首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The causative agent of prion diseases is the pathological isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc has an identical amino acid sequence to PrPC; thus, it has been assumed that an immune response against PrPSc could not be found in prion-affected animals. In this study, we found the anti-prion protein (PrP) antibody at the terminal stage of mouse scrapie. Several sera from mice in the terminal stage of scrapie reacted to the recombinant mouse PrP (rMPrP) molecules and brain homogenates of mouse prion diseases. These results indicate that mouse could recognize PrPC or PrPSc as antigens by the host immune system. Furthermore, immunization with rMPrP generates high titers of anti-PrP antibodies in wild-type mice. Some anti-PrP antibodies immunized with rMPrP prevent PrPSc replication in vitro. The mouse sera from terminal prion disease have several wide epitopes, although mouse sera immunized with rMPrP possess narrow epitopes.  相似文献   

2.
Mapping the Prion Protein Using Recombinant Antibodies   总被引:4,自引:0,他引:4       下载免费PDF全文
The fundamental event in prion disease is thought to be the posttranslational conversion of the cellular prion protein (PrPC) into a pathogenic isoform (PrPSc). The occurrence of PrPC on the cell surface and PrPSc in amyloid plaques in situ or in aggregates following purification complicates the study of the molecular events that underlie the disease process. Monoclonal antibodies are highly sensitive probes of protein conformation which can be used under these conditions. Here, we report the rescue of a diverse panel of 19 PrP-specific recombinant monoclonal antibodies from phage display libraries prepared from PrP deficient (Prnp0/0) mice immunized with infectious prions either in the form of rods or PrP 27-30 dispersed into liposomes. The antibodies recognize a number of distinct linear and discontinuous epitopes that are presented to a varying degree on different PrP preparations. The epitope reactivity of the recombinant PrP(90-231) molecule was almost indistinguishable from that of PrPC on the cell surface, validating the importance of detailed structural studies on the recombinant molecule. Only one epitope region at the C terminus of PrP was well presented on both PrPC and PrPSc, while epitopes associated with most of the antibodies in the panel were present on PrPC but absent from PrPSc.  相似文献   

3.

Background

Prion diseases are fatal neurodegenerative disorders characterized by misfolding and aggregation of the normal prion protein PrPC. Little is known about the details of the structural rearrangement of physiological PrPC into a still-elusive disease-associated conformation termed PrPSc. Increasing evidence suggests that the amino-terminal octapeptide sequences of PrP (huPrP, residues 59–89), though not essential, play a role in modulating prion replication and disease presentation.

Methodology/Principal Findings

Here, we report that trypsin digestion of PrPSc from variant and sporadic human CJD results in a disease-specific trypsin-resistant PrPSc fragment including amino acids ∼49–231, thus preserving important epitopes such as the octapeptide domain for biochemical examination. Our immunodetection analyses reveal that several epitopes buried in this region of PrPSc are exposed in PrPC.

Conclusions/Significance

We conclude that the octapeptide region undergoes a previously unrecognized conformational transition in the formation of PrPSc. This phenomenon may be relevant to the mechanism by which the amino terminus of PrPC participates in PrPSc conversion, and may also be exploited for diagnostic purposes.  相似文献   

4.
The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into the disease-associated, transmissible form (PrPSc). PrPC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrPC and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrPC glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. The current study demonstrates that undersialylated PrPC is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrPC. As a result, PMCAb-derived PrPSc was less sialylated than brain-derived PrPSc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrPC using sialidase was found to increase the rate of PrPSc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrPC reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrPC was also found to control PrPSc glycoform ratio. A decrease in PrPC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrPSc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrPC differed from that of spleen-derived PrPC. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrPC, suggesting that Neu1 is not responsible for desialylation of PrPC. The current work highlights previously unappreciated role of PrPC sialylation in prion diseases and opens multiple new research directions, including development of new therapeutic approaches.  相似文献   

5.
Prion diseases are caused by a conformational modification of the cellular prion protein (PrPC) into disease-specific forms, termed PrPSc, that have the ability to interact with PrPC promoting its conversion to PrPSc. In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrPC region involved in the interaction with PrPSc thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrPSc in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.  相似文献   

6.
《朊病毒》2013,7(4):383-390
Prion diseases are caused by a conformational modification of the cellular prion protein (PrPC) into disease-specific forms, termed PrPSc, that have the ability to interact with PrPC promoting its conversion to PrPSc. In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrPC region involved in the interaction with PrPSc thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrPSc in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.  相似文献   

