首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acetohydroxyacid synthase (AHAS) is the key enzyme in branched chain amino acid biosynthesis pathway. The enzyme activity and properties of a highly thermostable AHAS from the hyperthermophilic bacterium Thermotoga maritima is being reported. The catalytic and regulatory subunits of AHAS from T. maritima were over-expressed in Escherichia coli. The recombinant subunits were purified using a simplified procedure including a heat-treatment step followed by chromatography. A discontinuous colorimetric assay method was optimized and used to determine the kinetic parameters. AHAS activity was determined to be present in several Thermotogales including T. maritima. The catalytic subunit of T. maritima AHAS was purified approximately 30-fold, with an AHAS activity of approximately 160±27 U/mg and native molecular mass of 156±6 kDa. The regulatory subunit was purified to homogeneity and showed no catalytic activity as expected. The optimum pH and temperature for AHAS activity were 7.0 and 85 °C, respectively. The apparent Km and Vmax for pyruvate were 16.4±2 mM and 246±7 U/mg, respectively. Reconstitution of the catalytic and regulatory subunits led to increased AHAS activity. This is the first report on characterization of an isoleucine, leucine, and valine operon (ilv operon) enzyme from a hyperthermophilic microorganism and may contribute to our understanding of the physiological pathways in Thermotogales. The enzyme represents the most active and thermostable AHAS reported so far.  相似文献   

2.
With high concentrations of pyruvate as substrate for hepatocytes from fasted rats, high rates of cycling between pyruvate and the dicarboxylic acids occur, as shown isotopically. This rate of cycling is adequate to account for the hydrogen translocation from the mitochondria to the cytosol to furnish NADH for lactate formation. Addition of sufficiently high concentrations of mercaptopicolinate to block almost completely glucose formation from pyruvate, depresses isotopic cycling and lactate formation by only about 50–75%. Under some conditions, when the normal phosphoenolpyruvate carboxykinase activity is inhibited, cytosolic oxaloacetate may be decarboxylated directly to pyruvate, possibly via the decarboxylase activity of phosphoenolpyruvate carboxykinase.  相似文献   

3.
Novel triazolopyrimidine acylsulfonamides class of antimycobacterial agents, which are mycobacterial acetohydroxyacid synthase (AHAS) inhibitors were designed by hybridization of known AHAS inhibitors such as sulfonyl urea and triazolopyrimidine sulfonamides. This Letter describes the synthesis and SAR studies of this class of molecules by variation of two parts of the molecule, the phenyl and triazolopyrimidine rings. SAR study describes optimisation of enzyme potency, whole cell potency and evidence of mechanism of action.  相似文献   

4.
Acetohydroxyacid synthase (AHAS, EC 4.1.3.18; also known as acetolactate synthase), which catalyses the first reaction common to the biosynthesis of the branched-chain amino acids, L-valine, L-leucine and L-isoleucine, and is the target of several classes of herbicides, has been studied in hydroponically-grown seedlings of wheat (Triticum aestivum L. cv. Vulcan). Enzyme activity was greater in leaves than roots, reaching a maximum between 4 and 6 days after germination. AHAS was associated with the chloroplasts after centrifugation in a density gradient. A preparation of the enzyme was obtained from wheat leaves which gave a single band after electrophoresis in native gels but was resolved by denaturing sodium dodecyl sulphate-polyacrylamide gel electrophoresis into three polypeptide bands of molecular mass 58, 57 and 15 kDa. The native molecular mass was approximately 128 kDa. AHAS had optimum activity at pH 7 and did not require the addition of flavin adenine dinucleotide (FAD), thiamine pyrophosphate (TPP) and MgCl2 for activity. The enzyme did not display typical hyperbolic kinetics, in that the double reciprocal plot of activity against pyruvate concentration was non-linear. The concentration of pyruvate that gave half of the maximum activity was 4 mM. Sulfonylurea and imidazolinone herbicides were potent inhibitors of wheat leaf AHAS, with 50% inhibition being observed at concentrations of 0.6 and 0.3 μM for chlorsulfuron and metsulfuron methyl, respectively, and at 2.5, 5 and 10 μM for imazaquin, imazethapyr and imazapyr. Inhibition by both classes of compounds was reversed by removal of the inhibitor. Progress curves of product formation against time in the presence of the herbicides were non-linear, and based on the assumption that inhibition by the sulfonylureas was of the slow, tight-binding type, estimates of 0.17 and 0.1 nM were obtained for the dissociation constants of chlorsulfuron and metsulfuron methyl, respectively, from the steady-state enzyme-inhibitor complex.  相似文献   

