首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delta9-tetrahydrocannabinol (THC), the main psychoactive component in Cannabis sativa preparations, exerts its central effects mainly through the G-protein coupled receptor CB1, a component of the endocannabinoid system. Several in vitro and in vivo studies have reported neuroprotective effects of cannabinoids in excitotoxicity and neurodegeneration models. However, the intraneuronal signaling pathways activated in vivo by THC underlying its central effects remain poorly understood. We report that THC acute administration (10 mg/kg, i.p.) increases the phosphorylation of Akt in mouse hippocampus, striatum, and cerebellum. This phosphorylation was mediated by CB1 receptors as it was blocked by the selective CB1 antagonist rimonabant. Moreover, PI3K inhibition by wortmannin abrogated THC-induced phosphorylation of Akt, but blockade of extracellular signal-regulated protein kinases by SL327 did not modify this activation/phosphorylation of Akt. Moreover, administration of the dopaminergic D1 (SCH 23390) and D2 (raclopride) receptor antagonists did not block the activation of PI3K/Akt pathway induced in the striatum by cannabinoid receptor stimulation, suggesting that this effect is independent of the dopaminergic system. In addition, THC increased the phosphorylation of glycogen synthase kinase 3 beta. Therefore, activation of the PI3K/Akt/GSK-3 signaling pathway may be related to the in vivo neuroprotective properties attributed to cannabinoids.  相似文献   

2.
Cannabinoid receptors (CB1-R) are the target of a novel class of neuromodulators, the endocannabinoids. Yet, their signalling mechanisms in adult brain are poorly understood. We report that, in rat and mouse hippocampal slices, anandamide and 2-arachidonoylglycerol, synthetic cannabinoids, and delta(9)-tetrahydrocannabinol activated p38 mitogen-activated protein kinases (MAPK), but not c-Jun N-terminal kinase (JNK). In contrast, lysophosphatidic acid (LPA), a lipid messenger acting on different receptors, increased both p38-MAPK and JNK phosphorylation. The effects of cannabinoids on p38-MAPK were mediated through activation of CB1-R because they were blocked in the presence of SR 141716 A and absent in CB1-R knockout mice, two conditions that did not alter the effects of LPA. The activation of p38-MAPK by cannabinoids was insensitive to inhibitors of SRC: These results provide new insights into the cellular mechanisms by which cannabinoids exert their effects in hippocampus.  相似文献   

3.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

4.
目的:探讨脑缺血再灌后Akt和MAPK磷酸酶与JNK活性下调的关系。方法:采用成年清洁级雄性SD大鼠,建立四动脉阻断前脑缺血再灌注模型。缺血10min后再灌注不同时间(15min,1h,4h,24h)。侧脑室分别给予PI3K抑制剂LY294002(LY)和MAPK磷酸酶抑制剂放线菌酮(CHO)。免疫印迹观察p-Akt和p-JNK蛋白水平变化。结果:脑缺血再灌注4h,JNK的活性能被Akt抑制剂LY294002增强,表明激活的Akt能够下调JNK信号通路。而MAPK磷酸酶抑制剂放线菌酮能上调缺血后JNK活性,提示MAPK磷酸酶通过去磷酸化参与了JNK的活性抑制。结论:前脑缺血再灌后,激活Akt和MAPK磷酸酶参与了JNK信号通路负性调节,是抑制JNK诱导缺血后中枢神经损伤的重要机制。  相似文献   

5.
Rho family GTPases are critical molecular switches that regulate the actin cytoskeleton and cell function. In the current study, we investigated the involvement of Rho GTPases in regulating neuronal survival using primary cerebellar granule neurons. Clostridium difficile toxin B, a specific inhibitor of Rho, Rac, and Cdc42, induced apoptosis of granule neurons characterized by c-Jun phosphorylation, caspase-3 activation, and nuclear condensation. Serum and depolarization-dependent survival signals could not compensate for the loss of GTPase function. Unlike trophic factor withdrawal, toxin B did not affect the antiapoptotic kinase Akt or its target glycogen synthase kinase-3beta. The proapoptotic effects of toxin B were mimicked by Clostridium sordellii lethal toxin, a selective inhibitor of Rac/Cdc42. Although Rac/Cdc42 GTPase inhibition led to F-actin disruption, direct cytoskeletal disassembly with Clostridium botulinum C2 toxin was insufficient to induce c-Jun phosphorylation or apoptosis. Granule neurons expressed high basal JNK and low p38 mitogen-activated protein kinase activities that were unaffected by toxin B. However, pyridyl imidazole inhibitors of JNK/p38 attenuated c-Jun phosphorylation. Moreover, both pyridyl imidazoles and adenoviral dominant-negative c-Jun attenuated apoptosis, suggesting that JNK/c-Jun signaling was required for cell death. The results indicate that Rac/Cdc42 GTPases, in addition to trophic factors, are critical for survival of cerebellar granule neurons.  相似文献   

6.
Context: Interleukin (IL)-1β activates various signal transduction pathways including p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and Akt in human fibroblast-like synoviocytes (HFLS).

