiltrate in NSIP is characterized by an elevated CD4/CD8 T-cell ratio, and is predominantly of Th1 type, with additional populations rich in B-cells. Such features are consistent with the favorable clinical course observed in patients with NSIP compared to UIP.  相似文献   

4.

Background

Recent studies have shown that an increased bleeding tendency can be caused by Selective Serotonin Reuptake Inhibitors (SSRI) use. We aimed to investigate the occurrence and risk of blood transfusion in SSRI users compared to non-SSRI users in a cohort of patients admitted for hip-surgery.

Methods

We conducted a retrospective cohort study of patients who underwent planned or emergency hip surgery from 1996 to 2011 in the Academic Medical Center in Amsterdam. Primary outcome measure was risk of blood transfusion. Secondary outcome measures were pre- and postoperative hemoglobin level. Multivariate logistic regression was used to adjust for potential confounders.

Results

One-hundred and fourteen SSRI users were compared to 1773 non-SSRI users. Risk of blood transfusion during admission was increased for SSRI users in multivariate analyses (OR 1.7 [95% CI 1.1–2.5]). Also, pre-operative hemoglobin levels were lower in SSRI users (7.8±1.0 mmol/L) compared to non-SSRI users (8.0±1.0 mmol/L) (p = 0.042)), as were postoperative hemoglobin levels (6.2±1.0 mmol/L vs. 6.4±1.0 mmol/L respectively) (p = 0.017)).

Conclusions

SSRI users undergoing hip surgery have an increased risk for blood transfusion during admission, potentially explained by a lower hemoglobin level before surgery. SSRI use should be considered as a potential risk indicator for increased blood loss in patients admitted for hip surgery. These results need to be confirmed in a prospective study.  相似文献   

5.

Purpose

To investigate the use of atomic force microscopy (AFM) to image the three groups of corneal epithelial cells fractionated by a novel rapid centrifugation isolation technique.

Methods

Epithelial cells harvested from primary cultures of rabbit limbal rings were centrifuged onto uncoated dishes, first at 1400 rpm and then at 1800 rpm. The adherent cells after centrifugation at 1400 rpm (ATC1), the adherent cells at 1800 rpm (ATC2) and the non-adherent cells at 1800 rpm (NAC) were investigated for BrdU retention and were subjected to contact mode AFM and Transmission Electron Microscopy (TEM).

Results

Compared with unfractionated cells, the ATC1 group, accounting for about 10% of the whole population, was enriched in BrdU label-retaining cells. There were dramatic overall shape, surface membrane and intra-cellular ultrastructure differences noted among ATC1, ATC2 and NAC populations. The whole cell roughness measurements were 21.1±1.5 nm, 79.5±3.4 nm and 103±4.6 nm for the ATC1, ATC2 and NAC groups, respectively. The mero-nucleus roughness measurements were 34.2±1.7 nm, 13.0±0.8 nm and 8.5±0.5 nm in the ATC1, ATC2 and NAC populations, respectively.

Conclusions

AFM was found to be a good tool for distinguishing among the three groups of cells. BrdU label retention, the AFM parameters and TEM together suggest that the ATC1, ATC2 and NAC populations may be progenitor corneal epithelial cells, transit amplifying cells and terminal differentiation cells, respectively.  相似文献   

6.

Background and purpose

TRPV1 is expressed in sensory neurons and vascular smooth muscle cells, contributing to both pain perception and tissue blood distribution. Local desensitization of TRPV1 in sensory neurons by prolonged, high dose stimulation is re-engaged in clinical practice to achieve analgesia, but the effects of such treatments on the vascular TRPV1 are not known.

Experimental approach

Newborn rats were injected with capsaicin for five days. Sensory activation was measured by eye wiping tests and plasma extravasation. Isolated, pressurized skeletal muscle arterioles were used to characterize TRPV1 mediated vascular responses, while expression of TRPV1 was detected by immunohistochemistry.