5.
Summary Genes coding for the enzyme acetohydroxyacid synthase, often referred to as acetolactate synthase (AHAS, ALS; EC 4.1.3.18), from wild type Arabidopsis thaliana and a sulfonylurea-resistant mutant line GH50 (csrl-1; Haughn et al. 1988) were introduced in Nicotiana tabacum. Both genes were expressed at high levels with the 35S promoter. The csrl-1 gene conferred high levels of resistance to chlorsulfuron whereas the wild type gene did not. As selectable markers, chimaeric AHAS genes yielded transgenic plants on chlorsulfuron but at much lower efficiencies than with a chimaeric neomycin phosphotransferase gene on kanamycin (Sanders et al. 1987). Shoot differentiation from leaf discs was delayed on chlorsulfuron by 4–6 weeks. This study indicated a role for mutant AHAS genes in the genetic manipulation of herbicide resistance in transgenic plants but as selectable markers for plant cells undergoing differentiation no advantage over other genes was perceived.  相似文献   

6.
Most bacteria possess the enzyme acetohydroxyacid synthase, which is used to produce branched-chain amino acids. Enteric bacteria contain several isozymes suited to different conditions, but the distribution of acetohydroxyacid synthase in soil bacteria is largely unknown. Growth experiments confirmed that Escherichia coli, Salmonella enterica serotype Typhimurium, and Enterobacter aerogenes contain isozymes of acetohydroxyacid synthase, allowing the bacteria to grow in the presence of valine (which causes feedback inhibition of AHAS I) or the sulfonylurea herbicide triasulfuron (which inhibits AHAS II) although a slight lag phase was observed in growth in the latter case. Several common soil isolates were inhibited by triasulfuron, but Pseudomonas fluorescens and Rhodococcus erythropolis were not inhibited by any combination of triasulfuron and valine. The extent of sulfonylurea-sensitive acetohydroxyacid synthase in soil was revealed when 21 out of 27 isolated bacteria in pure culture were inhibited by triasulfuron, the addition of isoleucine and/or valine reversing the effect in 19 cases. Primers were designed to target the genes encoding the large subunits (ilvB, ilvG and ilvI) of acetohydroxyacid synthase from available sequence data and a ∼355 bp fragment in Bacillus subtilis, Arthrobacter globiformis, E. coli and S. enterica was subsequently amplified. The primers were used to create a small clone library of sequences from an agricultural soil. Phylogenetic analysis revealed significant sequence variation, but all 19 amino acid sequences were most closely related to published large subunit acetohydroxyacid synthase amino acid sequences within several phyla including the Proteobacteria and Actinobacteria. The results suggested the majority of soil microorganisms contain only one functional acetohydroxyacid synthase enzyme sensitive to sulfonylurea herbicides.  相似文献   

7.
The first step in the common pathway for the biosynthesis of branched-chain amino acids (BCAAs) is catalyzed by acetohydroxyacid synthase (AHAS). The roles of three well-conserved serine residues (S167, S506, and S539) in tobacco AHAS were determined using site-directed mutagenesis. The mutations S167F and S506F were found to be inactive and abolished the binding affinity for cofactor FAD. The Far-UV CD spectrum of the inactive mutants was similar to that of wild-type enzyme, indicating no major conformational changes in the secondary structure. However, the active mutants, S167R, S506A, S506R, S539A, S539F and S539R, showed lower specific activities. Further, a homology model of tobacco AHAS was generated based on the crystal structure of yeast AHAS. In the model, the S167 and S506 residues were identified near the FAD binding site, while the S539 residue was found to near the ThDP binding site. The S539 mutants, S539A and S539R, showed strong resistance to three classes of herbicides, NC-311 (a sulfonylurea), Cadre (an imidazolinone), and TP (a triazolopyrimidine). In contrast, the active S167 and S506 mutants did not show any significant resistance to the herbicides, with the exception of S506R, which showed strong resistance to all herbicides. Thus, our results suggest that the S167 and S506 residues are essential for catalytic activity by playing a role in the FAD binding site. The S539 residue was found to be near the ThDP with an essential role in the catalytic activity and specific mutants of this residue (S539A and S539R) showed strong herbicide resistance as well.  相似文献   

