首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic modification of proteins with ubiquitin plays crucial roles in major celluar functions, and is associated with a number of pathological conditions. Ubiquitin-specific proteases (USPs) cleave ubiquitin from substrate proteins, and rescue them from proteasomal degradation. Among them, USP2 is overexpressed and plays important roles in various cancers including prostate cancer. Thus, it represents an attractive target for drug discovery. In order to develop potent and selective USP2 inhibitors, a highly reliable assay is needed for in-depth structure-activity relationship study. We report the cloning, expression, and purification of USP2 and UBA52, and the development of a highly reliable assay based on readily available SDS-PAGE-Coomassie systeme using UBA52 as the substrate protein. A number of effective USP2 inhibitors were also identified using this assay.  相似文献   

2.
Stimulation of the ghrelin receptor (GhrR) by ghrelin results in a variety of metabolic changes including increased food intake, fat storage and insulin resistance. Loss of ghrelin signaling is protective against diet-induced obesity, suggesting that ghrelin plays a significant homeostatic role in conditions of metabolic stress. We examined glycemic control in GhrR −/− mice fed a high-fat diet, and used indirect calorimetry to assess fuel substrate usage and energy expenditure. GhrR −/− mice fed a high-fat diet had several measures of greater insulin sensitivity, including: lower fasted blood glucose and plasma insulin, lower %HbA1c, lower insulin levels during glucose tolerance tests, and improved performance in hyperinsulinemic-euglycemic and hyperglycemic clamp studies. GhrR −/− mice fed a high-fat diet did not develop hepatic steatosis and had lower total cholesterol, relative to controls. Furthermore, GhrR −/− mice demonstrated a lower intestinal triglyceride secretion rate of dietary lipid. GhrR −/− mice have higher respiratory quotients (RQ), indicating a preference for carbohydrate as fuel. The range of RQ values was wider in GhrR −/− mice, indicating greater metabolic flexibility and insulin sensitivity in these animals. We therefore propose that loss of ghrelin signaling promotes insulin sensitivity and metabolic flexibility, and protects against several fatty diet-induced features of metabolic syndrome due to convergent changes in the intake, absorption and utilization of energy.  相似文献   

3.
It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.  相似文献   

4.
5.
Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3′-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients.  相似文献   

6.
Obesity has been linked with altered acute inflammation resolution which contributes to obesity-related clinical complications; however, the mechanisms that contribute to obesity-related unresolved inflammation are not fully known. Here we demonstrated that the deficiency of macrophage erythropoietin (EPO) signaling contributed to delayed acute inflammation resolution in diet-induced obese mice. In zymosan-induced acute peritonitis, in line with the delayed resolution of inflammation, the induction of macrophage EPO signaling was significantly reduced in obese mice relative to normal mice. Exogenous EPO induced macrophage EPO signaling and promoted acute inflammation resolution in obese mice. Efferocytosis of apoptotic cells by macrophages which is central in inflammation resolution was impaired in obese mice and restored by exogenous EPO. Mechanistically, macrophage peroxisome proliferator-activated receptor-γ (PPARγ) was greatly reduced in obese mice and EPO increased macrophage PPARγ to promote efferocytosis in obese mice. Together, our results identify an important mechanism underlying aberrant acute inflammation resolution in obesity, with important implications for regulating unresolved acute inflammation and normalizing macrophage defects in obese and diabetic individuals.  相似文献   

7.
The deubiquitinating enzyme USP2a has shown oncogenic properties in many cancer types by impairing ubiquitination of FASN, MDM2, MDMX or Aurora A. Aberrant expression of USP2a has been linked to progression of human tumors, particularly prostate cancer. However, little is known about the role of USP2a or its mechanism of action in bladder cancer. Here, we provide evidence that USP2a is an oncoprotein in bladder cancer cells. Enforced expression of USP2a caused enhanced proliferation, invasion, migration and resistance to several chemotherapeutic reagents, while USP2a loss resulted in slower proliferation, greater chemosensitivity and reduced migratory/invasive capability compared with control cells. USP2a, but not a catalytically inactive mutant, enhanced proliferation in immortalized TRT-HU1 normal human bladder epithelial cells. USP2a bound to cyclin A1 and prevented cyclin A1 ubiquitination, leading to accumulation of cyclin A1 by a block in degradation. Enforced expression of wild type USP2a, but not an inactive USP2a mutant, resulted in cyclin A1 accumulation and increased cell proliferation. We conclude that USP2a impairs ubiquitination and stabilizes an important cell cycle regulator, cyclin A1, raising the possibility of USP2a targeting as a therapeutic strategy against bladder tumors in combination with chemotherapy.  相似文献   