Objective: We investigated the effects of an Akt inhibitor, a phosphatidylinositol 3-kinase (PI3K) inhibitor, and Akt RNAi knockdown on IL-1β-induced protein phosphorylation in HFLS to clarify the role of the PI3K/Akt signaling pathway in the phosphorylation of the inhibitor of κB (IκB)α and heat shock protein 27 (HSP27).

Materials and methods: A multiplex suspension array system was used for the detection of phosphorylated proteins.

Results: IL-1β induced biphasic phosphorylation of IκBα, with the first phase occurring 10?min after IL-1β stimulation, and this was augmented by treatment with Akt inhibitor IV. However, this phenomenon was not observed after treatment with LY-294002, a PI3K inhibitor. Furthermore, Akt inhibitor IV suppressed ERK2 phosphorylation, whereas LY-294002 and Akt RNAi had no effect. In contrast, Akt inhibitor IV, LY-294002, and Akt RNAi augmented HSP27 phosphorylation.

Discussion and conclusions: Modulation of different stages of the PI3K/Akt pathway may differentially affect the phosphorylation of IκBα and HSP27 in HFLS.  相似文献   

7.
Both insulin and the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) family play important roles in apoptosis and lipid droplet formation. Previously, we reported that CIDEA and CIDEC are differentially regulated by insulin and contribute separately to insulin-induced anti-apoptosis and lipid droplet formation in human adipocytes. However, the upstream signals of CIDE proteins remain unclear. Here, we investigated the signaling molecules involved in insulin regulation of CIDEA and CIDEC expression. The phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and PI-103 blocked both insulin-induced downregulation of CIDEA and upregulation of CIDEC. The Akt inhibitor API-2 and the c-Jun N-terminal kinase (JNK) inhibitor SP600125 selectively inhibited insulin regulation of CIDEA and CIDEC expression, respectively, whereas the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 did not. Small interfering RNA-mediated depletion of Akt1/2 prevented insulin-induced downregulation of CIDEA and inhibition of apoptosis. Depletion of JNK2, but not JNK1, inhibited insulin-induced upregulation of CIDEC and lipid droplet enlargement. Furthermore, insulin increased both Akt and JNK phosphorylation, which was abrogated by the PI3K inhibitors. These results suggest that insulin regulates CIDEA and CIDEC expression via PI3K, and it regulates expression of each protein via Akt1/2- and JNK2-dependent pathways, respectively, in human adipocytes.  相似文献   

8.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

9.
10.
We have recently reported that Trypanosoma cruzi infection protects cardiomyocytes against apoptosis induced by growth factor deprivation. Cruzipain, a major parasite antigen, reproduced this survival effect by a Bcl-2-dependent mechanism. In this study, we have investigated the molecular mechanisms of cruzipain-induced cardiomyocyte protection. Neonatal BALB/c mouse cardiac myocytes were cultured under minimum serum conditions in the presence of cruzipain or T. cruzi (Tulahuen strain). Some cultures were pretreated with the phosphatidylinositol 3-kinase (PI3K) inhibitor Ly294002 or specific inhibitors of the mitogen-activated protein kinase (MAPK) family members such as the mitogen-activated protein kinase kinase (MEK1) inhibitor PD098059, Jun N-terminal kinase (JNK) inhibitor SP600125, p38 MAPK inhibitor SB203580. Inhibition of PI3K and MEK1 but not JNK or p38 MAPK increased the apoptotic rate of cardiomyocytes treated with cruzipain. Phosphorylation of Akt, a major target of PI3K, and ERK1/2, MEK1-targets, was achieved at 15 min and 5 min, respectively. In parallel, these kinases were strongly phosphorylated by T. cruzi infection. In cultures treated with cruzipain, cleavage of caspase 3 was considerably diminished after serum starvation; Bcl-2 overexpression was inhibited by PD098059 but not by Ly294002, whereas Bad phosphorylation and Bcl-xL expression were increased and differentially modulated by both inhibitors. The results suggest that cruzipain exerts its anti-apoptotic property in cardiac myocytes at least by PI3K/Akt and MEK1/ERK1/2 signaling pathways. We further identified a differential modulation of Bcl-2 family members by these two signaling pathways.  相似文献   

