首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horton AC  Ehlers MD 《Neuron》2003,40(2):277-295
Among the most morphologically complex cells, neurons are masters of membrane specialization. Nowhere is this more striking than in the division of cellular labor between the axon and the dendrites. In morphology, signaling properties, cytoskeletal organization, and physiological function, axons and dendrites (or more properly, the somatodendritic compartment) are radically different. Such polarization of neurons into domains specialized for either receiving (dendrites) or transmitting (axons) cellular signals provides the underpinning for all neural circuitry. The initial specification of axonal and dendritic identity occurs early in neuronal life, persists for decades, and is manifested by the presence of very different sets of cell surface proteins. Yet, how neuronal polarity is established, how distinct axonal and somatodendritic domains are maintained, and how integral membrane proteins are directed to dendrites or accumulate in axons remain enduring and formidable questions in neuronal cell biology.  相似文献   

2.
Galiano MR  Jha S  Ho TS  Zhang C  Ogawa Y  Chang KJ  Stankewich MC  Mohler PJ  Rasband MN 《Cell》2012,149(5):1125-1139
AnkyrinG (ankG) is highly enriched in neurons at axon initial segments (AISs) where it clusters Na(+) and K(+) channels and maintains neuronal polarity. How ankG becomes concentrated at the AIS is unknown. Here, we show that as neurons break symmetry, they assemble a distal axonal submembranous cytoskeleton, comprised of ankyrinB (ankB), αII-spectrin, and βII-spectrin, that defines a boundary limiting ankG to the proximal axon. Experimentally moving this boundary altered the length of ankG staining in the proximal axon, whereas disruption of the boundary through silencing of ankB, αII-spectrin, or βII-spectrin expression blocked AIS assembly and permitted ankG to redistribute throughout the distal axon. In support of an essential role for the distal cytoskeleton in ankG clustering, we also found that αII and βII-spectrin-deficient mice had disrupted AIS. Thus, the distal axonal cytoskeleton functions as an intra-axonal boundary restricting ankG to the AIS.  相似文献   

3.
High densities of ion channels at axon initial segments (AISs) and nodes of Ranvier are required for initiation, propagation, and modulation of action potentials in axons. The organization of these membrane domains depends on a specialized cytoskeleton consisting of two submembranous cytoskeletal and scaffolding proteins, ankyrinG (ankG) and betaIV spectrin. However, it is not known which of these proteins is the principal organizer, or if the mechanisms governing formation of the cytoskeleton at the AIS also apply to nodes. We identify a distinct protein domain in betaIV spectrin required for its localization to the AIS, and show that this domain mediates betaIV spectrin's interaction with ankG. Dominant-negative ankG disrupts betaIV spectrin localization, but does not alter endogenous ankG or Na(+) channel clustering at the AIS. Finally, using adenovirus for transgene delivery into myelinated neurons, we demonstrate that betaIV spectrin recruitment to nodes of Ranvier also depends on binding to ankG.  相似文献   

4.
The development of morphological neuronal polarity starts by the formation and elongation of an axon. At the same time the axon initial segment (AIS) is generated and creates a diffusion barrier which differentiate axon and somatodendritic compartment. Different structural and functional proteins that contribute to the generation of neuronal action potential are concentrated at the axon initial segment. While axonal elongation is controlled by signalling pathways that regulate cytoskeleton through microtubule associated proteins and tubulin modifications, the microtubule cytoskeleton under the AIS is mostly unknown. Thus, understanding which proteins modify tubulin, where in the neuron and at which developmental stage is crucial to understanding how morphological and functional neuronal polarity is achieved. In this study performed in mice and using a well established model of murine cultured hippocampal neurons, we report that the tubulin deacetylase HDAC6 is localized at the distal region of the axon, and its inhibition with TSA or tubacin slows down axonal growth. Suppression of HDAC6 expression with HDAC6 shRNAs or expression of a non-active mutant of HDAC6 also reduces axonal length. Furthermore, HDAC6 inhibition or suppression avoids the concentration of ankyrinG and sodium channels at the axon initial segment (AIS). Moreover, treatment of mouse cultured hippocampal neurons with detergents to eliminate the soluble pool of microtubules identified a pool of detergent resistant acetylated microtubules at the AIS, not present at the rest of the axon. Inhibition or suppression of HDAC6 increases acetylation all along the axon and disrupts the specificity of AIS cytoskeleton, modifying the axonal distal gradient localization of KIF5C to a somatodendritic and axonal localization. In conclusion, our results reveal a new role of HDAC6 tubulin deacetylase as a regulator of microtubule characteristics in the axon distal region where axonal elongation takes place, and allowing the development of acetylated microtubules microdomains where HDAC6 is not concentrated, such as the axon initial segment.  相似文献   

