首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Botulinum neurotoxin (BoNT) associates with nontoxic proteins, either a nontoxic nonhemagglutinin (NTNHA) or the complex of NTNHA and hemagglutinin (HA), to form M- or L-toxin complexes (TCs). Single BoNT and NTNHA molecules are associated and form M-TC. A trimer of the 70-kDa HA protein (HA-70) attaches to the M-TC to form M-TC/HA-70. Further, 1–3 arm-like 33- and 17-kDa HA molecules (HA-33/HA-17 trimer), consisting of 1 HA-17 protein and 2 HA-33 proteins, can attach to the M-TC/HA-70 complex, yielding 1-, 2-, and 3-arm L-TC. In this study, the purified 1- and 2-arm L-TCs spontaneously converted into another L-TC species after acquiring the HA-33/HA-17 trimer from other TCs during long-term storage and freezing/thawing. Transmission electron microscopy analysis provided evidence of the formation of detached HA-33/HA-17 trimers in the purified TC preparation. These findings provide evidence of reversible association/dissociation of the M-TC/HA-70 complex with the HA-33/HA-17 trimers, as well as dynamic conversion of the quaternary structure of botulinum TC in culture.  相似文献   

2.
A large size botulinum toxin complex (L-TC) is composed of a single neurotoxin (BoNT), a single nontoxic nonhaemagglutinin (NTNHA) and a haemagglutinin (HA) complex. The HA complex is comprised of three HA-70 molecules and three arm structures of HA-33/HA-17 that consist of two HA-33 and a single HA-17. In addition to the mature L-TC, smaller TCs are present in cultures: M-TC (BoNT/NTNHA), M-TC/HA-70 and immature L-TCs with fewer HA-33/HA-17 arms than mature L-TC. Because L-TC displays higher oral toxicity than pure BoNT, it was presumed that nontoxic proteins are critical for food poisoning. In this study, the absorption of TCs across intestinal epithelial cells was assessed by examining the cell binding and monolayer transport of serotype D toxins in the rat intestinal epithelial cell line IEC-6. All TCs, including pure BoNT, displayed binding and transport, with mature L-TC showing the greatest potency. Inhibition experiments using antibodies revealed that BoNT, HA-70 and HA-33 could be responsible for the binding and transport. The findings here indicate that all TCs can transport across the cell layer via a sialic acid-dependent process. Nonetheless, binding and transport markedly increased with number of HA-33/HA-17 arms in the TC. We therefore conclude that the HA-33/HA-17 arm is not necessarily required for, but facilitates, transport of botulinum toxin complexes.  相似文献   

3.
Botulinum neurotoxin (BoNT) is produced as a large toxin complex (TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). To assess the role of nontoxic components in the oral intoxication of botulinum TCs, we investigated the permeability of serotype D strain 4947 BoNT and its various TC species through cultured Caco-2 cell monolayers. The L-TC species (complexes composed of BoNT, NTNHA, HA-70, HA-33 and HA-17) showed potent permeability through the cell layer, whereas free BoNT, M-TC (BoNT and NTNHA complexes) and M-TC/HA-70 showed little or no permeability. Cell binding tests demonstrated that HA-33/HA-17 complexes bound to cells, whereas other components did not. These findings suggest that BoNT in the 650-kDa L-TC permeates into the cell mainly in an HA-33/HA-17-mediated manner, although free BoNT can permeate into the cell. As free BoNT and M-TC were susceptible to digestion with gastrointestinal juice, it is likely that L-TC species containing HA-33 caused higher oral toxicity in mice than others. We conclude that the HA-33 subcomponent plays a critical role in the permeation of TCs into intestinal epithelium, and that other HA subcomponents protect BoNT against gastrointestinal digestion.  相似文献   