11.
Cannabinoids exert a variety of physiological and pharmacological responses in humans through interaction with specific cannabinoid receptors. Cannabinoid receptors described to date belong to the seven-transmembrane-domain receptor superfamily and are coupled through the inhibitory G(i) protein to adenylyl cyclase inhibition. However, downstream signal transduction mechanisms triggered by cannabinoids are poorly understood. We examined here the involvement of the phosphoinositide 3-kinase (PI3K)/PKB pathway in the mechanism of action of cannabinoids in human prostate epithelial PC-3 cells. Cannabinoid receptors CB(1) and CB(2) are expressed in these cells, as shown by RT-PCR, Western blot and immunofluorescence techniques. Treatment of PC-3 cells with either Delta(9)-tetrahydrocannabinol (THC), the major psychoactive ingredient of marijuana, or R-(+)-methanandamide (MET), an analogue of the endogenous cannabinoid anandamide, increased phosphorylation of PKB in Thr308 and Ser473. The stimulation of PKB induced by cannabinoids was blocked by the two cannabinoid receptor antagonists, SR 141716 and SR 144528, and by the PI3K inhibitor LY 294002. These results indicate that activation of cannabinoid receptors in PC-3 cells stimulate the PI3K/PKB pathway. We further investigated the involvement of Raf-1/Erk activation in the mechanism of action of cannabinoid receptors. THC and MET induced translocation of Raf-1 to the membrane and phosphorylation of p44/42 Erk kinase, which was reversed by cannabinoid receptor antagonists and PI3K inhibitor. These results point to a sequential connection between cannabinoid receptors/PI3K/PKB pathway and Raf-1/Erk in prostate PC-3 cells. We also show that this pathway is involved in the mechanism of NGF induction exerted by cannabinoids in PC-3 cells.  相似文献   

12.
Human neutrophil peptides (HNP) kill microorganisms but also modulate immune responses through upregulation of the chemokine IL-8 by activation of the nucleotide P2Y(6) receptor. However, the intracellular signaling mechanisms remain yet to be determined. Human lung epithelial cells (A549) and monocytes (U937) were stimulated with HNP in the absence and presence of the specific kinase inhibitors for Src, extracellular signal-regulated kinase-1 and -2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinases (JNK), and Akt. HNP induced a rapid phosphorylation of the kinases in both cell types associated with a dose-dependent, selective production of IL-8 among 10 cytokines assayed. The HNP-induced IL-8 production was blocked by the Src tyrosine kinase inhibitor PP2, MEK1/2 inhibitor U0126, and the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002, but not by the JNK inhibitor SP600125 in both cell types. Treatment with the p38 inhibitor SB203580 attenuated the HNP-induced IL-8 production only in monocytes. Blockade of Src kinase blunted HNP-induced phosphorylation of the ERK1/2 and Akt but not p38 in monocytes. In contrast, Src inhibition had no effect on phosphorylation of the other kinases in the lung epithelial cells. We conclude that the activation of ERK1/2 and PI3K/Akt pathways is required for HNP-induced IL-8 release which occurs in a Src-independent manner in lung epithelial cells, while is Src-dependent in monocytes.  相似文献   

13.
朱建熹  沈术彤  高丽  沈伟  郭军 《生物磁学》2011,(11):2018-2021
目的:探讨脑缺血再灌后Akt和MAPK磷酸酶与JNK活性下调的关系。方法:采用成年清洁级雄性SD大鼠,建立四动脉阻断前脑缺血再灌注模型。缺血10min后再灌注不同时间(15min,1h,4h,24h)。侧脑室分别给予P13K抑制剂LY294002(LY)和MAPK磷酸酶抑制剂放线菌酮(CHO)。免疫印迹观察P-Akt和P-JNK蛋白水平变化。结果:脑缺血再灌注4h,JNK的活性能被Akt抑制剂LY294002增强,表明激活的Akt能够下调JNK信号通路。而MAPK磷酸酶抑制剂放线茵酮能上调缺血后JNK活性,提示MAPK磷酸酶通过去磷酸化参与了JNK的活性抑制。结论:前脑缺血再灌后,激活Akt和MAPK磷酸酶参与了JNK信号通路负性调节,是抑制JNK诱导缺血后中枢神经损伤的重要机制。  相似文献   

