共查询到20条相似文献,搜索用时 9 毫秒
1.
Dmitri Demidov Susann Hesse Annegret Tewes Twan Rutten Jörg Fuchs Raheleh Karimi Ashtiyani Sandro Lein reas Fischer Gunter Reuter Andreas Houben 《The Plant journal : for cell and molecular biology》2009,59(2):221-230
The enzymological properties of AtAurora1, a kinase responsible for the cell cycle-dependent phosphorylation of histone H3 at S10, and its cross-talk with other post-translational histone modifications, were determined. In vitro phosphorylation of H3S10 by AtAurora1 is strongly increased by K9 acetylation, and decreased by K14 acetylation and T11 phosphorylation. However, S10 phosphorylation activity is unaltered by mono-, di- or trimethylation of K9. An interference of H3K9 dimethylation by SUVR4 occurs by a pre-existing phosphorylation at S10. Hence, cross-talk in plants exists between phosphorylation of H3S10 and methylation, acetylation or phosphorylation of neighbouring amino acid residues. AtAurora1 undergoes autophosphorylation in vivo regardless of the presence of substrate, and forms dimers in planta . Of the three ATP-competitive Aurora inhibitors tested, Hesperadin was most effective in reducing the in vivo kinase activity of AtAurora1. Hesperadin consistently inhibited histone H3S10 phosphorylation during mitosis in Arabidopsis cells, but did not affect other H3 post-translational modifications, suggesting a specific inhibition of AtAurora in vivo . Inactivation of AtAurora also caused lagging chromosomes in a number of anaphase cells, but, unlike the situation in mammalian cells, Hesperadin did not influence the microtubule dynamics in dividing cells. 相似文献
2.
3.
4.
Zhixin Tian Nikola Toli? Rui Zhao Ronald J Moore Shawna M Hengel Errol W Robinson David L Stenoien Si Wu Richard D Smith Ljiljana Pa?a-Toli? 《Genome biology》2012,13(10):R86
Post-translational modifications (PTMs) of core histones work synergistically to fine tune chromatin structure and function, generating a so-called histone code that can be interpreted by a variety of chromatin interacting proteins. We report a novel online two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) platform for high-throughput and sensitive characterization of histone PTMs at the intact protein level. The platform enables unambiguous identification of 708 histone isoforms from a single 2D LC-MS/MS analysis of 7.5 µg purified core histones. The throughput and sensitivity of comprehensive histone modification characterization is dramatically improved compared with more traditional platforms. 相似文献
5.
Application of mass spectrometry to the identification and quantification of histone post-translational modifications 总被引:8,自引:0,他引:8
The core histones are the primary protein component of chromatin, which is responsible for the packaging of eukaryotic DNA. The NH(2)-terminal tail domains of the core histones are the sites of numerous post-translational modifications that have been shown to play an important role in the regulation of chromatin structure. In this study, we discuss the recent application of modern analytical techniques to the study of histone modifications. Through the use of mass spectrometry, a large number of new sites of histone modification have been identified, many of which reside outside of the NH(2)-terminal tail domains. In addition, techniques have been developed that allow mass spectrometry to be effective for the quantitation of histone post-translational modifications. Hence, the use of mass spectrometry promises to dramatically alter our view of histone post-translational modifications. 相似文献
6.
Nimesh Bhaskaran Hiroyuki Iwahana Jonas Bergquist Ulf Hellman Serhiy Souchelnytskyi 《Central European Journal of Biology》2008,3(4):359-370
Smad2 is a crucial component of transforming growth factor-β (TGFβ) signaling, and is involved in the regulation of cell proliferation,
death and differentiation. Phosphorylation, ubiquitylation and acetylation of Smad2 have been found to regulate its activity.
We used mass spectrometry to search for novel post-translational modifications (PTMs) of Smad2. Peptide mass fingerprinting
(PMF) indicated that Smad2 can be acetylated, methylated, citrullinated, phosphorylated and palmitoylated. Sequencing of selected
peptides validated methylation at Gly122 and hydroxylation at Trp18 of Smad2. We also observed a novel, so far unidentified
modification at Tyr128 and Tyr151. Our observations open for further exploration of biological importance of the detected
PTMs.
Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献
7.
8.