Key results

Capsaicin evoked sensory responses, such as eye wiping (3.6±2.5 versus 15.5±1.4 wipes, p<0.01) or plasma extravasation (evans blue accumulation 10±3 versus 33±7 µg/g, p<0.05) were reduced in desensitized rats. In accordance, the number of TRPV1 positive sensory neurons in the dorsal root ganglia was also decreased. However, TRPV1 expression in smooth muscle cells was not affected by the treatment. There were no differences in the diameter (192±27 versus 194±8 µm), endothelium mediated dilations (evoked by acetylcholine), norepinephrine mediated constrictions, myogenic response and in the capsaicin evoked constrictions of arterioles isolated from skeletal muscle.

Conclusion and implications

Systemic capsaicin treatment of juvenile rats evokes anatomical and functional disappearance of the TRPV1-expressing neuronal cells but does not affect the TRPV1-expressing cells of the arterioles, implicating different effects of TRPV1 stimulation on the viability of these cell types.  相似文献   

7.

Objective

Anemia is associated with high mortality and poor prognosis after acute coronary syndrome (ACS). Increased red cell distribution width (RDW) is a strong independent predictor for adverse outcomes in ACS. The common underlying mechanism for anemia and increased RDW value is iron deficiency. It is not clear whether serum iron deficiency without anemia affects left ventricular (LV) performance after primary angioplasty for acute myocardial infarction (AMI). We investigated the prognostic value of serum iron concentration on LV ejection fraction (EF) at 6 months and its relationship to thrombolysis in myocardial infarction (TIMI) risk score in post MI patients.

Methods

We recruited 55 patients who were scheduled to undergo primary coronary balloon angioplasty after AMI and 54 age- and sex-matched volunteers. Serum iron concentration and interleukin-6 levels were measured before primary angioplasty. LVEF was measured by echocardiography at baseline and after 6 months. TIMI risk score was calculated for risk stratification.

Results

Serum iron concentration was significantly lower in those in whom LVEF had not improved ≥10% from baseline (52.7±24.1 versus 80.8±50.8 µg/dl, P = 0.016) regardless of hemoglobin level, and was significantly lower in the AMI group than in the control group (62.5±37.7 versus 103.0±38.1 µg/dl, P<0.001). Trend analysis revealed that serum iron concentration decreased as TIMI risk score increased (P = 0.002). In addition, lower serum iron concentrations were associated with higher levels of inflammatory markers. Multiple linear regression showed that baseline serum iron concentration can predict LV systolic function 6 months after primary angioplasty for AMI even after adjusting for traditional prognostic factors.

Conclusion

Hypoferremia is not only a marker of inflammation but also a potential prognostic factor for LV systolic function after revascularization therapy for AMI, and may be a novel biomarker for therapeutic intervention.  相似文献   

8.

Objective

This study aimed to investigate the influence of low-dose levodopa (L-DOPA) on neuronal cell death under oxidative stress.

Methods

PC12 cells were treated with L-DOPA at different concentrations. We detected the L-DOPA induced reactive oxygen species (ROS). Meanwhile, MTT and LDH assay were performed to determine the proliferation and growth of PC12 cells with or without ROS scavenger. In addition, after pretreatment with L-DOPA at different concentrations alone or in combination with CD39 inhibitor, PC12 cells were incubated with hydrogen peroxide (H2O2) and the cell viability was evaluated by MTT and LDH assay. In addition, the expression of pCREB and CD39 was detected by immunofluorescence staining and Western blot assay in both cells and rat’s brain after L-DOPA treatment.

Results

After treatment with L-DOPA for 3 days, the cell proliferation and growth were promoted when the L-DOPA concentration was <30 µM, while cell proliferation was comparable to that in control group when the L-DOPA concentration was >30 µM. Low dose L-DOPA could protect the PC12 cells from H2O2 induced oxidative stress, which was compromised by CD39 inhibitor. In addition, the expression of CD39 and pCREB increased in both PC12 cells and rats’ brain after L-DOPA treatment.

Conclusions

L-DOPA at different concentrations has distinct influence on proliferation and growth of PC12 cells, and low dose (<30 µM) L-DOPA protects PC12 cells against oxidative stress which might be related to the up-regulation of CD39 and pCREB expression.  相似文献   

9.