8.
Adiponectin exerts an insulin-sensitizing effect, improving insulin action in peripheral tissues and restraining insulin resistance. Here, we explore the hypothesis that adiponectin can reproduce some of the actions of insulin/leptin in the hypothalamus. The presence of AdipoR1 and AdipoR2 was mapped to the arcuate and lateral hypothalamic nuclei. Icv adiponectin reduced food intake, which was accompanied by activation/engagement of IRS1/2, ERK, Akt, FOXO1, JAK2 and STAT3. All these actions were dependent on AdipoR1, since inhibition of this receptor, and not of AdipoR2, completely reversed the effects described above. Thus, adiponectin acts in the hypothalamus, activating elements of the canonical insulin and leptin signaling pathways and promoting reduction of food intake.  相似文献   

9.
The rapid increase of obese population in the United States has made obesity into epidemic proportion. Obesity is a strong risk factor for metabolic syndrome, type 2 diabetes mellitus, cardiovascular diseases, cancer and other diseases. Compelling evidence has demonstrated that increased adipose tissue mass is not only the consequence of obesity, but also plays a central role in the development of obesity-associated diseases. Recent studies have profoundly changed the concept of adipose tissue from being an energy depot to an active endocrine organ. The development of obesity alters adipocyte-derived hormones or cytokines expression, which provide a link between obesity and impaired insulin sensitivity and metabolic defects in other tissues. This review summarizes the current knowledge on how major adipose-derived hormones or adipocytokines influence insulin sensitivity.  相似文献   

10.
Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is a unique enzyme that associates with the pSer/Thr-Pro motif and catalyzes cis-trans isomerization. We identified Pin1 in the immunoprecipitates of overexpressed IRS-1 with myc and FLAG tags in mouse livers and confirmed the association between IRS-1 and Pin1 by not only overexpression experiments but also endogenously in the mouse liver. The analysis using deletion- and point-mutated Pin1 and IRS-1 constructs revealed the WW domain located in the N terminus of Pin1 and Ser-434 in the SAIN (Shc and IRS-1 NPXY binding) domain of IRS-1 to be involved in their association. Subsequently, we investigated the role of Pin1 in IRS-1 mediation of insulin signaling. The overexpression of Pin1 in HepG2 cells markedly enhanced insulin-induced IRS-1 phosphorylation and its downstream events: phosphatidylinositol 3-kinase binding with IRS-1 and Akt phosphorylation. In contrast, the treatment of HepG2 cells with Pin1 siRNA or the Pin1 inhibitor Juglone suppressed these events. In good agreement with these in vitro data, Pin1 knock-out mice exhibited impaired insulin signaling with glucose intolerance, whereas adenoviral gene transfer of Pin1 into the ob/ob mouse liver mostly normalized insulin signaling and restored glucose tolerance. In addition, it was also demonstrated that Pin1 plays a critical role in adipose differentiation, making Pin1 knock-out mice resistant to diet-induced obesity. Importantly, Pin1 expression was shown to be up-regulated in accordance with nutrient conditions such as food intake or a high-fat diet. Taken together, these observations indicate that Pin1 binds to IRS-1 and thereby markedly enhances insulin action, essential for adipogenesis.  相似文献   