5.
Neurons are highly polarized cells with distinct domains responsible for receiving, transmitting, and propagating electrical signals. Central to these functions is the axon initial segment (AIS), a short region of the axon adjacent to the cell body that is enriched in voltage-gated ion channels, cell adhesion molecules, and cytoskeletal scaffolding proteins. Traditionally, the function of the AIS has been limited to its role in action potential initiation and modulation. However, recent experiments indicate that it also plays essential roles in neuronal polarity. Here, we review how initial segments are assembled, and discuss proposed mechanisms for how the AIS contributes to maintenance of neuronal polarity.  相似文献   

6.
Action potential initiation, modulation, and duration in neurons depend on a variety of Na+ and K+ channels that are highly enriched at the axon initial segment (AIS). The AIS also has high densities of cell adhesion molecules (CAMs), modulatory proteins, and a unique extracellular matrix (ECM). In contrast to other functional domains of axons (e.g. the nodes of Ranvier and axon terminals) whose development depends on the interactions with different cells (e.g. myelinating glia and postsynaptic cells), the recruitment and retention of AIS proteins is intrinsically specified through axonal cytoskeletal and scaffolding proteins. We speculate that the AIS has previously unappreciated forms of plasticity that influence neuronal excitability, and that AIS plasticity is regulated by the developmental or activity-dependent modulation of scaffolding protein levels rather than directly altering ion channel expression.  相似文献   

7.
Bradke F  Dotti CG 《Current biology : CB》2000,10(22):1467-1470
Cutting the axon of a morphologically polarized neuron (stage 3) close to the cell body causes another neurite to grow as an axon [1-3]. Stage 3 neurons still lack molecular segregation of axonal and dendritic proteins, however. Axonal and dendritic compartments acquire their distinct composition at stage 4 (4-5days in culture), when proteins such as the microtubule-associated protein 2 (MAP-2) and the glutamate receptor subunit GluR1 localize to the dendrites and disappear from the axon [4,5]. We investigated whether cultured hippocampal neurons retained axon/dendrite plasticity after axons and dendrites have created their distinct cytoskeletal architecture and acquired their specific membrane composition. We found that axotomy of stage 4 neurons transformed a dendrite into an axon. Using axonal and dendritic markers, we tested whether cytoskeletal changes could cause similar transformations, and found that actin depolymerization induced multiple axons in unpolarized neurons. Moreover, depletion of actin filaments from both morphologically and molecularly polarized cells also resulted in the growth of multiple axons from pre-existing dendrites. These results imply that dendrites retain the potential to become axons even after molecular segregation has occurred and that the dendritic fate depends on the integrity of the actin cytoskeleton.  相似文献   

8.
Action potential initiation and propagation requires clustered Na(+) (voltage-gated Na(+) [Nav]) channels at axon initial segments (AIS) and nodes of Ranvier. In addition to ion channels, these domains are characterized by cell adhesion molecules (CAMs; neurofascin-186 [NF-186] and neuron glia-related CAM [NrCAM]), cytoskeletal proteins (ankyrinG and betaIV spectrin), and the extracellular chondroitin-sulfate proteoglycan brevican. Schwann cells initiate peripheral nervous system node formation by clustering NF-186, which then recruits ankyrinG and Nav channels. However, AIS assembly of this protein complex does not require glial contact. To determine the AIS assembly mechanism, we silenced expression of AIS proteins by RNA interference. AnkyrinG knockdown prevented AIS localization of all other AIS proteins. Loss of NF-186, NrCAM, Nav channels, or betaIV spectrin did not affect other neuronal AIS proteins. However, loss of NF-186 blocked assembly of the brevican-based AIS extracellular matrix, and NF-186 overexpression caused somatodendritic brevican clustering. Thus, NF-186 assembles and links the specialized brevican-containing AIS extracellular matrix to the intracellular cytoskeleton.  相似文献   

9.
Jiang H  Guo W  Liang X  Rao Y 《Cell》2005,120(1):123-135
Axon-dendrite polarity is a cardinal feature of neuronal morphology essential for information flow. Here we report a differential distribution of GSK-3beta activity in the axon versus the dendrites. A constitutively active GSK-3beta mutant inhibited axon formation, whereas multiple axons formed from a single neuron when GSK-3beta activity was reduced by pharmacological inhibitors, a peptide inhibitor, or siRNAs. An active mechanism for maintaining neuronal polarity was revealed by the conversion of preexisting dendrites into axons upon GSK-3 inhibition. Biochemical and functional data show that the Akt kinase and the PTEN phosphatase are upstream of GSK-3beta in determining neuronal polarity. Our results demonstrate that there are active mechanisms for maintaining as well as establishing neuronal polarity, indicate that GSK-3beta relays signaling from Akt and PTEN to play critical roles in neuronal polarity, and suggest that application of GSK-3beta inhibitors can be a novel approach to promote generation of new axons after neural injuries.  相似文献   