Sanli D Keskin O Gursoy A Erman B 《Protein science : a publication of the Protein Society》2011,20(12):1982-1990
Post-translational modifications of histone H3 tails have crucial roles in regulation of cellular processes. There is cross-regulation between the modifications of K4, K9, and K14 residues. The modifications on these residues drastically promote or inhibit each other. In this work, we studied the structural changes of the histone H3 tail originating from the three most important modifications; tri-methylation of K4 and K9, and acetylation of K14. We performed extensive molecular dynamics simulations of four types of H3 tails: (i) the unmodified H3 tail having no chemical modification on the residues, (ii) the tri-methylated lysine 4 and lysine 9 H3 tail (K4me3K9me3), (iii) the tri-methylated lysine 4 and acetylated lysine 14 H3 tail (K4me3K14ace), and (iv) tri-methylated lysine 9 and acetylated lysine 14 H3 tail (K9me3K14ace). Here, we report the effects of K4, K9, and K14 modifications on the backbone torsion angles and relate these changes to the recognition and binding of histone modifying enzymes. According to the Ramachandran plot analysis; (i) the dihedral angles of K4 residue are significantly affected by the addition of three methyl groups on this residue regardless of the second modification, (ii) the dihedral angle values of K9 residue are similarly altered majorly by the tri-methylation of K4 residue, (iii) different combinations of modifications (tri-methylation of K4 and K9, and acetylation of K14) have different influences on phi and psi values of K14 residue. Finally, we discuss the consequences of these results on the binding modes and specificity of the histone modifying enzymes such as DIM-5, GCN5, and JMJD2A. 相似文献
9.
Tatsuo Fukagawa 《Cell cycle (Georgetown, Tex.)》2017,16(13):1259-1265
The centromere is a critical genomic region that enables faithful chromosome segregation during mitosis, and must be distinguishable from other genomic regions to facilitate establishment of the kinetochore. The centromere-specific histone H3-variant CENP-A forms a special nucleosome that functions as a marker for centromere specification. In addition to the CENP-A nucleosomes, there are additional H3 nucleosomes that have been identified in centromeres, both of which are predicted to exhibit specific features. It is likely that the composite organization of CENP-A and H3 nucleosomes contributes to the formation of centromere-specific chromatin, termed ‘centrochromatin’. Recent studies suggest that centrochromatin has specific histone modifications that mediate centromere specification and kinetochore assembly. We use chicken non-repetitive centromeres as a model of centromeric activities to characterize functional features of centrochromatin. This review discusses our recent progress, and that of various other research groups, in elucidating the functional roles of histone modifications in centrochromatin. 相似文献
10.
《Expert review of proteomics》2013,10(2):211-225
Due to the intimate interactions between histones and DNA, the characterization of histones has become the focus of great attention. A series of mass spectrometry-based technologies have been dedicated to the characterization and quantitation of different histone forms. This review focuses on the discussion of mass spectrometry-based strategies used for the characterization of histones and their post-translational modifications. 相似文献
11.
12.
Bonet-Costa C Vilaseca M Diema C Vujatovic O Vaquero A Omeñaca N Castejón L Bernués J Giralt E Azorín F 《Journal of Proteomics》2012,75(13):4124-4138
Linker histone H1 is a major chromatin component that binds internucleosomal DNA and mediates the folding of nucleosomes into a higher-order structure, namely the 30-nm chromatin fiber. Multiple post-translational modifications (PTMs) of core histones H2A, H2B, H3 and H4 have been identified and their important contribution to the regulation of chromatin structure and function is firmly established. In contrast, little is known about histone H1 modifications and their function. Here we address this question in Drosophila melanogaster, which, in contrast to most eukaryotic species, contains a single histone H1 variant, dH1. For this purpose, we combined bottom-up and top-down mass-spectrometry strategies. Our results indicated that dH1 is extensively modified by phosphorylation, methylation, acetylation and ubiquitination, with most PTMs falling in the N-terminal domain. Interestingly, several dH1 N-terminal modifications have also been reported in specific human and/or mouse H1 variants, suggesting that they have conserved functions. In this regard, we also provide evidence for the contribution of one of such conserved PTMs, dimethylation of K27, to heterochromatin organization during mitosis. Furthermore, our results also identified multiple dH1 isoforms carrying several phosphorylations and/or methylations, illustrating the high structural heterogeneity of dH1. In particular, we identified several non-CDK sites at the N-terminal domain that appear to be hierarchically phosphorylated. This study provides the most comprehensive PTM characterization of any histone H1 variant to date. 相似文献
13.
14.
翻译后修饰调控着真核生物大部分蛋白质的活性,这些修饰的解读对研究生物功能是必不可少的。组蛋白翻译后修饰是蛋白质翻译后修饰中研究的较好一类小分子碱性蛋白,易被各种生物大分子修饰,尤其易发生在N-末端的尾部。不同组合式修饰构成了"组蛋白密码",在细胞的发育、生长、分化和动态平衡中,组蛋白密码影响着染色体的结构状态,进而调控基因的表达状态。组蛋白翻译后修饰的研究可作为一种模式来解析蛋白质复杂的修饰状态及研究其分子功能。翻译后修饰分析技术的发展对组蛋白密码的解析是至关重要的。重点讨论组蛋白修饰分析技术的发展和应用。 相似文献
15.
Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells 总被引:3,自引:1,他引:3 下载免费PDF全文
Recognition and repair of damaged DNA occurs within the context of chromatin. The key protein components of chromatin are histones, whose post-translational modifications control diverse chromatin functions. Here, we report our findings from a large-scale screen for DNA-damage-responsive histone modifications in human cells. We have identified specific phosphorylations and acetylations on histone H3 that decrease in response to DNA damage. Significantly, we find that DNA-damage-induced changes in H3S10p, H3S28p and H3.3S31p are a consequence of cell-cycle re-positioning rather than DNA damage per se. In contrast, H3K9Ac and H3K56Ac, a mark previously uncharacterized in human cells, are rapidly and reversibly reduced in response to DNA damage. Finally, we show that the histone acetyl-transferase GCN5/KAT2A acetylates H3K56 in vitro and in vivo. Collectively, our data indicate that though most histone modifications do not change appreciably after genotoxic stress, H3K9Ac and H3K56Ac are reduced in response to DNA damage in human cells. 相似文献
16.
Electron capture dissociation mass spectrometry in characterization of post-translational modifications 总被引:1,自引:0,他引:1
Electron capture dissociation (ECD) represents a significant advance in tandem mass spectrometry for the identification and characterization of post-translational modifications (PTMs) of polypeptides. In comparison with the conventional fragmentation techniques, such as collisionally induced dissociation and infrared multi-photon dissociation, ECD provides more extensive sequence fragments, while allowing the labile modifications to remain intact during backbone fragmentation. This unique attribute offers ECD as an attractive alternative for detection and localization of PTMs. The success and rapid adoption of ECD recently led to the culmination of The 1st International Uppsala Symposium on Electron Capture Dissociation of Biomolecules and Related Phenomena (October 19-22, 2003, Stockholm, Sweden). Herein, we present a general overview of the ECD technique as well as selected applications in characterization of post-translationally modified polypeptides. 相似文献
17.
Camilla Thygesen Inga Boll Bente Finsen Maciej Modzel 《Expert review of proteomics》2018,15(3):245-258
Introduction: Exploring post-translational modifications (PTMs) with the use of mass spectrometry (PTMomics) is a rapidly developing area, with methods for discovery/quantification being developed and advanced on a regular basis. PTMs are highly important for the regulation of protein function, interaction and activity, both in physiological and disease states. Changes in PTMs can either cause, or be the result of a disease, making them central for biomarker studies and studies of disease pathogenesis. Recently, it became possible to study multiple PTMs simultaneously from low amount of sample material, thereby increasing coverage of the PTMome obtainable from a single sample. Thus, quantitative PTMomics holds great potential to discover biomarkers from tissue and body fluids as well as elucidating disease mechanisms through characterization of signaling pathways.Areas covered: Recent mass spectrometry-based methods for assessment of the PTMome, with focus on the most studied PTMs, are highlighted. Furthermore, both data dependent and data independent acquisition methods are evaluated. Finally, current challenges in the field are discussed.Expert commentary: PTMomics holds great potential for clinical and biomedical research, especially with the generation of spectral libraries of peptides and PTMs from individual patients (permanent PTM maps) for use in personalized medicine. 相似文献
18.
Histone modifications not only play important roles in regulating chromatin structure and nuclear processes but also can be passed to daughter cells as epigenetic marks. Accumulating evidence suggests that the key function of histone modifications is to signal for recruitment or activity of downstream effectors. Here, we discuss the latest discovery of histone-modification readers and how the modification language is interpreted. 相似文献
19.
20.
The roles of post-translational modifications (PTMs) in the onset and progression of disease have been extensively studied for decades. More specifically, various PTMs have been the focus of research in Alzheimer's disease (AD). The two most discussed hallmarks of the disease, senile plaques and tau tangles, are the result of PTMs of the amyloidβ protein precursor (AβPP) and the microtubule stabilizing protein: tau. While these modifications have been characterized indirectly by biochemical-based methods, the primary shortcoming to this research can be linked to a lack of a thorough molecular-based means of qualitative and quantitative analysis of many of these modifications within transgenic animal, and human samples. In this review, we discuss the important proteins and their associated PTMs linked to AD and the ways in which mass spectrometry has and will be utilized to analyze them. We also comment on novel ways in which molecular-based mass spectrometry methods should be employed going forward to resolve the interconnections of the PTMs involvement in various stages of AD pathology (preclinical, mild cognitive impairment, advanced-stage AD). 相似文献