Background

Smokers have increased cell concentration in the lower respiratory tract indicating a chronic inflammatory state, which in some individuals may lead to development of chronic obstructive pulmonary disease (COPD). Computer tomography (CT) imaging provides means of quantifying pulmonary structure and early signs of disease. We investigated whether lung density on high resolution CT differs between smokers and never-smokers and if this were associated to intensity of inflammation.

Methods

Forty smoking volunteers with normal pulmonary function, 40 healthy never-smokers and 40 patients with COPD of GOLD stage I-II, were included. Mean lung attenuation and percentage of pixels in the lung with attenuation between −750 and −900 HU (percentage higher density spectrum (%HDS)) were calculated on inspiratory CT-scans. Markers of systemic inflammation in blood and cell counts in bronchoalveolar lavage (BAL) fluid were recorded.

Results

Lung density expressed as %HDS was increased in smokers (44.0 ± 5.8%) compared to both never-smokers (38.3 ± 5.8%) and patients with COPD (39.1 ± 5.8%), (p < 0.001, for both). Females had denser lungs than males, which was dependent on body height. Cell concentration in BAL were correlated to lung density in smokers (r = 0.50, p < 0.001).

Conclusions

Lung density on CT is associated with cell concentration in BAL in smokers and may mirror an inflammatory response in the lung. Gender difference in lung density is dependent on height. In COPD with emphysema, loss of lung tissue may counterbalance the expected increase in density due to inflammation. The findings may help to interpret high resolution CT in the context of smoking and gender and highlight the heterogeneity of structural changes in COPD.  相似文献   

10.
11.

Purpose

To investigate anterograde degenerative changes along the visual pathway in a rat model of optic nerve axotomy.

Methods

Optic nerve transection was performed in adult Sprague-Dawley rats. Animals were sacrificed at regular time intervals and tissues harvested. Immunoblotting followed by densitometric analysis was used to determine the phosphorylation profile of Akt in the dorsal lateral geniculate nucleus (dLGN) and the primary visual cortex (V1). The neuronal cell size and cell density were measured in the dLGN and the V1 using Nissl staining. The prevalence of apoptosis was characterized by terminal deoxynucleotidyl-transferase-mediated biotin-dUTP nick end labelling (TUNEL) histochemistry. Caspase-3 antibodies were also used to identify apoptotic cells. Neurons and astrocytes were detected using NeuN and glial fibrillary acidic protein (GFAP), respectively.

Results

An early and sustained loss of Akt phosphorylation was observed after optic nerve transection in both dLGN and V1. At week one, a decrease in the neuronal cell size (50.5±4.9 vs 60.3±5.0 µm2, P = 0.042) and an increase of TUNEL positive cells (7.9±0.6 vs 1.4±0.5 ×102 cells/mm2, P<0.001) were evident in the dLGN but not in V1. A significant decline in neuronal cell number (14.5±0.1 vs 17.4±1.3 ×102 cells/mm2, P = 0.048), cell size (42.5±4.3 vs 62.1±4.7 µm2, P = 0.001) and an increase in apoptotic cells (5.6±0.5 vs 2.0±0.4 ×102 cells/mm2, P<0.001) appeared in V1 initially at one month post-transection. The changes in the visual pathway continued through two months. Both neuronal cells and GFAP-positive glial cells were affected in this anterograde degeneration along the visual pathway.

Conclusions

Anterograde degeneration along the visual pathway takes place in target relay (LGN) and visual cortex following the optic nerve injury. Apoptosis was observed in both neural and adjacent glial cells. Reduction of Akt phosphorylation preceded cellular and apoptotic changes.  相似文献   

12.

Objective

Development of treatment resistance and adverse toxicity associated with classical chemotherapeutic agents highlights the need for safer and effective therapeutic approaches. Herein, we examined the effectiveness of a combination treatment regimen of 5-fluorouracil (5-FU) and curcumin in colorectal cancer (CRC) cells.

Methods

Wild type HCT116 cells and HCT116+ch3 cells (complemented with chromosome 3) were treated with curcumin and 5-FU in a time- and dose-dependent manner and evaluated by cell proliferation assays, DAPI staining, transmission electron microscopy, cell cycle analysis and immunoblotting for key signaling proteins.