14.
Enterovirus 71 (EV71) is a widespread virus that causes severe and fatal diseases in patients, including circulation failure. The mechanisms underlying EV71-initiated intracellular signaling pathways to influence host cell functions remain unknown. In this study, we identified a requirement for PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB in the regulation of VCAM-1 expression by rat vascular smooth muscle cells (VSMCs) in response to viral infection. EV71 induced VCAM-1 expression in a time- and viral concentration-dependent manner. Infection of VSMCs with EV71 stimulated VCAM-1 expression and phosphorylation of PDGFR, Akt, and p38 MAPK which were attenuated by AG1296, wortmannin, and SB202190, respectively. The phosphorylation of JNK stimulated by EV71 was not detected under present conditions. In contrast, JNK inhibitor SP600125 inhibited EV71-induced VCAM-1 expression. Furthermore, VCAM-1 expression induced by EV71 was significantly attenuated by a selective NF-kappaB inhibitor (helenalin). Consistently, EV71-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha as well as VCAM-1 mRNA expression was blocked by helenalin, AG1296, SB202190, SP600125, wortmannin, and LY294002. Moreover, the involvement of p38 MAPK, PI3-K/Akt, and NF-kappaB in EV71-induced VCAM-1 expression was reveled by that transfection with dominant negative plasmids of p38 MAPK, p85, Akt, NIK, IKK-alpha, and IKK-beta attenuated these responses. These findings suggest that in VSMCs, EV71-induced VCAM-1 expression was mediated through activation of PDGFR, PI3-K/Akt, p38 MAPK, JNK, and NF-kappaB pathways.  相似文献   

15.
Cartducin, a paralog of Acrp30/adiponectin, is a secretory protein produced by both chondrogenic precursors and proliferating chondrocytes, and belongs to a novel C1q family of proteins. We have recently shown that cartducin promotes the growth of both mesenchymal chondroprogenitor cells and chondrosarcoma-derived chondrocytic cells in vitro. However, the cartducin-signaling pathways responsible for the regulation of cell proliferation have not been documented. In this study, we examined whether cartducin exists in serum and further investigated the intracellular signaling pathways stimulated by cartducin in mesenchymal chondroprogenitor cells. Western blot analysis showed that, unlike Acrp30/adiponectin, cartducin was undetectable in mouse serum. Next, mesenchymal chondroprogenitor N1511 cells were stimulated with cartducin, and three major groups of mitogen-activated protein kinase (MAPK) pathways and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway were examined. Cartducin activated extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt, but not c-jun N-terminal kinase (JNK) nor p38 MAPK. The MEK1/2 inhibitor, U0126, blocked cartducin-stimulated ERK1/2 phosphorylation and suppressed the DNA synthesis induced by cartducin in N1511 cells. The PI3K inhibitor, LY294002, blocked cartducin-stimulated Akt phosphorylation and a decrease in cartducin-induced DNA synthesis in N1511 cells was also observed. These data suggest that cartducin is a peripheral skeletal growth factor, and that the proliferation of mesenchymal chondroprogenitor cells stimulated by cartducin is associated with activations of the ERK1/2 and PI3K/Akt signaling pathways.  相似文献   

16.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   

17.
The importance of transforming growth factor-beta1 (TGF-beta1) in plasminogen activator inhibitor-1 (PAI-1) gene expression has been established, but the precise intracellular mechanisms are not fully understood. Our hypothesis is that the actin cytoskeleton is involved in TGF-beta1/MAPK-mediated PAI-1 expression in human mesangial cells. Examination of the distributions of actin filaments (F-actin), alpha-actinin, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunofluorescence and immunoprecipitation revealed that ERK and JNK associate with alpha-actinin along F-actin and that TGF-beta1 stimulation promote the dissociation of ERK and JNK with F-actin. Disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and JNK and modulated PAI-1 expression and promoter activity under both basal and TGF-beta1-stimulated conditions. Stabilizing actin prevented dephosphorylation of ERK and JNK. ERK and JNK inhibitors and overexpressed dominant negative mutants antagonized the ability of TGF-beta1 to increase PAI-1 expression and promoter activity. Disassembly of F-actin also inhibited AP-1 DNA binding activity as determined by electrophoretic mobility shift assay using AP-1 consensus oligonucleotides derived from human PAI-1 promoter. F-actin stabilization prevented loss of AP-1 DNA binding activity. Therefore, changes in actin cytoskeleton modulate the ability of TGF-beta1 to stimulate PAI-1 expression through a mechanism dependent on the activation of MAPK/AP-1 pathways.  相似文献   