7.
Antibodies against the prion protein PrPC can antagonize prion replication and neuroinvasion, and therefore hold promise as possible therapeutics against prion diseases. However, the safety profile of such antibodies is controversial. It was originally reported that the monoclonal antibody D13 exhibits strong target-related toxicity, yet a subsequent study contradicted these findings. We have reported that several antibodies against certain epitopes of PrPC, including antibody POM1, are profoundly neurotoxic, yet antibody ICSM18, with an epitope that overlaps with POM1, was reported to be innocuous when injected into mouse brains. In order to clarify this confusing situation, we assessed the neurotoxicity of antibodies D13 and ICSM18 with dose-escalation studies using diffusion-weighted magnetic resonance imaging and various histological techniques. We report that both D13 and ICSM18 induce rapid, dose-dependent, on-target neurotoxicity. We conclude that antibodies directed to this region may not be suitable as therapeutics. No such toxicity was found when antibodies against the flexible tail of PrPC were administered. Any attempt at immunotherapy or immunoprophylaxis of prion diseases should account for these potential untoward effects.  相似文献   

8.
The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc. Furthermore, the presence of desialylated PrPC inhibited the production of PrPSc within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrPC contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrPC. Desialylated PrPC was less sensitive to cholesterol depletion than PrPC and was not released from cells by treatment with glimepiride. The presence of desialylated PrPC in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases.  相似文献   

9.
Prion diseases are infectious and fatal neurodegenerative diseases affecting humans and animals. Transmission is possible within and between species with zoonotic potential. Currently, no prophylaxis or treatment exists. Prions are composed of the misfolded isoform PrPSc of the cellular prion protein PrPC. Expression of PrPC is a prerequisite for prion infection, and conformational conversion of PrPC is induced upon its direct interaction with PrPSc. Inhibition of this interaction can abrogate prion propagation, and we have previously established peptide aptamers (PAs) binding to PrPC as new anti-prion compounds. Here, we mapped the interaction site of PA8 in PrP and modeled the complex in silico to design targeted mutations in PA8 which presumably enhance binding properties. Using these PA8 variants, we could improve PA-mediated inhibition of PrPSc replication and de novo infection of neuronal cells. Furthermore, we demonstrate that binding of PA8 and its variants increases PrPC α-cleavage and interferes with its internalization. This gives rise to high levels of the membrane-anchored PrP-C1 fragment, a transdominant negative inhibitor of prion replication. PA8 and its variants interact with PrPC at its central and most highly conserved domain, a region which is crucial for prion conversion and facilitates toxic signaling of Aβ oligomers characteristic for Alzheimer’s disease. Our strategy allows for the first time to induce α-cleavage, which occurs within this central domain, independent of targeting the responsible protease. Therefore, interaction of PAs with PrPC and enhancement of α-cleavage represent mechanisms that can be beneficial for the treatment of prion and other neurodegenerative diseases.  相似文献   

10.
Summary 1. Vaccination-induced anti-prion protein antibodies are presently regarded as a promising approach toward treatment of prion diseases. Here, we investigated the ability of five peptides corresponding to three different regions of the bovine prion protein (PrP) to elicit antibodies interfering with PrPSc propagation in prion-infected cells. 2. Rabbits were immunized with free nonconjugated peptides. Obtained immune sera were tested in enzyme-linked immunosorbent assay (ELISA) and immunoblot for their binding to recombinant PrP and cell-derived pathogenic isoform (PrPSc) and normal prion protein (PrPc), respectively. Sera positive in all tests were chosen for PrPSc inhibition studies in cell culture. 3. All peptides induced anti-peptide antibodies, most of them reacting with recombinant PrP. Moreover, addition of the serum specific to peptide 95–123 led to a transient reduction of PrPSc levels in persistently prion-infected cells. 4. Thus, anti-PrP antibodies interfering with PrPSc propagation were induced with a prion protein peptide nonconjugated to a protein carrier. These results point to the potential application of the nonconjugated peptide 95–123 for the treatment of prion diseases.  相似文献   

11.
Prion diseases are emerging infectious disorders that affect several mammalian species including humans. The transmissible agent is comprised of PrPSc, a misfolded isoform of the normal host-encoded prion protein PrPC. Immunodetection of PrPSc is often utilized for prion disease diagnosis and tracking spread of the infectious agent through the host. We have developed a rapid, high-throughput 96-well immunoassay, which is specific for the detection of PrPSc. This assay has PrPSc detection limits similar to western blot and is advantageous because of its comparatively shorter running time, smaller start-up and operation costs and large sample capacity.Key words: prion disease, immunodetection, PrPSc  相似文献   