Results

The individual IC50 of curcumin and 5-FU were approximately 20 µM and 5 µM in HCT116 cells and 5 µM and 1 µM in HCT116+ch3 cells, respectively (p<0.05). Pretreatment with curcumin significantly reduced survival in both cells; HCT116+ch3 cells were considerably more sensitive to treatment with curcumin and/or 5-FU than wild-type HCT116 cells. The IC50 values for combination treatment were approximately 5 µM and 1 µM in HCT116 and 5 µM and 0.1 µM in HCT116+ch3, respectively (p<0.05). Curcumin induced apoptosis in both cells by inducing mitochondrial degeneration and cytochrome c release. Cell cycle analysis revealed that the anti-proliferative effect of curcumin and/or 5-FU was preceded by accumulation of CRC cells in the S cell cycle phase and induction of apoptosis. Curcumin potentiated 5-FU-induced expression or cleavage of pro-apoptotic proteins (caspase-8, -9, -3, PARP and Bax), and down-regulated anti-apoptotic (Bcl-xL) and proliferative (cyclin D1) proteins. Although 5-FU activated NF-κB/PI-3K/Src pathway in CRC cells, this was down-regulated by curcumin treatment through inhibition of IκBα kinase activation and IκBα phosphorylation.

Conclusions

Combining curcumin with conventional chemotherapeutic agents such as 5-FU could provide more effective treatment strategies against chemoresistant colon cancer cells. The mechanisms involved may be mediated via NF-κB/PI-3K/Src pathways and NF-κB regulated gene products.  相似文献   

13.

Background

Dengue virus (DENV), a member of the family Flaviviridae, is at present the most widespread causative agent of a human viral disease transmitted by mosquitoes. Despite the increasing incidence of this pathogen, there are no antiviral drugs or vaccines currently available for treatment or prevention. In a previous screening assay, we identified a group of N-allyl acridones as effective virus inhibitors. Here, the antiviral activity and mode of action targeted to viral RNA replication of one of the most active DENV-2 inhibitors was further characterized.

Results

The compound 10-allyl-7-chloro-9(10H)-acridone, designated 3b, was active to inhibit the in vitro infection of Vero cells with the four DENV serotypes, with effective concentration 50% (EC50) values in the range 12.5-27.1 μM, as determined by virus yield inhibition assays. The compound was also effective in human HeLa cells. No cytotoxicity was detected at 3b concentrations up to 1000 μM. Mechanistic studies demonstrated that virus entry into the host cell was not affected, whereas viral RNA synthesis was strongly inhibited, as quantified by real time RT-PCR. The addition of exogenous guanosine together with 3b rescued only partially the infectivity of DENV-2.

Conclusions

The acridone derivative 3b selectively inhibits the infection of Vero cells with the four DENV serotypes without a direct interaction with the host cell or the virion but interfering specifically with the intracellular virus multiplication. The mode of antiviral action for this acridone apparently involves the cellular enzyme inosine-monophospahe dehydrogenase together with another still unidentified target related to DENV RNA synthesis.  相似文献   

14.

Background

The objective of this study was to demonstrate the anti-skin cancer and chemopreventive potential of 1,1-bis(3′-indolyl)-1-(p-chlorophenyl methane) (DIM-D) using an in vitro model.

Methods

In vitro cell cytotoxicity and viability assays were carried out in A431 human epidermoid carcinoma cell line and normal human epidermal keratinocytes (NHEK) respectively by crystal violet staining. Apoptosis induction in A431 cells (DIM-D treated) and NHEK cells pretreated with DIM-D (2 hr) prior to UVB irradiation, were assessed. The accumulation of reactive oxygen species (ROS) in DIM-D pretreated NHEK cells (2 hr) prior to UVB exposure was also determined. Immunocytochemistry and western blot analysis was performed to determine cleaved caspase 3 and DNA damage markers in DIM-D treated A431 cells and in DIM-D pretreated NHEK cells prior to UVB irradiation.

