共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Jing Ma Xiaoyu Li Jian Xu Quan Zhang Zhenlong Liu Pingping Jia Jinming Zhou Fei Guo Xuefu You Liyan Yu Lixun Zhao Jiandong Jiang Shan Cen 《PloS one》2013,8(10)
Background
The incorporation of human APOBEC3G (hA3G) into HIV is required for exerting its antiviral activity, therefore the mechanism underlying hA3G virion encapsidation has been investigated extensively. hA3G was shown to form low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. The function of different forms of hA3G in its viral incorporation remains unclear.Methodology/Principal Findings
In this study, we investigated the subcellular distribution and lipid raft association of hA3G using subcellular fractionation, membrane floatation assay and pulse-chase radiolabeling experiments respectively, and studied the correlation between the ability of hA3G to form the different complex and its viral incorporation. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation.Conclusions/Significance
Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G. 相似文献3.
The interaction between HIV-1 Gag and APOBEC3G 总被引:24,自引:0,他引:24
Cen S Guo F Niu M Saadatmand J Deflassieux J Kleiman L 《The Journal of biological chemistry》2004,279(32):33177-33184
4.
5.
6.
7.
8.
Apolipoprotein B mRNA-editing catalytic polypeptide-like 3G (APOBEC3G, or A3G) and related cytidine deaminases such as apolipoprotein B mRNA-editing catalytic polypeptide-like 3F (APOBEC3F, or A3F) are potent inhibitors of retroviruses. Formation of infectious human immunodeficiency virus (HIV)-1 requires suppression of multiple cytidine deaminases by Vif. HIV-1 Vif suppresses various APOBEC3 proteins through a common mechanism by recruiting Cullin5, ElonginB, and ElonginC E3 ubiquitin ligase to induce target protein polyubiquitination and proteasome-mediated degradation. Domains in Vif that mediate APOBEC3 recognition have not been fully characterized. In the present study, we identified a VxIPLx4-5LxΦx2YWxL motif in HIV-1 Vif, which is required for efficient interaction between Vif and A3G, Vif-mediated A3G degradation and virion exclusion, and functional suppression of the A3G antiviral activity. Amino acids 52 to 72 of HIV-1 Vif (including the VxIPLx4-5LxΦx2YWxL motif) alone could mediate interaction with A3G, and this interaction was abolished by mutations of two hydrophobic amino acids in this region. We have also observed that a Vif mutant was ineffective against A3G, yet it retained the ability to interact with Cullin5-E3 ubiquitin complex and A3G, suggesting that interaction with A3G is necessary but not sufficient to inhibit its antiviral function. Unlike the previously identified motif of HIV-1 Vif amino acids 40 to 44, which is only important for A3G suppression, the VxIPLx4-5LxΦx2YWxL motif is also required for efficient A3F interaction and suppression. On the other hand, another motif, TGERxW, of HIV-1 Vif amino acids 74 to 79 was found to be mainly important for A3F interaction and inhibition. Both the VxIPLx4-5LxΦx2YWxL and TGERxW motifs are highly conserved among HIV-1, HIV-2, and various simian immunodeficiency virus Vif proteins. Our data suggest that primate lentiviral Vif molecules recognize their autologous APOBEC3 proteins through conserved structural features that represent attractive targets for the development of novel inhibitors. 相似文献
9.
Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif 总被引:35,自引:0,他引:35
Mariani R Chen D Schröfelbauer B Navarro F König R Bollman B Münk C Nymark-McMahon H Landau NR 《Cell》2003,114(1):21-31
10.
The APOBEC3 family comprises seven cytidine deaminases (APOBEC3A [A3A] to A3H), which are expressed to various degrees in HIV-1 susceptible cells. The HIV-1 Vif protein counteracts APOBEC3 restriction by mediating its degradation by the proteasome. We hypothesized that Vif proteins from various HIV-1 subtypes differ in their abilities to counteract different APOBEC3 proteins. Seventeen Vif alleles from seven HIV-1 subtypes were tested for their abilities to degrade and counteract A3G, A3F, and A3H haplotype II (hapII). We show that most Vif alleles neutralize A3G and A3F efficiently but display differences with respect to the inhibition of A3H hapII. The majority of non-subtype B Vif alleles tested presented some activity against A3H hapII, with two subtype F Vif variants being highly effective in counteracting A3H hapII. The residues required for activity were mapped to two residues in the amino-terminal region of Vif (positions 39F and 48H). Coimmunoprecipitations showed that these two amino acids were necessary for association of Vif with A3H hapII. These findings suggest that the A3H hapII binding site in Vif is distinct from the regions important for A3G and A3F recognition and that it requires specific amino acids at positions 39 and 48. The differential Vif activity spectra, especially against A3H hapII, suggest adaptation to APOBEC3 repertoires representative of different human ancestries. Phenotypic assessment of anti-APOBEC3 activity of Vif variants against several cytidine deaminases will help reveal the requirement for successful replication in vivo and ultimately point to interventions targeting the Vif-APOBEC3 interface. 相似文献
11.