18.
Aquaporin8 (AQP8) is a transmembrane water channel that is found mainly in hepatocytes. The direct involvement of AQP8 in high glucose condition has not been established. Therefore, this study examined the effects of high glucose on AQP8 and its related signal pathways in primary cultured chicken hepatocytes. High glucose increased the movement of AQP8 from the intracellular membrane to plasma membrane in a 30 mM glucose concentration and in a time- (> or =10 min) dependent manner. On the other hand, 30 mM mannitol did not affect the translocation of AQP8, which suggested the absence of osmotic effect. Thirty millimolar glucose increased intracellular cyclic adenosine 3, 5-monophosphate (cAMP) level. Moreover, high glucose level induced Akt phosphorylation, protein kinase C (PKC) activation, p44/42 mitogen-activated protein kinases (MAPKs), p38 MAPK, and c-jun NH2-terminal kinase (JNK) phosphorylation. On the other hand, inhibition of each pathway by SQ 22536 (adenylate cyclase inhibitor), LY 294002 (PI3-K phosphatidylinositol 3-kinase inhibitor), Akt inhibitor, staurosporine (PKC inhibitor), PD 98059 (MEK inhibitor), SB 203580 (p38 MAPK inhibitor), or SP 600125 (JNK inhibitor) blocked 30 mM glucose-induced AQP8 translocation, respectively. In addition, inhibition of microtubule movement with nocodazole blocked high glucose-induced AQP8 translocation. High glucose level also increased the level of kinesin light chain and dynein protein expression. In conclusion, high glucose level stimulates AQP8 via cAMP, PI3-K/Akt, PKC, and MAPKs pathways in primary cultured chicken hepatocytes.  相似文献   

19.
Adenovirus (Ad) endocytosis via αv integrins requires activation of the lipid kinase phosphatidylinositol-3-OH kinase (PI3K). Previous studies have linked PI3K activity to both the Ras and Rho signaling cascades, each of which has the capacity to alter the host cell actin cytoskeleton. Ad interaction with cells also stimulates reorganization of cortical actin filaments and the formation of membrane ruffles (lamellipodia). We demonstrate here that members of the Rho family of small GTP binding proteins, Rac and CDC42, act downstream of PI3K to promote Ad endocytosis. Ad internalization was significantly reduced in cells treated with Clostridium difficile toxin B and in cells expressing a dominant-negative Rac or CDC42 but not a H-Ras protein. Viral endocytosis was also inhibited by cytochalasin D as well as by expression of effector domain mutants of Rac or CDC42 that impair cytoskeletal function but not JNK/MAP kinase pathway activation. Thus, Ad endocytosis requires assembly of the actin cytoskeleton, an event initiated by activation of PI3K and, subsequently, Rac and CDC42.  相似文献   

20.
Cell shape alterations and accompanying cytoskeletal changes have diverse effects on cell function. We have already shown that dedifferentiated chondrocytes have a round cell morphology and undergo redifferentiation when cultured on chitosan membrane. In the present study, we investigate the role of the cytoskeleton in chondrocyte redifferentiation. Chondrocytes obtained from a micromass culture of chick limb bud mesenchymal cells were subcultured four times. Immunofluorescence analysis of F-actin showed cortical distribution of the actin cytoskeleton upon subculture of dedifferentiated chondrocytes on chitosan membrane. Treatment with cytochalasin D disrupted the cortical actin ring formed during cultivation of chondrocytes on the chitosan membrane, and inhibited chondrocyte redifferentiation. Moreover, cytochalasin D inhibited the phosphorylation of Akt and p38 mitogen activated protein kinase (MAPK), induced during redifferentiation on chitosan membrane. LY294002, an inhibitor of phosphatidylinositol-3-OH-kinase (PI3K), suppressed chondrocyte redifferentiation. These findings suggest that integrity of the actin cytoskeleton is a crucial requirement for PI3K/Akt and p38 MAPK in chondrocyte redifferentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号