首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of plant shikimate kinase (SK; EC 2.7.1.71), an intermediate step in the shikimate pathway to aromatic amino acid biosynthesis, is induced under specific conditions of environmental stress and developmental requirements in an isoform-specific manner. Despite their important physiological role, experimental structures of plant SKs have not been determined and the biochemical nature of plant SK regulation is unknown. The Arabidopsis thaliana genome encodes two SKs, AtSK1 and AtSK2. We demonstrate that AtSK2 is highly unstable and becomes inactivated at 37 °C whereas the heat-induced isoform, AtSK1, is thermostable and fully active under identical conditions at this temperature. We determined the crystal structure of AtSK2, the first SK structure from the plant kingdom, and conducted biophysical characterizations of both AtSK1 and AtSK2 towards understanding this mechanism of thermal regulation. The crystal structure of AtSK2 is generally conserved with bacterial SKs with the addition of a putative regulatory phosphorylation motif forming part of the adenosine triphosphate binding site. The heat-induced isoform, AtSK1, forms a homodimer in solution, the formation of which facilitates its relative thermostability compared to AtSK2. In silico analyses identified AtSK1 site variants that may contribute to AtSK1 stability. Our findings suggest that AtSK1 performs a unique function under heat stress conditions where AtSK2 could become inactivated. We discuss these findings in the context of regulating metabolic flux to competing downstream pathways through SK-mediated control of steady state concentrations of shikimate.  相似文献   

2.
The ammonium flux across prokaryotic, plant, and animal membranes is regulated by structurally related ammonium transporters (AMT) and/or related Rhesus (Rh) glycoproteins. Several plant AMT homologs, such as AtAMT1;2 from Arabidopsis, elicit ionic, ammonium-dependent currents when expressed in oocytes. By contrast, functional evidence for the transport of NH3 and the lack of coupled ionic currents has been provided for many Rh proteins. Furthermore, despite high resolution structures the transported substrate in many bacterial homologs, such as AmtB from Escherichia coli, is still unclear. In a heterologous genetic screen in yeast, AtAMT1;2 mutants with reduced transport activity were identified based on the resistance of yeast to the toxic transport analog methylamine. When expressed in oocytes, the reduced transport capacity was confirmed for either of the mutants Q67K, M72I,and W145S. Structural alignments suggest that these mutations were dispersed at subunit contact sites of trimeric AMTs, without direct contact to the pore lumen. Surprisingly, and in contrast to the wild type AtAMT1;2 transporter, ionic currents were not associated with the substrate transport in these mutants. Whether these data suggest that the wild type AtAMT1;2 functions as H+/NH3 co-transporter, as well as how the strict substrate coupling with protons is lost by the mutations, is discussed.  相似文献   

3.
The shikimate pathway is common to the biosynthesis of the three aromatic amino acids and that of various secondary metabolites in land plants. Shikimate kinase (SK; EC 2.7.1.71) catalyzes the phosphorylation of shikimate to yield shikimate 3-phosphate. In an attempt to elucidate the functional roles of enzymes that participate in the shikimate pathway in rice (Oryza sativa), we have now identified and characterized cDNAs corresponding to three SK genes—OsSK1, OsSK2, and OsSK3—in this monocotyledenous plant. These SK cDNAs encode proteins with different NH2-terminal regions and with putative mature regions that share sequence similarity with other plant and microbial SK proteins. An in vitro assay of protein import into intact chloroplasts isolated from pea (Pisum sativum) seedlings revealed that the full-length forms of the three rice SK proteins are translocated into chloroplasts and processed, consistent with the assumption that the different NH2-terminal sequences function as chloroplast transit peptides. The processed forms of all three rice proteins synthesized in vitro manifested SK catalytic activity. Northern blot analysis revealed that the expression of OsSK1 and OsSK2 was induced in rice calli by treatment with the elicitor N-acetylchitoheptaose, and that expression of OsSK1 and OsSK3 was up-regulated specifically during the heading stage of panicle development. These results suggest that differential expression of the three rice SK genes and the accompanying changes in the production of shikimate 3-phosphate may contribute to the defense response and to panicle development in rice.The nucleotide sequences of OsSK1, OsSK2, and OsSK3 cDNAs are available in GenBank under the accession numbers AB188834, AB188835, and AB188836, respectively.  相似文献   