11.
12.
Tzeng TF  Lo CY  Cheng JT  Liu IM 《Life sciences》2007,80(16):1508-1516
In the current study we investigated the effect of mu-opioid receptor activation on insulin sensitivity. In obese Zucker rats, an intravenous injection of loperamide (18 microg/kg, three times daily for 3 days) decreased plasma glucose levels and the glucose-insulin index. Both effects of loperamide were subsequently inhibited by the administration of 10 microg/kg of naloxone or 10 microg/kg of naloxonazine, doses sufficient to block mu-opioid receptors. Other metabolic defects characteristic of obese Zucker rats, such as defects in insulin signaling, the decreased expression of insulin receptor substrate (IRS)-1, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase), and the glucose transporter subtype 4 (GLUT 4), and the reduction of phosphorylation in IRS-1 or Akt serine, were also studied. These defects were all reversed by loperamide treatment in a dose which overcame mu-opioid receptor blockade. Moreover, loss of tolbutamide-induced plasma glucose lowering action (10 mg/kg) in wild-type mice given a fructose-rich diet was markedly delayed by repeated treatment with loperamide; however, this delay induced by loperamide did not occur in mu-opioid receptor knockout mice. These results indicate an important role of peripheral mu-opioid receptors in the loperamide-induced improvement of insulin sensitivity. Our results suggest that activation of peripheral mu-opioid receptors can ameliorate insulin resistance in animals, and provide a new target for therapy of insulin resistance.  相似文献   

13.
Despite the prevalence of insulin resistance and type 2 diabetes mellitus, their underlying mechanisms remain incompletely understood. Many secreted endocrine factors and the intertissue cross-talk they mediate are known to be dysregulated in type 2 diabetes mellitus. Here, we describe CTRP12, a novel adipokine with anti-diabetic actions. The mRNA and circulating levels of CTRP12 were decreased in a mouse model of obesity, but its expression in adipocytes was increased by the anti-diabetic drug rosiglitazone. A modest rise in circulating levels of CTRP12 by recombinant protein administration was sufficient to lower blood glucose in wild-type, leptin-deficient ob/ob, and diet-induced obese mice. A short term elevation of serum CTRP12 by adenovirus-mediated expression improved glucose tolerance and insulin sensitivity, normalized hyperglycemia and hyperinsulinemia, and lowered postprandial insulin resistance in obese and diabetic mice. CTRP12 improves insulin sensitivity in part by enhancing insulin signaling in the liver and adipose tissue. Further, CTRP12 also acts in an insulin-independent manner; in cultured hepatocytes and adipocytes, CTRP12 directly activated the PI3K-Akt signaling pathway to suppress gluconeogenesis and promote glucose uptake, respectively. Collectively, these data establish CTRP12 as a novel metabolic regulator linking adipose tissue to whole body glucose homeostasis through insulin-dependent and independent mechanisms.  相似文献   

14.

Aims

The search for natural agents that minimize obesity-associated disorders is receiving special attention. In this regard, the present study aimed to evaluate the prophylactic effect of Chlorella vulgaris (CV) on body weight, lipid profile, blood glucose and insulin signaling in liver, skeletal muscle and adipose tissue of diet-induced obese mice.

Main methods

Balb/C mice were fed either with standard rodent chow diet or high-fat diet (HFD) and received concomitant treatment with CV for 12 consecutive weeks. Triglyceride, free fatty acid, total cholesterol and fractions of cholesterol were measured using commercial assay. Insulin and leptin levels were determined by enzyme-linked immunosorbent assay (ELISA). Insulin and glucose tolerance tests were performed. The expression and phosphorylation of IRβ, IRS-1 and Akt were determined by Western blot analyses.

Key findings

Herein we demonstrate for the first time in the literature that prevention by CV of high-fat diet-induced insulin resistance in obese mice, as shown by increased glucose and insulin tolerance, is in part due to the improvement in the insulin signaling pathway at its main target tissues, by increasing the phosphorylation levels of proteins such as IR, IRS-1 and Akt. In parallel, the lower phosphorylation levels of IRS-1ser307 were observed in obese mice. We also found that CV administration prevents high-fat diet-induced dyslipidemia by reducing triglyceride, cholesterol and free fatty acid levels.