4.
Clostridium botulinum serotype D strains usually produce two types of stable toxin complex (TC), namely, the 300 kDa M (M-TC) and the 660 kDa L (L-TC) toxin complexes. We previously proposed assembly pathways for both TCs [Kouguchi, H., et al. (2002) J. Biol. Chem. 277, 2650-2656]: M-TC is composed by association of neurotoxin (NT) and nontoxic nonhemagglutinin (NTNHA); conjugation of M-TC with three auxiliary types of hemagglutinin subcomponents (HA-33, HA-17, and HA-70) leads to the formation of L-TC. In this study, we found three TC species, 410, 540, and 610 kDa TC species, in the culture supernatant of type D strain 4947. The 540 and 610 kDa TC species displayed banding patterns on SDS-PAGE similar to that of L-TC but with less staining intensity of the HA-33 and HA-17 bands than those of L-TC, indicating that these are intermediate species in the pathway to L-TC assembly. In contrast, the 410 kDa TC species consisted of M-TC and two molecules of HA-70. All of the TC species, except L-TC, demonstrated no hemagglutination activity. When the intermediate TC species were mixed with an isolated HA-33/17 complex, every TC species converted to 650 kDa L-TC with full hemagglutination activity and had the same molecular composition of L-TC. On the basis of titration analysis with the HA-33/17 complex, the stoichiometry of the HA-33/17 complex molecules in the L-TC, 610 kDa, and 540 kDa TC species was estimated as 4, 3, and 2, respectively. In conclusion, the complete subunit composition of mature L-TC is deduced to be a dodecamer assembled by a single NT, a single NTNHA, two HA-70, four HA-33, and four HA-17 molecules.  相似文献   

5.
A unique strain of Clostridium botulinum, serotype D 4947 (D-4947), produces a considerable amount of a 650 kDa toxin complex (L-TC) and a small amount of a 280 kDa M-TC, a 540 kDa TC, and a 610 kDa TC. The complexes are composed of only un-nicked components, including neurotoxin (NT), nontoxic nonhemagglutinin (NTNHA) and hemagglutinin subcomponents (HA-70, HA-33 and HA-17). Unlike other NTs from all serotype strains, separation of D-4947 NT from L-TC, except for M-TC, during chromatography required highly alkaline conditions around pH 8.8. The separated NT and NTNHA/HAs complex can be reconstituted to L-TC that is indistinguishable from the parent L-TC with respect to toxicity, hemagglutination activity and gel filtration profile. The isoelectric points of NT and NTNHA/HAs were close together depending on the number of HA-33/17 molecules. We have established a new method to separate the unique D-4947 NT from the complex, which will yield valuable information on structure of botulinum toxin.  相似文献   

6.
Large-sized botulinum toxin complex (L-TC) is formed by conjugation of neurotoxin, nontoxic nonhemagglutinin and hemagglutinin (HA) complex. The HA complex is formed by association of three HA-70 molecules and three HA-33/HA-17 trimers, comprised of a single HA-17 and two HA-33 proteins. The HA-33/HA-17 trimer isolated from serotype D L-TC has the ability to bind to and penetrate through the intestinal epithelial cell monolayer in a sialic acid-dependent manner, and thus it plays an important role in toxin delivery through the intestinal cell wall. In this study, we determined the solution structure of the HA-33/HA-17 trimer by using small-angle X-ray scattering (SAXS). The SAXS image of HA-33/HA-17 exhibited broadly similar appearance to the crystal image of the complex. On the other hand, in the presence of N-acetylneuraminic acid, glucose and galactose, the solution structure of the HA-33/HA-17 trimer was drastically altered compared to the structure in the absence of the sugars. Sugar-induced structural change of the HA-33/HA-17 trimer may contribute to cell binding and subsequent transport across the intestinal cell layer.  相似文献   