4.
The insect sulfakinins (SKs) constitute a family of neuropeptides that display both structural and functional similarities to the mammalian hormones gastrin and cholecystokinin (CCK). As a multifunctional neuropeptide, SKs are involved in muscle contractions as well as food intake regulation in many insects. In the red flour beetle Tribolium castaneum, the action on food intake by a series of synthetic SK analogs and one putative antagonist was investigated by injection in beetle adults. The most remarkable result was that both sulfated and non-sulfated SKs [FDDY(SO3H)GHMRFamide] inhibited food intake by about 70%. Strong activity observed for SK analogs featuring a residue that mimics the acidic nature of Tyr(SO3H) but lack the phenyl ring of Tyr, indicate that aromaticity is not a critical characteristic for this position of the peptide. SK demonstrated considerable tolerance to Ser and Ala substitution in position 8 (basic Arg), as analogs featuring these uncharged substitutions retained almost all of the food intake inhibitory activity. Also, the Phe in position 1 could be replaced by Ser without complete loss of activity. Conversely, substitution of Met by Nle in position 7 led to inactive compounds. Finally, the Caenorhabditis elegans sulfated neuropeptide-like protein-12 (NLP-12), that shares some sequence similarities with the SKs but features a Gln-Phe-amide rather than an Arg-Phe-amide at the C-terminus, elicited increased food intake in T. castaneum, which may indicate an antagonist activity. Co-injection of NLP-12 with nsSK blocked the food intake inhibitory effects of nsSK.  相似文献   

5.
Cheng WC  Chen YF  Wang HJ  Hsu KC  Lin SC  Chen TJ  Yang JM  Wang WC 《PloS one》2012,7(3):e33481
Shikimate kinase (SK), which catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid in the presence of ATP, is the enzyme in the fifth step of the shikimate pathway for biosynthesis of aromatic amino acids. This pathway is present in bacteria, fungi, and plants but absent in mammals and therefore represents an attractive target pathway for the development of new antimicrobial agents, herbicides, and antiparasitic agents. Here we investigated the detailed structure–activity relationship of SK from Helicobacter pylori (HpSK). Site-directed mutagenesis and isothermal titration calorimetry studies revealed critical conserved residues (D33, F48, R57, R116, and R132) that interact with shikimate and are therefore involved in catalysis. Crystal structures of HpSK·SO4, R57A, and HpSK•shikimate-3-phosphate•ADP show a characteristic three-layer architecture and a conformationally elastic region consisting of F48, R57, R116, and R132, occupied by shikimate. The structure of the inhibitor complex, E114A•162535, was also determined, which revealed a dramatic shift in the elastic LID region and resulted in conformational locking into a distinctive form. These results reveal considerable insight into the active-site chemistry of SKs and a selective inhibitor-induced-fit mechanism.  相似文献   

6.
BRCA1 is a well-known tumor suppressor protein in mammals, involved in multiple cellular processes such as DNA repair, chromosome segregation and chromatin remodeling. Interestingly, homologs of BRCA1 and several of its complex partners are also found in plants. As the respective mutants are viable, in contrast to mammalian mutants, detailed analyses of their biological role is possible. Here we demonstrate that the model plant Arabidopsis thaliana harbors two homologs of the mammalian BRCA1 interaction partner BRCC36, AtBRCC36A and AtBRCC36B. Mutants of both genes as well as the double mutants are fully fertile and show no defects in development. We were able to show that mutation of one of the homologs, AtBRCC36A, leads to a severe defect in intra- and interchromosomal homologous recombination (HR). A HR defect is also apparent in Atbrca1 mutants. As the Atbrcc36a/Atbrca1 double mutant behaves like the single mutants of AtBRCA1 and AtBRCC36A both proteins seem to be involved in a common pathway in the regulation of HR. AtBRCC36 is also epistatic to AtBRCA1 in DNA crosslink repair. Upon genotoxic stress, AtBRCC36A is transferred into the nucleus.  相似文献   