8.
Choi KJ  Yu YG  Hahn HG  Choi JD  Yoon MY 《FEBS letters》2005,579(21):4903-4910
Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate- (ThDP-) and FAD-dependent enzyme that catalyzes the first common step in the biosynthetic pathway of the branched-amino acids such as leucine, isoleucine, and valine. The genes of AHAS from Mycobacterium tuberculosis were cloned, and overexpressed in E. coli and purified to homogeneity. The purified AHAS from M. tuberculosis is effectively inhibited by pyrazosulfuron ethyl (PSE), an inhibitor of plant AHAS enzyme, with the IC(50) (inhibitory concentration 50%) of 0.87 microM. The kinetic parameters of M. tuberculosis AHAS were determined, and an enzyme activity assay system using 96-well microplate was designed. After screening of a chemical library composed of 5600 compounds using the assay system, a new class of AHAS inhibitor was identified with the IC(50) in the range of 1.8-2.6 microM. One of the identified compounds (KHG20612) further showed growth inhibition activity against various strains of M. tuberculosis. The correlation of the inhibitory activity of the identified compound against AHAS to the cell growth inhibition activity suggested that AHAS might be served as a target protein for the development of novel anti-tuberculosis therapeutics.  相似文献   

9.
46 Novel nonsymmetrical aromatic disulfides containing [1,3,4]thiadiazole or [1,3,4]oxadiazole groups were synthesized and their biological activities were evaluated as inhibitors of acetohydroxyacid synthase (AHAS, EC 2.2.1.6). Besides their strong in vitro inhibition against plant AHAS, compounds 3e and 3f also display 80–100% post-emergence herbicidal activities in greenhouse bioassay at 1500 g/ha dosage. The assay of exogenous branched-chain amino acids supplementation on rape root growth of 3e suggests that the herbicidal activity has relationship with AHAS inhibition.  相似文献   

10.
Summary We have selected a tobacco cell line, SU-27D5, that is highly resistant to sulfonylurea and imidazolinone herbicides. This line was developed by selection first on a lethal concentration of cinosulfuron and then on increasing concentrations of primisulfuron, both sulfonylurea herbicides. SU-27D5 was tested against five sulfonylureas and one imidazolinone herbicide and was shown, in every case, to be two to three orders of magnitude more resistant than wild-type cells. The acetohydroxyacid synthase (AHAS) of SU-27D5 was 50- to 780-fold less sensitive than that of wild-type cells to herbicide inhibition. The specific activity of AHAS in the SU-27D5 cell lysate was 6 to 7 times greater than that in wild-type cells. Using Southern analysis, we showed that cell line SU-27D5 had amplified its SuRB AHAS gene about 20-fold while maintaining a normal diploid complement of the SuRA AHAS gene. Genomic clones of both AHAS genes were isolated and used to transform wild-type tobacco protoplasts. SuRB clones gave rise to herbicide-resistant transformants, whereas SuRA clones did not. DNA sequencing showed that all SuRB clones contained a point mutation at nucleotide 588 that converted amino acid 196 of AHAS from proline to serine. In contrast, no mutations were found in the SuRA clones. The stability of SuRB gene amplification was variable in the absence of selection. In one experiment, the withdrawal of selection reduced the copy number of the amplified SuRB gene to the normal level within 30 days. In another experiment, amplification remained stable after extended cultivation on herbicide-free medium. This is the first report of amplification of a mutant herbicide target gene that resulted in broad and strong herbicide resistance.  相似文献   

11.
Summary The Brassica napus rapeseed cultivar Topas contains an acetohydroxyacid synthase (AHAS) multigene family consisting of five members (AHAS 1–5). DNA sequence analysis indicate that AHAS1 and AHAS3 share extensive homology. They probably encode the AHAS enzymes essential for plant growth and development. AHAS2 has diverged significantly from AHAS1 and AHAS3 and has unique features in the coding region of the mature polypeptide, transit peptide and upstream non-coding DNA, which raises the possibility that it has a distinct function. AHAS4 and AHAS5 have interrupted coding regions and may be defective. The complexity of the AHAS multigene family in the allotetraploid species B. napus is much greater than reported for Arabidopsis thaliana and Nicotiana tabacum. Analysis of the presumptive progenitor diploid species B. campestris and B. oleracea indicated that AHAS2, AHAS3 and AHAS4 originate from the A genome, whereas AHAS1 and AHAS5 originate from the C genome. Further variation within each of the AHAS genes in these species was found.  相似文献   