7.
The botulinum neurotoxins (BoNTs) are the most potent toxins known in nature, causing the lethal disease known as botulism in humans and animals. The BoNTs act by inhibiting neurotransmitter release from cholinergic synapses. Clostridium botulinum strains produce large BoNTs toxin complexes, which include auxiliary non-toxic proteins that appear not only to protect BoNTs from the hostile environment of the digestive tract but also to assist BoNT translocation across the intestinal mucosal layer. In this study, we visualize for the first time a series of botulinum serotype D toxin complexes using negative stain transmission electron microscopy (TEM). The complexes consist of the 150-kDa BoNT, 130-kDa non-toxic non-hemagglutinin (NTNHA), and three kinds of hemagglutinin (HA) subcomponents: 70-kDa HA-70, 33-kDa HA-33, and 17-kDa HA-17. These components assemble sequentially to form the complex. A novel TEM image of the mature L-TC revealed an ellipsoidal-shaped structure with "three arms" attached. The "body" section was comprised of a single BoNT, a single NTNHA and three HA-70 molecules. The arm section consisted of a complex of HA-33 and HA-17 molecules. We determined the x-ray crystal structure of the complex formed by two HA-33 plus one HA-17. On the basis of the TEM image and biochemical results, we propose a novel 14-mer subunit model for the botulinum toxin complex. This unique model suggests how non-toxic components make up a "delivery vehicle" for BoNT.  相似文献   

8.
Clostridium botulinum serotype C strains produce a neurotoxin (BoNT) along with nontoxic proteins, including nontoxic nonhemagglutinin and three hemagglutinin subcomponents, HA-70, HA-33 and HA-17, to form a large toxin complex (L-TC). While L-TCs produced by serotype C strains usually exhibit hemagglutination (HA) activity via HA-33 binding to sialic acid on erythrocytes, serotype C strain Yoichi (C-Yoichi) L-TC exhibited neither HA nor binding activity towards erythrocytes, probably due to a C-terminal truncation of the HA-33 protein. However, here, we demonstrate that C-Yoichi L-TC newly showed full HA and binding activity towards neuraminidase-treated erythrocytes that was completely inhibited in the presence of galactose (Gal) or lactose (Lac). Binding of C-Yoichi L-TC to rat small intestine epithelial cells (IEC-6) treated with neuraminidase was also significantly enhanced compared with untreated IEC-6 cells. Similarly, the HA-33/HA-17 complex isolated from C-Yoichi L-TC also bound to neuraminidase-treated IEC-6 cells. The binding activity of both L-TC and HA-33/HA-17 was inhibited in the presence of Gal or Lac. Additionally, C-Yoichi L-TC adsorbed tightly to a lactose-affinity gel column. These results strongly suggest that the unusual recognition of the Gal moiety on the cells could be due to a variation and/or a truncation in the C-terminal-half of the unique C-Yoichi HA-33 protein.  相似文献   

9.
In cell culture supernatants, the botulinum neurotoxin (BoNT) exists as part of a toxin complex (TC) in which nontoxic nonhemagglutinin (NTNHA) and/or hemagglutinins (HAs) are assembled onto the BoNT. A series of investigations indicated that formation of the TC is vital for delivery of the toxin to nerve cells through the digestive tract. In the assembly process, BoNT binds to NTNHA yielding M-TC, and it then matures into L-TC by further association with the HAs via NTNHA in the M-TC. Here, we report a crystal structure of the NTNHA from Clostridium botulinum serotype D strain 4947. Additionally, we performed small-angle X-ray scattering (SAXS) analysis of the NTNHA and the M-TC to elucidate the solution structure. The crystal structure of D-4947 NTNHA revealed that BoNT and NTNHA share a closely related structure consisting of three domains. The SAXS image indicated that, even though the N-terminal two-thirds of the NTNHA molecule had an apparently similar conformation in both the crystal and solution structures, the C-terminal third of the molecule showed a more extended structure in the SAXS image than that seen in the crystallographic image. The discrepancy between the crystal and solution structures implies a high flexibility of the C-terminal third domain of NTNHA, which is involved in binding to BoNT. Structural dynamics of the NTNHA molecule revealed by SAXS may explain its binding to BoNT to form the BoNT/NTNHA complex.  相似文献   