Results

The IC50 values of DIM-D were 68.7±7.3, 48.3±10.1 and 11.5±3.1 μM whilst for Epigallocatechin gallate (EGCG) were 419.1±8.3, 186.1±5.2 and 56.7±3.1 μM for 24, 48 and 72 hr treatments respectively. DIM-D exhibited a significantly (p<0.05) greater induction of DNA fragmentation in A431 cells compared to EGCG with percent cell death of 38.9. In addition, DIM-D induced higher expression in A431 cells compared to EGCG of cleaved caspase 3 (3.0-fold vs. 2.4-fold changes), Nurr1 (2.7-fold vs. 1.7-fold changes) and NFκB (1.3-fold vs. 1.1-fold changes). DIM-D also exhibited chemopreventive activity in UVB-irradiated NHEK cells by significantly (p<0.05) reducing UVB-induced ROS formation and apoptosis compared to EGCG. Additionally, DIM-D induced expression of Nurr1 but reduced expression of 8-OHdG significantly in UVB-irradiated NHEK cells compared to EGCG and UV only.

Conclusion

Our results suggest that DIM-D exhibits Nurr1-dependent transactivation in the induction of apoptosis in A431 cells and it protects NHEK cells against UVB-induced ROS formation and DNA damage.  相似文献   

15.

Background

Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy.

Methodology/Principal Findings

EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2±2.9% and 83.7±3.0% vs. 53.5±2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62±0.03 and 1.68±0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6±0.3 and 8.1±0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7±44.1 vs. 340.0±29.1 CD34+/CD45 cells/1×105 mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9±0.7 vs. 2.6±0.4 CD34+ cells/HPF, P<0.001) 3 days after the last injection.

Conclusions/Significance

Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.  相似文献   

16.

Background

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite.

Methods

Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients. Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred samples were analysed: 21 from stage 1 (no trypanosomes in CSF and ≤5 WBC/µL) and 79 from stage 2 (trypanosomes in CSF and/or >5 WBC/µL) patients. The concentration of H-FABP, GSTP-1 and S100β in CSF was measured by ELISA. The levels of thirteen inflammation-related proteins (IL-1ra, IL-1β, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-γ, TNF-α, CCL2, CCL4, CXCL8 and CXCL10) were determined by bead suspension arrays.

Results

CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of 100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the detection of stage 2 patients to 97% sensitivity and 100% specificity.

Conclusion

This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active tuberculosis.  相似文献   

17.

Objectives

To investigate the urothelial dysfunction and inflammation of urinary bladder in patients with upper urinary tract (UUT) urolithiasis through the results of cystoscopic hydrodistension and immunohistochemistry study.

Methods

Ninety-one patients with UUT urolithiasis underwent cystoscopic hydrodistension before the stone surgery. Immunofluorescence staining of E-cadherin, zonula occludens-1 (ZO-1), tryptase (mast cell activation), and TUNEL (urothelial apoptosis) were performed in 42 patients with glomerulations after hydrodistension, 10 without glomerulations, and 10 controls.

Results

Of the 91 patients, 62 (68.2%) developed glomerulations after hydrodistension. Lower urinary tract symptoms (LUTS) were present in 53.8% patients, in whom significantly smaller maximal anesthetic bladder capacity (MBC) was noted. Patients with middle or lower 1/3 ureteral stones had a significantly higher glomerulation rate (88.6% vs. 55.4%, p<0.01) and lower MBC (618.4±167.6 vs. 701.2±158.4 ml, p = 0.027) than those with upper 1/3 ureteral or renal stones. Patients with UUT urolithiasis had significantly lower expression of E-cadherin (26.2±14.8 vs. 42.4±16.7) and ZO-1 (5.16±4.02 vs. 11.02±5.66); and higher suburothelial mast cell (13.3±6.8 vs. 1.3±1.2) and apoptotic cell (2.6±2.5 vs. 0.1±0.3) numbers than in controls (all p<0.01).

Conclusions

Urothelial dysfunction and increased suburothelial inflammation and apoptosis are highly prevalent in the bladders of UUT urolithiasis patients, indicating inflammation cross-talk between UUT and urinary bladder. Patients with UUT urolithiaisis concomitant with LUTS had a smaller MBC, which may explain the presence of irritative bladder symptoms.  相似文献   

18.