Significance

We propose that the modulatory effect of CV treatment preventing the deleterious effects induced by high-fat diet is a good indicator for its use as a prophylactic–therapeutic agent against obesity-related complications.  相似文献   

15.
目的探讨雷帕霉素对葡萄糖代谢水平影响的特点、机制。方法选择4周龄、雄性C57BL/6小鼠,高热量、高脂饮食喂养8周后为肥胖组(HF,n=18),普通饲料喂养为正常组(NC,n=18)。两组小鼠分别给予安慰剂(n=6)、腹腔注射雷帕霉素(2 mg/kg,隔日1次,n=6)、喂饮2.37%亮氨酸水(n=6),2周后分别行灌胃葡萄糖耐量试验(glucose tolerance test,GTT)、胰岛素耐受性试验(insulin tolerance test,ITT)以及胰岛组织病理学检查。结果正常组小鼠腹腔注射雷帕霉素后葡萄糖负荷30min血糖水平显著升高(与安慰剂组比P=0.038,与亮氨酸组比P=0.035)。肥胖组小鼠腹腔注射雷帕霉素后空腹血糖水平显著高于安慰剂组(P=0.031),葡萄糖负荷30 min血糖显著高于安慰剂组(P=0.013)、亮氨酸组(P=0.041)。仅正常组小鼠胰岛素敏感性与安慰剂组相比显著降低(P=0.039)。雷帕霉素干预后腹腔脂肪量显著减少(正常组与安慰剂组比P0.001,肥胖组与安慰剂组比P=0.013)。结论雷帕霉素对哺乳动物糖代谢水平有显著影响,正常小鼠与机体胰岛素敏感性下降有关;肥胖小鼠与胰岛素分泌功能受损、胰岛素抵抗相关。  相似文献   

16.
We previously demonstrated a marked upregulation in the bone morphogenic protein (BMP)/growth differentiation factor (GDF) family member, GDF5, which is capable of promoting brown adipogenesis, in brown adipose tissue (BAT) of obese mice. In this study, we identified other GDF family members, besides GDF5 that are responsive to different obesogenic signals in BAT using inborn and acquired obesity animal models. In BAT from leptin-deficient ob/ob mice, GDF1 expression was preferentially downregulated, whereas the expression of several other genes in the BMP/GDF family, including GDF5, was upregulated. Moreover, in cultured brown adipocytes exposed to tunicamycin and hydrogen peroxide, at concentrations not affecting cellular viability, GDF1 expression was significantly downregulated. Recombinant GDF1 failed to significantly alter brown adipogenesis, despite the promoted phosphorylation of Smad1/5/8 in cultured brown adipocytes, but accelerated Smad1/5/8 phosphorylation with a concomitant increase in the number of migrating cells during exposure in a manner sensitive to activin-like kinase inhibitors in macrophagic RAW264.7 cells. Similarly, accelerated migration was observed in murine peritoneal macrophages exposed to GDF1. These results indicate that obesity could lead to predominant downregulation of GDF1 expression in BAT, which can modulate cellular migration through a mechanism relevant to activation of the downstream Smad signaling pathway in adjacent macrophages.  相似文献   

17.
The aim of this study was to investigate the role of insulin receptor substrate-2 (IRS-2) mediated signal in macrophages on the accumulation of macrophages in the vascular wall. Mice transplanted with IRS-2−/− bone marrow, a model of myeloid cell restricted defect of IRS-2, showed accumulation of monocyte chemoattractant protein-1-expressing macrophages in the vascular wall. Experiments using cultured peritoneal macrophages showed that IRS-2-mediated signal pathway stimulated by physiological concentrations of insulin, not by IL-4, contributed to the suppression of monocyte chemoattractant protein-1 expression induced by lipopolysaccharide. Our data indicated that IRS-2 deficiency in macrophages enhanced their accumulation in the vascular wall accompanied by increased expression of proinflammatory mediators in macrophages. These results suggest a role for insulin resistance in macrophages in early atherosclerogenesis.  相似文献   