7.
In Asian cultivated rice (Oryza sativa), distinct mechanisms to survive flooding are activated in two groups of varieties. Submergence-tolerant rice varieties possessing the SUBMERGENCE1A (SUB1A) gene display reduced growth during flash floods at the seedling stage and resume growth after the flood recedes, whereas deepwater rice varieties possessing the SNORKEL1 (SK1) and SNORKEL2 (SK2) genes display enhanced growth based on internodal elongation during prolonged submergence at the mature stage. In this study, we investigated the occurrence of these growth responses to submergence in the wild rice species Oryza grandiglumis, which is native to the Amazon floodplains. When subjected to gradual submergence, adult plants of O. grandiglumis accessions showed enhanced internodal elongation with rising water level and their growth response closely resembled that of deepwater varieties of O. sativa with high floating capacity. On the other hand, when subjected to complete submergence, seedlings of O. grandiglumis accessions displayed reduced shoot growth and resumed normal growth after desubmergence, similar to the response of submergence-tolerant varieties of O. sativa. Neither SUB1A nor the SK genes were detected in the O. grandiglumis accessions. These results indicate that the O. grandiglumis accessions are capable of adapting successfully to flooding by activating two contrasting mechanisms as the situation demands and that each mechanism of adaptation to flooding is not mediated by SUB1A or the SK genes.  相似文献   

8.
The final steps of phenylalanine (Phe) biosynthesis in bacteria, fungi and plants can occur via phenylpyruvate or arogenate intermediates. These routes are determined by the presence of prephenate dehydratase (PDT, EC4.2.1.51), which forms phenylpyruvate from prephenate, or arogenate dehydratase (ADT, EC4.2.1.91), which forms phenylalanine directly from arogenate. We compared sequences from select yeast species to those of Arabidopsis thaliana. The in silico analysis showed that plant ADTs and yeast PDTs share many common features allowing them to act as dehydratase/decarboxylases. However, plant and yeast sequences clearly group independently conferring distinct substrate specificities. Complementation of the Saccharomyces cerevisiae pha2 mutant, which lacks PDT activity and cannot grow in the absence of exogenous Phe, was used to test the PDT activity of A. thaliana ADTs in vivo. Previous biochemical characterization showed that all six AtADTs had high catalytic activity with arogenate as a substrate, while AtADT1, AtADT2 and AtADT6 also had limited activity with prephenate. Consistent with these results, the complementation test showed AtADT2 readily recovered the pha2 phenotype after ~6 days growth at 30 °C, while AtADT1 required ~13 days to show visible growth. By contrast, AtADT6 (lowest PDT activity) and AtADT3-5 (no PDT activity) were unable to recover the phenotype. These results suggest that only AtADT1 and AtADT2, but not the other four ADTs from Arabidopsis, have functional PDT activity in vivo, showing that there are two functional distinct groups. We hypothesize that plant ADTs have evolved to use the arogenate route for Phe synthesis while keeping some residual PDT activity.  相似文献   

9.
Group A streptococcus (GAS) strains secrete the protein streptokinase (SK), which functions by activating host human plasminogen (hPg) to plasmin (hPm), thus providing a proteolytic framework for invasive GAS strains. The types of SK secreted by GAS have been grouped into two clusters (SK1 and SK2) and one subcluster (SK2a and SK2b). SKs from cluster 1 (SK1) and cluster 2b (SK2b) display significant evolutionary and functional differences, and attempts to relate these properties to GAS skin or pharynx tropism and invasiveness are of great interest. In this study, using four purified SKs from each cluster, new relationships between plasminogen-binding group A streptococcal M (PAM) protein and SK2b have been revealed. All SK1 proteins efficiently activated hPg, whereas all subclass SK2b proteins only weakly activated hPg in the absence of PAM. Surface plasmon resonance studies revealed that the lower affinity of SK2b to hPg served as the basis for the attenuated activation of hPg by SK2b. Binding of hPg to either human fibrinogen (hFg) or PAM greatly enhanced activation of hPg by SK2b but minimally influenced the already effective activation of hPg by SK1. Activation of hPg in the presence of GAS cells containing PAM demonstrated that PAM is the only factor on the surface of SK2b-expressing cells that enabled the direct activation of hPg by SK2b. As the binding of hPg to PAM is necessary for hPg activation by SK2b, this dependence explains the coinherant relationship between PAM and SK2b and the ability of these particular strains to generate the proteolytic activity that disrupts the innate barriers that limit invasiveness.  相似文献   