10.
The large-sized botulinum toxin complex (L-TC) is composed of botulinum neurotoxin (BoNT) and nontoxic proteins, e.g. nontoxic nonhemagglutinin (NTNHA) and three types of hemagglutinins (HAs; HA-33, HA-17 and HA-70). The nontoxic proteins play a critical role in L-TC oral toxicity by protecting the BoNT in the digestive tract, and facilitating absorption of the L-TC across the intestinal wall. Under alkaline conditions, the L-TC separates into BoNT and the nontoxic protein complex (NC). In this study, we established a two-step procedure to yield highly pure NC from the L-TC produced by Clostridium botulinum serotype D strain 4947 in which the NC was isolated from the L-TC by gel filtration under alkaline conditions followed by immunoprecipitation with an anti-BoNT antibody to remove contaminating BoNT from the NC fraction. Western blotting and electrophoretic analysis showed that the highly purified NC fraction had only very slight or no BoNT contamination. In addition, the purified NC fraction showed no intraperitoneal (ip) toxicity to mice at a dose of 38?ng per animal whereas the L-TC exhibited an ip median lethal dose of 0.38?ng per mouse. The highly purified NC displayed the same hemagglutination titer as the L-TC. The NC, as well as the L-TC, demonstrated cell binding and monolayer transport in the rat intestinal epithelial cell line IEC-6. Consequently, the highly purified NC can function as a ??delivery vehicle?? even without the BoNT.  相似文献   

11.
12.
Botulinum neurotoxin (BoNT) is produced as a large toxin complex (L-TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). The binding properties of BoNT to neurons and L-TC to intestinal epithelial cells are well documented, while those to other tissues are largely unknown. Here, to obtain novel insights into the pathogenesis of foodborne botulism, we examine whether botulinum toxins bind to vascular endothelial cells. BoNT and 750 kDa L-TC (a complex of BoNT, NTNHA and HAs) of Clostridium botulinum serotype D were incubated with bovine aortic endothelial cells (BAECs), and binding to the cells was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot. Both BoNT and L-TC bound to BAECs, with L-TC showing stronger binding. Binding of BoNT and L-TC to BAECs was significantly inhibited by N-acetyl neuraminic acid in the cell culture medium or by treatment of the cells with neuraminidase. However, galactose, lactose or N-acetyl galactosamine did not significantly inhibit toxin binding to the cells. This is the first report demonstrating that BoNT and L-TC bind to BAECs via sialic acid, and this mechanism may be important in the trafficking pathway of BoNT in foodborne botulism.  相似文献   

13.
The purified progenitor toxin of Clostridium botulinum type C strain 6814 (C-6814) forms a large complex composed of 150-kDa neurotoxin (NT), 130-kDa nontoxic-nonhemagglutinin (NTNHA), and hemagglutinin (HA) components. The HA component consisted of a mixture of several subcomponents with molecular masses of 70, 55, 33, 26-21 and 17 kDa. We isolated the HA subcomponents from the progenitor toxin by chromatography in the presence of denaturants. The isolated HA subcomponents, designated as i-HA-33, i-HA-55, i-HA-70 and i-HA-33/17, were nearly homogeneous on SDS/PAGE, but the HA-17 and HA-26-21 components were not purified. Some HA subcomponents, designated as f-HA-33 and f-HA-33/17 complex, existed free of the progenitor toxin in the culture medium and they were separately purified. Every HA subcomponent so far isolated shows binding activity to erythrocytes. The hemagglutination activities of each HA subcomponent had a titer of 25 for the f-HA-33/17 complex, and below 23 for the other f- and i-HA subcomponents, while the parent progenitor L toxin was 28. The reconstitution of various combinations of f- and i-HA subcomponents was attempted via mixing and tested for hemagglutination activity. When the i-HA-33/17 complex and i-HA-55 were mixed, the hemagglutination activity was recovered to a titer of 29, which was slightly higher than that of the parent toxin. These data imply that a combination of at least HA-33, -17 and -55 subcomponents is required for full hemagglutination activity of the botulinum progenitor toxin, but each single HA subcomponent shows weak or no aggregation of erythrocytes.  相似文献   