18.
The effects of oral delivery of exenatide or pramlintide acetate in dodecyl maltoside (DDM) on energy balance and glycemic control in insulin-resistant obese db/db mice are enhanced when given in combination with [D-Leu-4]-OB3. To examine the anti-hyperglycemic influence of [D-Leu-4]-OB3 in a non-obese insulin-deficient animal model, we compared the effects of metformin (200 mg/kg) and [D-Leu-4]-OB3 (40 mg/kg) on energy balance and glycemic control in streptozotocin (STZ)-induced diabetic male Swiss Webster (SW) mice. Diabetic mice were given insulin (Levemir®, sc) alone, or in combination with metformin or [D-Leu-4]-OB3 orally in DDM, for 14 days. Body weight and food and water intake were measured daily. Fasting blood glucose levels were determined every other day. Serum C-peptide was measured by ELISA. Diabetic mice receiving insulin alone for 14 days gained significantly more weight than DDM-treated control mice, or mice given insulin in combination with metformin or [D-Leu-4]-OB3. The weight gain seen in mice given insulin alone was accompanied by significant increases in both food and water intake. Mice treated with insulin in combination with metformin or [D-Leu-4]-OB3, consumed significantly less food and water. Blood glucose levels in STZ-treated mice receiving insulin alone were reduced to 65.3% of initial levels, while mice receiving insulin with metformin or [D-Leu-4]-OB3 were reduced to 44.5% and 38.9%, respectively. Our results indicate that [D-Leu-4]-OB3 is as effective as metformin in preventing the body weight gain associated with insulin therapy, and on a molar basis, that the efficacy of [D-Leu-4]-OB3 as an insulin sensitizer may equal or surpass that of metformin.  相似文献   

19.
Leptin is thought to be a lipostatic signal that contributes to body weight regulation. Zinc plays an important role in appetite regulation also. Our aim is to evaluate the relationship between leptin and zinc in obese and nonobese type 2 diabetic patients and its relationship with oxidative stress and insulin. We studied 25 nonobese nondiabetic women (controls); 35 nonobese diabetic women; and 45 obese diabetic women. Plasma leptin concentration was determined by immunoradiometric assay. Thiobarbituric acid reactive substances (TBARS), markers of oxidative stress, were assayed by the spectrofotometric method. Plasma levels of zinc and insulin were measured by atomic absorption spectrophotometer and electrochemiluminescence methods, respectively. We found that nonobese diabetic patients had significantly lower zinc and higher TBARS levels than control subjects (P<0.01). There was no difference in plasma leptin levels between nonobese diabetic subjects and controls. Obese diabetic subjects had significantly higher plasma leptin, TBARS, and insulin levels and significantly lower plasma zinc levels than nonobese diabetic subjects (for each comparison; P<0.01). The univariate and multivariate analyses demonstrated a significant positive correlation between leptin and body mass index (P<0.01) and insulin (P<0.01), and a significant negative correlation between leptin and zinc in obese subjects. Additionally, TBARS levels was positive correlated with insulin and negative correlated with zinc in obese diabetic subjects. We conclude that zinc may be a mediator of the effects of leptin, although the detailed mechanism is still unknown and requires further investigation. Free radical induced mechanism(s) may be involved in this process.  相似文献   

20.
ABSTRACT

SQSTM1/p62 (sequestosome 1) is a critical macroautophagy/autophagy receptor that promotes the formation and degradation of ubiquitinated aggregates. SQSTM1 can be modified by ubiquitination, and this modification modulates its autophagic activity. However, the molecular mechanisms underpinning its reversible deubiquitination have never been described. Here we report that USP8 (ubiquitin specific peptidase 8) directly interacted with and deubiquitinated SQSTM1. USP8 preferentially removed the lysine 11 (K11)-linked ubiquitin chains from SQSTM1. Moreover, USP8 deubiquitinated SQSTM1 principally at K420 within its ubiquitin-association (UBA) domain. Finally, USP8 inhibited SQSTM1 degradation and autophagic influx in cells with wild-type SQSTM1, but not its mutant with substitution of K420 with an arginine. Taken together, USP8 acts as a negative regulator of autophagy by deubiquitinating SQSTM1 at K420.

Abbreviations: BafA1: bafilomycin A1; BAP1: BRCA1 associated protein 1; DUB: deubiquitinating enzyme; ESCRT: endosomal sorting complex required for transport; HTT: huntingtin; K: lysine; KEAP1: kelch like ECH associated protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; shRNA: short hairpin RNA; SQSTM1: sequestosome 1; Ub: ubiquitin; UBA: ubiquitin-association; UBE2D2: ubiquitin conjugating enzyme E2 D2; UBE2D3: ubiquitin conjugating enzyme E2 D3; USP: ubiquitin specific peptidase; WT: wild-type  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号