12.
《朊病毒》2013,7(4):292-303
Abstract

Prion diseases reflect the misfolding of a self-protein (PrPC) into an infectious, pathological isomer (PrPSc). By targeting epitopes uniquely exposed by misfolding, our group developed PrPSc-specific vaccines to 3 disease specific epitopes (DSEs). Here, antibodies induced by individual DSE vaccines are evaluated for their capacity to neutralize prions in vitro. For both purified antibodies and immunoreactive sera, the PrPSc-specific antibodies were equally effective in neutralizing prions. Further, there was no significant increase in neutralizing activity when multiple DSEs were targeted within an assay. At a low antibody concentration, the PrPSc-specific antibodies matched the neutralization achieved by an antibody that may act via both PrPC and PrPSc. At higher doses, however, this pan-specific antibody was more effective, potentially due to a combined deactivation of PrPSc and depletion of PrPC.  相似文献   

13.
The agent that causes prion diseases is thought to be identical to PrPSc, a conformer of the normal prion protein PrPC. Recently a novel protein, termed Doppel (Dpl), was identified that shares significant biochemical and structural homology with PrPC. To investigate the function of Dpl in neurogenesis and in prion pathology, we generated embryonic stem (ES) cells harbouring a homozygous disruption of the Prnd gene that encodes Dpl. After in vitro differentiation and grafting into adult brains of PrPC-deficient Prnp0/0 mice, Dpl-deficient ES cell-derived grafts contained all neural lineages analyzed, including neurons and astrocytes. When Prnd-deficient neural tissue was inoculated with scrapie prions, typical features of prion pathology including spongiosis, gliosis and PrPSc accumulation, were observed. Therefore, Dpl is unlikely to exert a cell-autonomous function during neural differentiation and, in contrast to its homologue PrPC, is dispensable for prion disease progression and for generation of PrPSc.  相似文献   

14.
In prion diseases, the cellular form of the prion protein, PrPC, undergoes a conformational conversion to the infectious isoform, PrPSc. PrPC associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI) anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs). We show that heparin displaces PrPC from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrPC. We then utilised a transmembrane-anchored form of PrP (PrP-TM), which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrPC to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrPC from rafts, promoting its endocytosis. Glypican-1 and PrPC colocalised on the cell surface and both PrPC and PrPSc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrPSc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrPC on the β-secretase cleavage of the Alzheimer''s amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrPC and PrPSc in lipid rafts.  相似文献   

15.
Prion diseases are fatal neurodegenerative disorders caused by prion proteins (PrP). Infectious prions accumulate in the brain through a template-mediated conformational conversion of endogenous PrPC into alternately folded PrPSc. Immunoassays toward pre-clinical detection of infectious PrPSc have been confounded by low-level prion accumulation in non-neuronal tissue and the lack of PrPSc selective antibodies. We report a method to purify infectious PrPSc from biological tissues for use as an immunogen and sample enrichment for increased immunoassay sensitivity. Significant prion enrichment is accomplished by sucrose gradient centrifugation of infected tissue and isolation with detergent resistant membranes from lipid rafts (DRMs). At equivalent protein concentration a 50-fold increase in detectable PrPSc was observed in DRM fractions relative to crude brain by direct ELISA. Sequential purification steps result in increased specific infectivity (DRM >20-fold and purified DRM immunogen >40-fold) relative to 1% crude brain homogenate. Purification of PrPSc from DRM was accomplished using phosphotungstic acid protein precipitation after proteinase-K (PK) digestion followed by size exclusion chromatography to separate PK and residual protein fragments from larger prion aggregates. Immunization with purified PrPSc antigen was performed using wild-type (wt) and Prnp0/0 mice, both on Balb/cJ background. A robust immune response against PrPSc was observed in all inoculated Prnp0/0 mice resulting in antisera containing high-titer antibodies against prion protein. Antisera from these mice recognized both PrPC and PrPSc, while binding to other brain-derived protein was not observed. In contrast, the PrPSc inoculum was non-immunogenic in wt mice and antisera showed no reactivity with PrP or any other protein.Key words: prion, scrapie, Prnp0/0 mice, purification methodology, antibody, antisera, lipid-rafts, detergent resistant membranes, neuroscience, immunization, diagnostic  相似文献   