14.
Clostridium botulinum type D strain 4947 produces two different sizes of progenitor toxins (M and L) as intact forms without proteolytic processing. The M toxin is composed of neurotoxin (NT) and nontoxic-nonhemagglutinin (NTNHA), whereas the L toxin is composed of the M toxin and hemagglutinin (HA) subcomponents (HA-70, HA-17, and HA-33). The HA-70 subcomponent and the HA-33/17 complex were isolated from the L toxin to near homogeneity by chromatography in the presence of denaturing agents. We were able to demonstrate, for the first time, in vitro reconstitution of the L toxin formed by mixing purified M toxin, HA-70, and HA-33/17. The properties of reconstituted and native L toxins are indistinguishable with respect to their gel filtration profiles, native-PAGE profiles, hemagglutination activity, binding activity to erythrocytes, and oral toxicity to mice. M toxin, which contained nicked NTNHA prepared by treatment with trypsin, could no longer be reconstituted to the L toxin with HA subcomponents, whereas the L toxin treated with proteases was not degraded into M toxin and HA subcomponents. We conclude that the M toxin forms first by assembly of NT with NTNHA and is subsequently converted to the L toxin by assembly with HA-70 and HA-33/17.  相似文献   

15.
The cluster of genes encoding components of the progenitor botulinum neurotoxin complex has been mapped and cloned in Clostridium botulinum type G strain ATCC 27322. Determination of the nucleotide sequence of the region has revealed open reading frames encoding nontoxic components of the complex, upstream of the gene encoding BoNT/G (botG). The arrangement of these genes differs from that in strains of other antigenic toxin types. Immediately upstream of botG lies a gene encoding a protein of 1198 amino acids, which shows homology with the nontoxic-nonhemagglutinin (NTNH) component of the progenitor complex. Further upstream there are genes encoding proteins with homology to hemagglutinin components (HA-17, HA-70) and a putative positive regulator of gene expression (P-21). Sequence comparison has shown that BoNT/G has highest homology with BoNT/B. The sequence of the BoNT-cluster of genes in non-proteolytic C. botulinum type B strain Eklund 17B has been extended to include the complete NTNH and HA-17, and partial HA-70 gene sequences. Comparison of NTNH/G with other NTNHs reveals that it shows highest homology with NTNH/B consistent with the genealogical affinity shown between BoNT/G and BoNT/B genes. Received: 28 January 1997 / Accepted: 24 March 1997  相似文献   

16.
The organization of the clusters of genes encoding proteins of the botulinum neurotoxin (BoNT) progenitor complex was elucidated in a strain of Clostridium botulinum producing type B and F neurotoxins. With PCR and sequencing strategies, the type B BoNT-gene cluster was found to be composed of genes encoding BoNT/B, nontoxic nonhemagglutinin component (NTNH), P-21, and the hemagglutinins HA-33, HA-17, and HA-70, whereas the type F BoNT-gene cluster has genes encoding BoNT/F, NTNH, P-47, and P-21. Comparative sequence analysis showed that BoNT/F in type BF strain 3281 shares highest homology with BoNT/F of non-proteolytic (group II) C. botulinum whereas NTNH and P-21 in the type F cluster of strain 3281 are more similar to the corresponding proteins in proteolytic (group I) type F C. botulinum. These findings indicate diverse evolutionary origins for genes encoding BoNT/F and its associated non-toxic proteins, although the genes are contiguous. By contrast, sequence comparisons indicate that genes encoding BoNT/B and associated non-toxic proteins in strain 3281 possess a similar evolutionary origin. It was demonstrated that the genes present in the BoNT/B gene cluster of this type BF strain show exceptionally high homology with the equivalent genes in the silent BoNT/B gene cluster of C. botulinum type A(B), possibly indicating their common ancestry. Received: 30 March 1998 / Accepted: 21 May 1998  相似文献   