载脂蛋白B mRNA编辑催化多肽样(apolipoprotein B mRNA-editing catalytic polypeptide-like,APOBEC)蛋白是一组胞嘧啶脱氨基酶,具有天然的抗病毒活性,对多种病毒具有抑制作用,特别是逆转录病毒. APOBEC3蛋白能够抑制人类免疫缺陷病毒(HIV-1)的感染,其中APOBEC3G和APOBEC3F的作用最强. APOBEC3G能够通过胞嘧啶脱氨基作用和非胞嘧啶脱氨基作用抑制病毒感染. HIV-1病毒感染因子(Vif) 蛋白主要经泛素-蛋白酶体途径介导APOBEC3G降解,从而拮抗其抗病毒作用. APOBEC3G和Vif之间相互作用的研究对于寻求新的抗HIV治疗靶点具有重要意义. 相似文献
12.
13.
Mohammad A Khan Ritu Goila-Gaur Sandra Kao Eri Miyagi Robert C Walker Jr Klaus Strebel 《Retrovirology》2009,6(1):1-12
The human immunodeficiency virus type 1 (HIV-1) Vif plays a crucial role in the viral life cycle by antagonizing a host restriction factor APOBEC3G (A3G). Vif interacts with A3G and induces its polyubiquitination and subsequent degradation via the formation of active ubiquitin ligase (E3) complex with Cullin5-ElonginB/C. Although Vif itself is also ubiquitinated and degraded rapidly in infected cells, precise roles and mechanisms of Vif ubiquitination are largely unknown. Here we report that MDM2, known as an E3 ligase for p53, is a novel E3 ligase for Vif and induces polyubiquitination and degradation of Vif. We also show the mechanisms by which MDM2 only targets Vif, but not A3G that binds to Vif. MDM2 reduces cellular Vif levels and reversely increases A3G levels, because the interaction between MDM2 and Vif precludes A3G from binding to Vif. Furthermore, we demonstrate that MDM2 negatively regulates HIV-1 replication in non-permissive target cells through Vif degradation. These data suggest that MDM2 is a regulator of HIV-1 replication and might be a novel therapeutic target for anti-HIV-1 drug. 相似文献
14.
Hendrik Huthoff Flavia Autore Sarah Gallois-Montbrun Franca Fraternali Michael H. Malim 《PLoS pathogens》2009,5(3)
The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function. 相似文献
15.
Hultquist JF Lengyel JA Refsland EW LaRue RS Lackey L Brown WL Harris RS 《Journal of virology》2011,85(21):11220-11234
Successful intracellular pathogens must evade or neutralize the innate immune defenses of their host cells and render the cellular environment permissive for replication. For example, to replicate efficiently in CD4(+) T lymphocytes, human immunodeficiency virus type 1 (HIV-1) encodes a protein called viral infectivity factor (Vif) that promotes pathogenesis by triggering the degradation of the retrovirus restriction factor APOBEC3G. Other APOBEC3 proteins have been implicated in HIV-1 restriction, but the relevant repertoire remains ambiguous. Here we present the first comprehensive analysis of the complete, seven-member human and rhesus APOBEC3 families in HIV-1 restriction. In addition to APOBEC3G, we find that three other human APOBEC3 proteins, APOBEC3D, APOBEC3F, and APOBEC3H, are all potent HIV-1 restriction factors. These four proteins are expressed in CD4(+) T lymphocytes, are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, mutate proviral DNA, and are counteracted by HIV-1 Vif. Furthermore, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H of the rhesus macaque also are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, and they are all neutralized by the simian immunodeficiency virus Vif protein. On the other hand, neither human nor rhesus APOBEC3A, APOBEC3B, nor APOBEC3C had a significant impact on HIV-1 replication. These data strongly implicate a combination of four APOBEC3 proteins--APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H--in HIV-1 restriction. 相似文献
16.
Ziqing Wang Yi Luo Qiujia Shao Ballington L. Kinlock Chenliang Wang James E. K. Hildreth Hua Xie Bindong Liu 《PloS one》2014,9(8)
Although most human immunodeficiency virus type 1 (HIV-1) cases worldwide are transmitted through mucosal surfaces, transmission through the oral mucosal surface is a rare event. More than 700 bacterial species have been detected in the oral cavity. Despite great efforts to discover oral inhibitors of HIV, little information is available concerning the anti-HIV activity of oral bacterial components. Here we show that a molecule from an oral commensal bacterium, Streptococcus cristatus CC5A can induce expression of APOBEC3G (A3G) and APOBEC3F (A3F) and inhibit HIV-1 replication in THP-1 cells. We show by qRT-PCR that expression levels of A3G and A3F increase in a dose-dependent manner in the presence of a CC5A extract, as does A3G protein levels by Western blot assay. In addition, when the human monocytic cell line THP-1 was treated with CC5A extract, the replication of HIV-1 IIIB was significantly suppressed compared with IIIB replication in untreated THP-1 cells. Knock down of A3G expression in THP-1 cells compromised the ability of CC5A to inhibit HIV-1 IIIB infectivity. Furthermore, SupT1 cells infected with virus produced from CC5A extract-treated THP-1 cells replicated virus with a higher G to A hypermutation rate (a known consequence of A3G activity) than virus used from untreated THP-1 cells. This suggests that S. cristatus CC5A contains a molecule that induces A3G/F expression and thereby inhibits HIV replication. These findings might lead to the discovery of a novel anti-HIV/AIDS therapeutic. 相似文献
17.