12.
Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is a thiamin diphosphate- (ThDP)- and FAD-dependent enzyme that catalyzes the first common step in the biosynthetic pathway of the branched-amino acids (BCAAs) leucine, isoleucine, and valine. The gene from Haemophilus influenzae that encodes the AHAS catalytic subunit was cloned, overexpressed in Escherichia coli BL21(DE3), and purified to homogeneity. The purified H. influenzae AHAS catalytic subunit (Hin-AHAS) appeared as a single band on SDS-PAGE gel, with a molecular mass of approximately 63 kDa. The enzyme catalyzes the condensation of two molecules of pyruvate to form acetolactate, with a K(m) of 9.2mM and the specific activity of 1.5 micromol/min/mg. The cofactor activation constant (K(c)=13.5 microM) and the dissociation constant (K(d)=3.3 microM) of ThDP were also determined by enzymatic assay and tryptophan fluorescence quenching studies, respectively. We screened a chemical library to discover new inhibitors of the Hin AHAS catalytic subunit. Through which, AVS-2087 (IC(50)=0.53 microM), KSW30191 (IC(50)=1.42 microM), and KHG20612 (IC(50)=4.91 microM) displayed potent inhibition as compare to sulfometuron methyl (IC(50)=276.31 microM).  相似文献   

13.
Summary A survey of selected crop species and weeds was conducted to evaluate the inhibition of the enzyme acetohydroxyacid synthase (AHAS) and seedling growth in vitro by the sulfonylurea herbicides chlorsulfuron, DPX A7881, DPX L5300, DPX M6316 and the imidazolinone herbicides AC243,997, AC263,499, AC252,214. Particular attention was given to the Brassica species including canola cultivars and cruciferous weeds such as B. kaber (wild mustard) and Thlaspi arvense (stinkweed). Transgenic lines of B. napus cultivars Westar and Profit, which express the Arabidopsis thaliana wild-type AHAS gene or the mutant gene csr1-1 at levels similar to the resident AHAS genes, were generated and compared. The mutant gene was essential for resistance to the sulfonylurea chlorsulfuron but not to DPX A7881, which appeared to be tolerated by certain Brassica species. Cross-resistance to the imidazolinones did not occur. The level of resistance to chlorsulfuron in transgenic canola greatly exceeded the levels that were toxic to the Brassica species or cruciferous weeds. Direct selection of transgenic lines with chlorsulfuron sprayed at field levels under greenhouse conditions was achieved.  相似文献   

14.
Summary The acetohydroxyacid synthase (AHAS) gene from the Arabidopsis thaliana mutant line GH90 carrying the imidazolinone resistance allele imr1 was cloned. Expression of the AHAS gene under the control of the CaMV 35S promoter in transgenic tobacco resulted in selective imidazolinone resistance, confirming that the single base-pair change found near the 3 end of the coding region of this gene is responsible for imidazolinone resistance. A chimeric AHAS gene containing both the imr1 mutation and the csr1 mutation, responsible for selective resistance to sulfonylurea herbicides, was constructed. It conferred on transgenic tobacco plants resistance to both sulfonylurea and imidazolinone herbicides. The data illustrate that a multiple-resistance phenotype can be achieved in an AHAS gene through combinations of separate mutations, each of which individually confers resistance to only one class of herbicides.  相似文献   

15.
A series of sulfonylurea derivatives containing a 2,6-disubstituted aryl moiety were designed, synthesized and evaluated for their herbicidal activities. Most of these compounds showed excellent inhibitory rates against both monocotyledonous and dicotyledonous weeds, especially 10a, 10h and 10i. They exhibited equivalent or superior herbicidal efficiency than commercial chlorsulfuron at the dosage of 15 g/ha and the preliminary SAR was summarized. In order to illuminate the molecular mechanism of several potent compounds, their apparent inhibition constant (Kiapp) of Arabidopsis thaliana acetohydroxyacid synthase (AHAS) were determined and the results confirmed that these compounds were all potent AHAS inhibitors. 10i have a Kiapp of 11.5 nM, which is about 4 times as potent as chlorsulfuron (52.4 nM).  相似文献   