10.
Dehydrins (DHNs) are a group II late embryogenesis abundant (LEA) proteins that play essential roles in plant growth, development and responses to diverse environmental stimuli. Here, four DHNs in cucumber genome were identified using bioinformatics-based methods according to the highly conserved K-, Y- and S-segments, including 1 YnKn-type, 2 YnSKn-type, and 1 SKn-type DHNs. All of them are intrinsically disordered proteins (IDPs) and possess a large number of disorder-promoting amino acids. Secondary structure prediction revealed that each of them is composed of high proportion of alpha helix and random coil. Gene structure and phylogenetic analyses with DHNs from cucumber and several other species revealed that some closely related DHN genes had similar gene structures. A number of cis-elements involved in stress responses and phytohormones were found in each CsDHN promoter. The tissue expression profiles suggested that the CsDHN genes have overlapping, but different expression patterns. qRT-PCR results showed that three selected CsDHN genes could respond to heat, cold, osmotic and salt stresses, as well as to signaling molecules such as H2O2 and ABA. These results lay a solid foundation for future functional investigation of the cucumber dehydrin gene family in tissue development and stress responses in plants.  相似文献   

11.
5′-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5′-alkylthio binding site in Arabidopsis thaliana AtMTAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein–SAH complex at 2.2 Å resolution. The lack of catalytic activity appears to be related to the enzyme’s inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium–hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN.  相似文献   

12.
Dehydrins, which belong to group 2 LEA proteins, are a family of intrinsically unstructured plant proteins that accumulate during the late stages of embryogenesis and in response to abiotic stresses. We have previously reported that the OpsDHN1 gene, encoding an SK3-type acidic dehydrin protein from Opuntia streptacantha, contains an intron inserted within the sequence encoding the S-motif. Herein, we present an in silico analysis of intron sequences in dehydrin genes from mono- and dicotyledonous plants that reveals a preference for insertion within the nucleotide sequence encoding the S-motif. Sequence comparison of ten Dhn genes from Arabidopsis thaliana and the orthologous genes in Arabidopsis lyrata revealed that introns maintain considerable sequence identity and conserve the insertion pattern. Furthermore, syntenic regions were identified among eight orthologous genes of A. thaliana and A. lyrata, showing that correlated gene arrangements are conserved between these Arabidopsis species. Our study shows that most SKn-type dehydrins contain one intron that is conserved in phase and location; this intron is linked to the nucleotide sequence that encodes the S-motif.  相似文献   

13.
Members of the sphingosine kinase (SK) family of lipid signaling enzymes, comprising SK1 and SK2 in humans, are receiving considerable attention for their roles in a number of physiological and pathophysiological processes. The SKs are considered signaling enzymes based on their production of the potent lipid second messenger sphingosine-1-phosphate, which is the ligand for a family of five G-protein-linked receptors. Both SK1 and SK2 are intracellular enzymes and do not possess obvious membrane anchor domains within their primary sequences. The native substrates (sphingosine and dihydrosphingosine) are lipids, as are the corresponding products, and therefore would have a propensity to be membrane associated, suggesting that specific membrane localization of the SKs could affect both access to substrate and localized production of product. Here, we consider the emerging picture of the SKs as enzymes localized to specific intracellular sites, sometimes by agonist-dependent translocation, the mechanism targeting these enzymes to those sites, and the functional consequence of that localization. Not only is the signaling output of the SKs affected by subcellular localization, but the role of these enzymes as metabolic regulators of sphingolipid metabolism may be impacted as well.  相似文献   

14.
Sphingosine kinase-1 (SK1) promotes the formation of sphingosine-1-phosphate (S1P), which has potent pro-inflammatory and pro-angiogenic effects. We investigated the effects of raised SK1 levels on endothelial cell function and the possibility that this signaling pathway is activated in rheumatoid arthritis. Human umbilical vein endothelial cells with 3- to 5-fold SK1 (ECSK) overexpression were generated by adenoviral and retroviralmediated gene delivery. The activation state of these cells and their ability to undergo angiogenesis was determined. S1P was measured in synovial fluid from patients with RA and OA. ECSK showed an enhanced migratory capacity and a stimulated rate of capillary tube formation. The cells showed constitutive activation as evidenced by the induction of basal VCAM-1 expression, and further showed a more augmented VCAM-1 and E selectin response to TNF compared with empty vector control cells (ECEV). These changes had functional consequences in terms of enhanced neutrophil binding in the basal and TNFstimulated states in ECSK. By contrast, over-expression of a dominant-negative SK inhibited the TNF-induced VCAM-1 and E selectin and inhibited PMN adhesion, confirming that the observed effects were specifically mediated by SK. The synovial fluid levels of S1P were significantly higher in patients with RA than in those with OA. Small chronic increases in SK1 activity in the endothelial cells enhance the ability of the cells to support inflammation and undergo angiogenesis, and sensitize the cells to inflammatory cytokines. The SK1 signaling pathway is activated in RA, suggesting that manipulation of SK1 activity in diseases of aberrant inflammation and angiogenesis may be beneficial.  相似文献   