The viral infectivity factor, Vif, of human immunodeficiency virus type 1, HIV-1, has long been shown to promote viral replication in vivo and to serve a critical function for productive infection of non-permissive cells, like peripheral blood mononuclear cells (PBMC). Vif functions to counteract an anti-retroviral cellular factor in non-permissive cells named APOBEC3G. The current mechanism proposed for protection of the virus by HIV-1 Vif is to induce APOBEC3G degradation through a ubiquitination-dependent proteasomal pathway. However, a new study published in Retrovirology by Strebel and colleagues suggests that Vif-induced APOBEC3G destruction may not be required for Vif's virus-protective effect. Strebel and co-workers show that Vif and APOBEC3G can stably co-exist, and yet viruses produced under such conditions are fully infectious. This new result highlights the notion that depletion of APOBEC3G is not the sole protective mechanism of Vif and that additional mechanisms exerted by this protein can be envisioned which counteract APOBEC3G and enhance HIV infectivity. 相似文献
18.
Tegwinde Rebeca Compaore Serge Theophile Soubeiga Abdoul Karim Ouattara Dorcas Obiri-Yeboah Damehan Tchelougou Mamoudou Maiga Maleki Assih Cyrille Bisseye Didier Bakouan Issaka Pierre Compaore Augustine Dembele Jeremy Martinson Jacques Simpore 《PloS one》2016,11(1)
Studies on host factors, particularly the APOBEC3G gene, have previously found an association with AIDS progression in some populations and against some HIV-1 strains but not others. Our study had two main objectives: firstly, to screen a population from Burkina Faso for three variants of APOBEC3G previously described, and secondly to analyze the effect of these three variants and their haplotypes on HIV-1 infection with Circulating Recombinant Forms (CRFs) present in Burkina Faso. This case control study involved 708 seropositive and seronegative individuals. Genotyping was done by the TaqMan allelic discrimination method. Minor allele frequencies of rs6001417 (p<0.05), rs8177832 (P<0.05), and rs35228531 (P<0.001) were higher in seronegative subjects. The rs6001417 and rs8177832 SNPs were associated with HIV-1 infection in an additive model (P<0.01). Furthermore the SNP rs35228531 was also associated with HIV-1 infection in a dominant model (P<0.001). Odds ratio analysis of genotypes and alleles of the different APOBEC3G variants showed that there is a strong association between the minor genetic variants, genotype of the three SNPs, and HIV-1 status. Haplotype analysis demonstrated that rs6001417, rs8177832, and rs35228531 are in linkage disequilibrium. The haplotype GGT from the rs6001417, rs8177832 and rs35228531 respectively has a protective effect OR = 0.54 [0.43–0.68] with P<0.001. There was also associations between the haplotypes GGC OR = 1.6 [1.1;-2.3] P<0.05, and CGC OR = 5.21 [2.4–11.3] P<0.001, which increase the risk of infection by HIV-1 from almost two (2) to five (5) fold. This study demonstrates an association of rs6001417, rs8177832, and rs35228531 of APOBEC3G with HIV-1 infection in a population from Burkina Faso. 相似文献
19.
Shan Cen Zong-Gen Peng Xiao-Yu Li Zhuo-Rong Li Jing Ma Yue-Ming Wang Bo Fan Xue-Fu You Yu-Ping Wang Fei Liu Rong-Guang Shao Li-Xun Zhao Liyan Yu Jian-Dong Jiang 《The Journal of biological chemistry》2010,285(22):16546-16552
APOBEC3G (hA3G) is a host inhibitor for human immunodeficiency virus, type 1 (HIV-1). However, HIV-1 Vif binds hA3G and induces its degradation. We have established a screening system to discover inhibitors that protect hA3G from Vif-mediated degradation. Through screening, compounds IMB-26 and IMB-35 were identified to be specific inhibitors for the degradation of hA3G by Vif. The inhibitors suppressed HIV-1 replication in hA3G-containing cells but not in those without hA3G. The anti-HIV effect correlated with the endogenous hA3G level. HIV-1 particles from hA3G(+) cells treated with IMB-26/35 contained a hA3G level higher than that from those without IMB-26/35 treatment and showed decreased infectivity. IMB-26/35 bound directly to the hA3G protein, suppressed Vif/hA3G interaction, and therefore protected hA3G from Vif-mediated degradation. The compounds were safe with an anti-HIV therapeutic index >200 in vitro. LD50 of IMB-26 in mice was >1000 mg/kg (intraperitoneally). Therefore, IMB-26 and IMB-35 are novel anti-HIV leads working through specific stabilization of hA3G. 相似文献