Background

The requirements for priming of HIV-specific T cell responses initially seen in infected individuals remain to be defined. Activation of T cell responses in lymph nodes requires cell-cell contact between T cells and DCs, which can give concurrent activation of T cells and HIV transmission.

Methodology

The study aim was to establish whether DCs pulsed with HIV-1 could prime HIV-specific T cell responses and to characterize these responses. Both infectious and aldrithiol-2 inactivated noninfectious HIV-1 were compared to establish efficiencies in priming and the type of responses elicited.

Findings

Our findings show that both infectious and inactivated HIV-1 pulsed DCs can prime HIV-specific responses from naïve T cells. Responses included several CD4+ and CD8+ T cell epitopes shown to be recognized in vivo by acutely and chronically infected individuals and some CD4+ T cell epitopes not identified previously. Follow up studies of acute and recent HIV infected samples revealed that these latter epitopes are among the earliest recognized in vivo, but the responses are lost rapidly, presumably through activation-induced general CD4+ T cell depletion which renders the newly activated HIV-specific CD4+ T cells prime targets for elimination.

Conclusion

Our studies highlight the ability of DCs to efficiently prime naïve T cells and induce a broad repertoire of HIV-specific responses and also provide valuable insights to the pathogenesis of HIV-1 infection in vivo.  相似文献   

19.

Background

Bone marrow (BM)-derived progenitor cells have been shown to have the potential to differentiate into a diversity of cell types involved in tissue repair. The characteristics of these progenitor cells in pneumonia lung is unknown. We have previously shown that Streptococcus pneumoniae induces a strong stimulus for the release of leukocytes from the BM and these leukocytes preferentially sequester in the lung capillaries. Here we report the behavior of BM-derived lineage negative progenitor cells (Lin- PCs) during pneumococcal pneumonia using quantum dots (QDs), nanocrystal fluorescent probes as a cell-tracking technique.

Methods

Whole BM cells or purified Lin- PCs, harvested from C57/BL6 mice, were labeled with QDs and intravenously transfused into pneumonia mice infected by intratracheal instillation of Streptococcus pneumoniae. Saline was instilled for control. The recipients were sacrificed 2 and 24 hours following infusion and QD-positive cells retained in the circulation, BM and lungs were quantified.

Results

Pneumonia prolonged the clearance of Lin- PCs from the circulation compared with control (21.7 ± 2.7% vs. 7.7 ± 0.9%, at 2 hours, P < 0.01), caused preferential sequestration of Lin- PCs in the lung microvessels (43.3 ± 8.6% vs. 11.2 ± 3.9%, at 2 hours, P < 0.05), and homing of these cells to both the lung (15.1 ± 3.6% vs. 2.4 ± 1.2%, at 24 hours, P < 0.05) and BM as compared to control (18.5 ± 0.8% vs. 9.5 ± 0.4%, at 24 hours, P < 0.01). Very few Lin- PCs migrated into air spaces.

Conclusion

In this study, we demonstrated that BM-derived progenitor cells are preferentially sequestered and retained in pneumonic mouse lungs. These cells potentially contribute to the repair of damaged lung tissue.  相似文献   

20.

Background

Guinea pigs are considered to be genetically adapted to a high altitude environment based on the consistent finding of a high oxygen affinity of their blood.

Methodology/Principal Findings

The crystal structure of guinea pig hemoglobin at 1.8 Å resolution suggests that the increased oxygen affinity of guinea pig hemoglobin can be explained by two factors, namely a decreased stability of the T-state and an increased stability of the R2-state. The destabilization of the T-state can be related to the substitution of a highly conserved proline (P44) to histidine (H44) in the α-subunit, which causes a steric hindrance with H97 of the β-subunit in the switch region. The stabilization of the R2-state is caused by two additional salt bridges at the β1/β2 interface.

Conclusions/Significance

Both factors together are supposed to serve to shift the equilibrium between the conformational states towards the high affinity relaxed states resulting in an increased oxygen affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号