17.
Clostridium botulinum subtype A2 possesses a botulinum neurotoxin type A (BoNT/A) gene cluster consisting of an orfX cluster containing open reading frames (ORFs) of unknown functions. To better understand the association between the BoNT/A2 complex proteins, first, the orfX cluster proteins (ORFX1, ORFX3, P47, and the middle part of NTNH) from C. botulinum A2 strain Kyoto F and NTNH of A1 strain ATCC 3502 were expressed by using either an Escherichia coli or a C. botulinum expression system. Polyclonal antibodies against individual orfX cluster proteins were prepared by immunizing a rabbit and mice against the expressed proteins. Antibodies were then utilized as probes to determine which of the A2 orfX cluster genes were expressed in the native A2 culture. N-terminal protein sequencing was also employed to specifically detect ORFX2. Results showed that all of the neurotoxin cluster proteins, except ORFX1, were expressed in the A2 culture. A BoNT/A2 toxin complex (TC) was purified which showed that C. botulinum A2 formed a medium-size (300-kDa) TC composed of BoNT/A2 and NTNH without any of the other OrfX cluster proteins. NTNH subtype-specific immunoreactivity was also discovered, allowing for the differentiation of subtypes based on cluster proteins associated with BoNT.Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are the most potent toxins known in nature and are characterized as category A select agents since they are considered potential bioterrorism threats (3). BoNTs can be distinguished immunologically into seven serotypes by using homologous antitoxins, designated A to G. BoNT/A is of particular interest, since it is frequently implicated in cases of botulism and is a significant threat in bioterrorism (1, 10).BoNT is a 150-kDa protein composed of a heavy chain (100 kDa) and a light chain (50 kDa) linked by a disulfide bond and noncovalent molecular interactions (24). The heavy chain (H) has two functional domains, a transmembrane domain and a receptor binding domain. The light chain (L) is a zinc-dependent protease which specifically cleaves one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors, resulting in the blockage of evoked acetylcholine release at the skeletal neuromuscular junction (8).Previous studies have found that the bont genes of all strains of C. botulinum and neurotoxigenic strains of Clostridium butyricum and Clostridium baratii have a set of genes located upstream of the bont and ntnh genes that are organized as gene clusters (5, 7, 23). The two known primary types of clusters are (i) a hemagglutinin (ha) cluster and (ii) an orfX cluster with open reading frames (ORFs) of unknown functions. The ha cluster consists of genes encoding HA17, HA33, HA70, BotR, and NTNH. The orfX cluster consists of genes encoding ORFX3, ORFX2, ORFX1, P47, P21, and NTNH. Previous studies indicate that BoNT/A subtypes possess either a ha cluster or an orfX cluster associated with their expressed bont gene, depending on the subtype and strain (5, 11, 13-15, 33).It has been shown that the BoNT complex can form stable toxin complexes (TCs) of various sizes, including LL-TC (∼900 kDa), L-TC (∼500 kDa), and M-TC (∼300 kDa) composed of various combinations of HA proteins, NTNH, and BoNT (19, 21, 23, 29, 31, 34). M-TC contains BoNT and NTNH but has no HA proteins, whereas LL-TC and L-TC contain different ratios of the BoNT, NTNH, and HA proteins (21, 22, 29, 34). The biological and structural roles of the complex proteins are not completely characterized, although it has been proposed that they serve the role of protecting BoNT from harsh conditions, including pH, salt, temperature, and digestive enzymes, and that they assist BoNT translocation across the intestinal epithelial layer (2, 6, 17). A recent report indicated that the nontoxic proteins serve as adjuvants and contribute to the immunogenicity of BoNT/A (25).The production of botulinum TCs is known to vary with different serotypes and strains, medium composition, and culture conditions (21, 24, 31). The LL-TC has only been observed in proteolytic strains (group I). Serotype A to D strains produce M-TC and L-TC in their culture medium, while serotype E and F strains produce only M-TC (17, 18).In 1986, a Japanese group isolated four HA-negative C. botulinum strains from infant botulism cases that produced only M-TC (300 kDa). They assigned the strains to subtype A2 (14, 30). In 2004, our laboratory confirmed on a genomic level that the BoNT/A2 subtype contained the orfX cluster instead of the ha cluster (12). Since then, more arrangements and combinations of neurotoxin gene clusters were characterized along with more BoNT subtypes (13, 20, 33). However, the function of the orfX genes and the role of the presumptive protein products and their role in the TCs are still unknown, including whether ORFX proteins can form a TC with the expressed toxin analogous to the ha cluster proteins.In this study, the BoNT/A2 TC was purified from a native culture to determine if the orfX cluster proteins remain associated with BoNT/A2. To better understand the role of the orfX cluster genes, the orfX cluster proteins of C. botulinum A2 strains (ORFX1, ORFX3, P47, and the middle part of NTNH) was expressed using either an Escherichia coli or a C. botulinum expression system in this study. Antibodies against individual expressed orfX cluster proteins were then raised by immunizing a rabbit and mice. These antibodies were then used as probes to investigate the expression pattern of the orfX cluster genes in the native A2 culture. ORFX2, which could not be expressed, was detected by N-terminal protein sequencing.  相似文献   