16.
17.
An abnormal isoform of prion protein (PrPSc), which is composed of the same amino acids as cellular PrP (PrPC) and has proteinase K (PK)-resistance, hypothetically converts PrPC into PrPSc. To investigate the region important for PrPSc production, we examined the levels of PrPSc in PrP gene-deficient cells (HpL3-4) expressing PrPC deleted of various regions including the octapeptide repeat region (OR) or hydrophobic region (HR). After Chandler or Obihiro prion infection, PrPSc was produced in HpL3-4 cells expressing wild-type PrPC or PrPC deleted of HR at an early stage and further reduced to below the detectable level, whereas cells expressing PrPC deleted of OR showed no PrPSc production. The results suggest that OR of PrPC is required for the early step of efficient PrPSc production.  相似文献   

18.
Prion diseases are caused by conversion of a normal cell-surface glycoprotein (PrPC) into a conformationally altered isoform (PrPSc) that is infectious in the absence of nucleic acid. Although a great deal has been learned about PrPSc and its role in prion propagation, much less is known about the physiological function of PrPC. In this review, we will summarize some of the major proposed functions for PrPC, including protection against apoptotic and oxidative stress, cellular uptake or binding of copper ions, transmembrane signaling, formation and maintenance of synapses, and adhesion to the extracellular matrix. We will also outline how loss or subversion of the cytoprotective or neuronal survival activities of PrPC might contribute to the pathogenesis of prion diseases, and how similar mechanisms are probably operative in other neurodegenerative disorders.  相似文献   

19.
Molecules that inhibit the formation of an abnormal isoform of prion protein (PrPSc) in prion-infected cells are candidate therapeutic agents for prion diseases. Understanding how these molecules inhibit PrPSc formation provides logical basis for proper evaluation of their therapeutic potential. In this study, we extensively analyzed the effects of the anti-PrP monoclonal antibody (mAb) 44B1, pentosan polysulfate (PPS), chlorpromazine (CPZ) and U18666A on the intracellular dynamics of a cellular isoform of prion protein (PrPC) and PrPSc in prion-infected mouse neuroblastoma cells to re-evaluate the effects of those agents. MAb 44B1 and PPS rapidly reduced PrPSc levels without altering intracellular distribution of PrPSc. PPS did not change the distribution and levels of PrPC, whereas mAb 44B1 appeared to inhibit the trafficking of cell surface PrPC to organelles in the endocytic-recycling pathway that are thought to be one of the sites for PrPSc formation. In contrast, CPZ and U18666A initiated the redistribution of PrPSc from organelles in the endocytic-recycling pathway to late endosomes/lysosomes without apparent changes in the distribution of PrPC. The inhibition of lysosomal function by monensin or bafilomycin A1 after the occurrence of PrPSc redistribution by CPZ or U18666A partly antagonized PrPSc degradation, suggesting that the transfer of PrPSc to late endosomes/lysosomes, possibly via alteration of the membrane trafficking machinery of cells, leads to PrPSc degradation. This study revealed that precise analysis of the intracellular dynamics of PrPC and PrPSc provides important information for understanding the mechanism of anti-prion agents.  相似文献   

20.
Prions are molecular pathogens, able to convert a normal cellular prion protein (PrPC) into a prion (PrPSc). The information necessary for this conversion is contained in the conformation of PrPSc. Mass spectrometry (MS) and small-molecule covalent reactions have been used to study prions. Mass spectrometry has been used to detect and quantitate prions in the attomole range (10?18 mole). MS-based analysis showed that both possess identical amino acid sequences, one disulfide bond, a GPI anchor, asparagine-linked sugar antennae, and unoxidized methionines. Mass spectrometry has been used to define elements of the secondary and tertiary structure of wild-type PrPSc and GPI-anchorless PrPSc. It has also been used to study the quaternary structure of the PrPSc multimer. Small molecule reagents react differently with the same lysine in the PrPC conformation than in the PrPSc conformation. Such differences can be detected by Western blot using mAbs with lysine-containing epitopes, such as 3F4 and 6D11. This permits the detection of PrPSc without the need for proteinase K pretreatment and can be used to distinguish among prion strains. These results illustrate how two important chemical tools, mass spectrometry and covalent modification by small molecules, are being applied to the detection and structural study of prions. Furthermore these tools are or can be applied to the study of the other protein misfolding diseases such as Alzheimer Disease, Parkinson Disease, or ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号