15.
16.
Members of the sphingosine kinase (SK) family of lipid signaling enzymes, comprising SK1 and SK2 in humans, are receiving considerable attention for their roles in a number of physiological and pathophysiological processes. The SKs are considered signaling enzymes based on their production of the potent lipid second messenger sphingosine-1-phosphate, which is the ligand for a family of five G-protein-linked receptors. Both SK1 and SK2 are intracellular enzymes and do not possess obvious membrane anchor domains within their primary sequences. The native substrates (sphingosine and dihydrosphingosine) are lipids, as are the corresponding products, and therefore would have a propensity to be membrane associated, suggesting that specific membrane localization of the SKs could affect both access to substrate and localized production of product. Here, we consider the emerging picture of the SKs as enzymes localized to specific intracellular sites, sometimes by agonist-dependent translocation, the mechanism targeting these enzymes to those sites, and the functional consequence of that localization. Not only is the signaling output of the SKs affected by subcellular localization, but the role of these enzymes as metabolic regulators of sphingolipid metabolism may be impacted as well.  相似文献   

17.
18.
5′-Methylthioadenosine (MTA)/S-adenosylhomocysteine (SAH) nucleosidase (MTAN) is essential for cellular metabolism and development in many bacterial species. While the enzyme is found in plants, plant MTANs appear to select for MTA preferentially, with little or no affinity for SAH. To understand what determines substrate specificity in this enzyme, MTAN homologues from Arabidopsis thaliana (AtMTAN1 and AtMTAN2, which are referred to as AtMTN1 and AtMTN2 in the plant literature) have been characterized kinetically. While both homologues hydrolyze MTA with comparable kinetic parameters, only AtMTAN2 shows activity towards SAH. AtMTAN2 also has higher catalytic activity towards other substrate analogues with longer 5′-substituents. The structures of apo AtMTAN1 and its complexes with the substrate- and transition-state-analogues, 5′-methylthiotubercidin and formycin A, respectively, have been determined at 2.0-1.8 Å resolution. A homology model of AtMTAN2 was generated using the AtMTAN1 structures. Comparison of the AtMTAN1 and AtMTAN2 structures reveals that only three residues in the active site differ between the two enzymes. Our analysis suggests that two of these residues, Leu181/Met168 and Phe148/Leu135 in AtMTAN1/AtMTAN2, likely account for the divergence in specificity of the enzymes. Comparison of the AtMTAN1 and available Escherichia coli MTAN (EcMTAN) structures suggests that a combination of differences in the 5′-alkylthio binding region and reduced conformational flexibility in the AtMTAN1 active site likely contribute to its reduced efficiency in binding substrate analogues with longer 5′-substituents. In addition, in contrast to EcMTAN, the active site of AtMTAN1 remains solvated in its ligand-bound forms. As the apparent pKa of an amino acid depends on its local environment, the putative catalytic acid Asp225 in AtMTAN1 may not be protonated at physiological pH and this suggests the transition state of AtMTAN1, like human MTA phosphorylase and Streptococcus pneumoniae MTAN, may be different from that found in EcMTAN.  相似文献   

19.
20.
The analysis of genes in evolutionarily distant but morphologically similar species is of major importance to unravel the changes in genomes over millions of years, which led to gene silencing and functional diversification. We report the analysis of Wnt8a gene expression in the medakafish and provide a detailed comparison to other vertebrates. In all teleosts analyzed there are two paralogous Wnt8a copies. These show largely overlapping expression in the early developing zebrafish embryo, an evolutionarily distant relative of medaka. In contrast to zebrafish, we find that both maternal and zygotic expression of particularly one Wnt8a paralog has diverged in medaka. While Wnt8a1 expression is mostly conserved at early embryonic stages, the expression of Wnt8a2 differs markedly. In addition, both genes are distinctly expressed during organogenesis unlike the zebrafish homologs, which may hint at the emergence of functional diversification of Wnt8a ligands during evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号