18.
Using SDS-PAGE, we found that one subcomponent, hemagglutinin (HA-33), from the Clostridium botulinum progenitor toxin of type D strain 1873 and type C strain Yoichi had slightly smaller molecular sizes than those of type C and D reference strains, but other components did not. Based on N- and C-terminal sequence analyses of HA-33, a deletion of 31 amino acid residues from the C-terminus at a specific site was observed in the HA-33 proteins of both strains. The progenitor toxins from both strains showed poor hemagglutination activities, titers of 2(1) or less, which were much lower than titers from the reference strains (2(6)), and did not bind to erythrocytes. These results suggest strongly that the short C-terminal region of the HA-33 plays an essential role in the hemagglutination activity of the botulinum progenitor toxin. Additionally, a sequence motif search predicted that the C-terminal region of HA-33 has a carbohydrate-recognition subdomain.  相似文献   

19.
The hemagglutinating protein HA33 from Clostridium botulinum is associated with the large botulinum neurotoxin secreted complexes and is critical in toxin protection, internalization, and possibly activation. We report the crystal structure of serotype A HA33 (HA33/A) at 1.5 A resolution that contains a unique domain organization and a carbohydrate recognition site. In addition, sequence alignments of the other toxin complex components, including the neurotoxin BoNT/A, hemagglutinating protein HA17/A, and non-toxic non-hemagglutinating protein NTNHA/A, suggests that most of the toxin complex consists of a reoccurring beta-trefoil fold.  相似文献   

20.
Zhou Y  Foss S  Lindo P  Sarkar H  Singh BR 《The FEBS journal》2005,272(11):2717-2726
Botulinum neurotoxin type A (BoNT/A), the most toxic substance known to mankind, is produced by Clostridium botulinum type A as a complex with a group of neurotoxin-associated proteins (NAPs) through polycistronic expression of a clustered group of genes. NAPs are known to protect BoNT against adverse environmental conditions and proteolytic digestion. Hemagglutinin-33 (Hn-33) is a 33 kDa subcomponent of NAPs that is resistant to protease digestion, a feature likely to be involved in the protection of the botulinum neurotoxin from proteolysis. However, it is not known whether Hn-33 plays any role other than the protection of BoNT. Using immunoaffinity column chromatography and pull-down assays, we have now discovered that Hn-33 binds to synaptotagmin II, the putative receptor of botulinum neurotoxin. This finding provides important information relevant to the design of novel anti-botulism therapeutic agents targeted to block the entry of botulinum neurotoxin into nerve cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号