16.
Pyruvate decarboxylase (EC 4.1.1.1) from the ethanol producing bacterium Zymomonas mobilis was purified to homogeneity. This enzyme is an acidic protein with an isoelectric point of 4.87 and has an apparent molecular weight of 200,000±10,000. The enzyme showed a single band in sodium dodecylsulfate gel electrophoresis with a molecular weight of 56,500±4,000 which indicated that the enzyme consists of four probably identical subunits. The dissociation of the cofactors Mg2+ and thiamine pyrophosphate at pH 8.9 resulted in a total loss of enzyme activity which could be restored to 99.5% at pH 6.0 in the presence of both cofactors. For the apoenzyme the apparent K m values for Mg2+ and thiamine pyrophosphate were determined to be 24 M and 1.28 M. The apparent K m value for the substrate pyruvate was 0.4 mM. Antiserum prepared against this purified pyruvate decarboxylase failed to crossreact with cell extracts of the reportedly pyruvate decarboxylase positive bacteria Sarcina ventriculi, Erwinia amylovora, or Gluconobacter oxydans, or with cell extracts of Saccharomyces cerevisiae.Abbreviations Tris-buffer 0,01 M tris-HCl buffer, containing 1 mM MgCl2 0.1 mM EDTA, 1.0 mM thiamine pyrophosphate, 2 mM mercaptopropanediol, pH 7.0  相似文献   

17.
A pyruvate decarboxylase gene from Aspergillus parasiticus   总被引:1,自引:0,他引:1  
Abstract A gene encoding a putative pyruvate decarboxylase (EC 4.1.1.1) was isolated from a genomic library of the filamentous fungus Aspergillus parasiticus strain SU-1. The deduced amino acid sequence showed 37% homology to PDC1 from Saccharomyces cerevisiae . Although A. parasiticus has an obligate growth requirement for oxygen, it produced ethanol in shake flask cultures indicating a response to anoxic conditions mediated by pyruvate decarboxylase.  相似文献   

18.
Mycobacterium tuberculosis acetohydroxyacid synthase (M. tuberculosis AHAS) has been proposed to bean essential target for novel herbicide- and chemical-based antibacterial agents. Therefore, here we investigated the roles of multiple conserved herbicide-binding site residues (R318, A146, Q148, M512, and V513) in M. tuberculosis AHAS through site-directed mutagenesis by characterizing the kinetic parameters and herbicide sensitivities of various point mutants. Interestingly, all mutant enzymes showed significantly altered kinetic parameters, specifically reduced affinity towards both the substrate and cofactor. Importantly, mutation of R318 led to a complete loss of AHAS activity, indicating a key role for this residue in substrate binding. Furthermore, all mutants demonstrated significant herbicide resistance against chlorimuron ethyl (CE), with several-fold higher IC50 than that of wild type AHAS. Docking analysis also indicated that binding of CE was slightly affected upon mutation of these residues. Taken together, these data suggest that the residues examined here mediate CE binding and may also be important for the catalytic activity of AHAS. This study will pave the way for future structure-function studies of CE and will also aid the development of novel anti-tuberculosis agents based on this chemical scaffold.  相似文献   

19.
20.
S-adenosylmethionine decarboxylase (AdoMetDC) is a critical regulatory enzyme of the polyamine biosynthetic pathway and belongs to a small class of pyruvoyl-dependent amino acid decarboxylases. Structural elucidation of the prokaryotic AdoMetDC is of substantial interest in order to determine the relationship between the eukaryotic and prokaryotic forms of the enzyme. Although both forms utilize pyruvoyl groups, there is no detectable sequence similarity except at the site of pyruvoyl group formation. The x-ray structure of the Thermatoga maritima AdoMetDC proenzyme reveals a dimeric protein fold that is remarkably similar to the eukaryotic AdoMetDC protomer, suggesting an evolutionary link between the two forms of the enzyme. Three key active site residues (Ser55, His68, and Cys83) involved in substrate binding, catalysis or proenzyme processing that were identified in the human and potato AdoMet-DCs are structurally conserved in the T. maritima AdoMetDC despite very limited primary sequence identity. The role of Ser55, His68, and Cys83 in the self-processing reaction was investigated through site-directed mutagenesis. A homology model for the Escherichia coli AdoMetDC was generated based on the structures of the T. maritima and human AdoMetDCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号