10.
Correct targeting of proteins to axons and dendrites is crucial for neuronal function. We showed previously that axonal accumulation of the cell adhesion molecule L1/neuron-glia cell adhesion molecule (NgCAM) depends on endocytosis (Wisco, D., E.D. Anderson, M.C. Chang, C. Norden, T. Boiko, H. Folsch, and B. Winckler. 2003. J. Cell Biol. 162:1317-1328). Two endocytosis-dependent pathways to the axon have been proposed: transcytosis and selective retrieval/retention. We show here that axonal accumulation of L1/NgCAM occurs via nondegradative somatodendritic endosomes and subsequent anterograde axonal transport, which is consistent with transcytosis. Additionally, we identify the neuronal-specific endosomal protein NEEP21 (neuron-enriched endosomal protein of 21 kD) as a regulator of L1/NgCAM sorting in somatodendritic endosomes. Down-regulation of NEEP21 leads to missorting of L1/NgCAM to the somatodendritic surface as well as to lysosomes. Importantly, the axonal accumulation of endogenous L1 in young neurons is also sensitive to NEEP21 depletion. We propose that small endosomal carriers derived from somatodendritic recycling endosomes can serve to redistribute a distinct set of membrane proteins from dendrites to axons.  相似文献   

11.
In mammalian neurons, the precise accumulation of sodium channels at the axonal initial segment (AIS) ensures action potential initiation. This accumulation precedes the immobilization of membrane proteins and lipids by a diffusion barrier at the AIS. Using single-particle tracking, we measured the mobility of a chimeric ion channel bearing the ankyrin-binding motif of the Nav1.2 sodium channel. We found that ankyrin G (ankG) limits membrane diffusion of ion channels when coexpressed in neuroblastoma cells. Site-directed mutants with decreased affinity for ankG exhibit increased diffusion speeds. In immature hippocampal neurons, we demonstrated that ion channel immobilization by ankG is regulated by protein kinase CK2 and occurs as soon as ankG accumulates at the AIS of elongating axons. Once the diffusion barrier is formed, ankG is still required to stabilize ion channels. In conclusion, our findings indicate that specific binding to ankG constitutes the initial step for Nav channel immobilization at the AIS membrane and precedes the establishment of the diffusion barrier.  相似文献   

12.
Stowell JN  Craig AM 《Neuron》1999,22(3):525-536
The subcellular targeting of neurotransmitter receptors is vital in controlling polarized information flow in the brain. We show here that metabotropic glutamate receptors are differentially targeted when expressed from defective viral vectors in cultured hippocampal neurons; mGluR1a and mGluR2 are targeted to dendrites and excluded from axons, whereas mGluR7 is targeted to axons and dendrites. Chimeras and deletions revealed that axon exclusion of mGluR2 versus axon targeting of mGluR7 is mediated by their 60 amino acid C-terminal cytoplasmic domains. Addition of the mGluR7 C-terminal sequence to mGluR2 or to the unrelated somatodendritic protein telencephalin (tln) induced axon targeting, indicating dominance of the axonal signal. These mGluR sorting signals represent novel plasma membrane axon/dendrite targeting signals.  相似文献   

13.
Missorting of Tau from axons to the somatodendritic compartment of neurons is a hallmark of Alzheimer's disease, but the mechanisms underlying normal sorting and pathological failure are poorly understood. Here, we used several Tau constructs labelled with photoconvertible Dendra2 to analyse its mobility in polarized neurons. This revealed a novel mechanism of sorting-a retrograde barrier in the axon initial segment (AIS) operating as cellular rectifier. It allows anterograde flow of axonal Tau but prevents retrograde flow back into soma and dendrites. The barrier requires binding of Tau to microtubules but does not require F-actin and thus is distinct from the sorting of membrane-associated proteins at the AIS. The barrier breaks down when Tau is phosphorylated in its repeat domain and detached from microtubules, for example, by the kinase MARK/Par1. These observations link the pathological hallmarks of Tau missorting and hyperphosphorylation in neurodegenerative diseases.  相似文献   

14.
Uncovering multiple axonal targeting pathways in hippocampal neurons   总被引:6,自引:0,他引:6  
Neuronal polarity is, at least in part, mediated by the differential sorting of membrane proteins to distinct domains, such as axons and somata/dendrites. We investigated the pathways underlying the subcellular targeting of NgCAM, a cell adhesion molecule residing on the axonal plasma membrane. Following transport of NgCAM kinetically, surprisingly we observed a transient appearance of NgCAM on the somatodendritic plasma membrane. Down-regulation of endocytosis resulted in loss of axonal accumulation of NgCAM, indicating that the axonal localization of NgCAM was dependent on endocytosis. Our data suggest the existence of a dendrite-to-axon transcytotic pathway to achieve axonal accumulation. NgCAM mutants with a point mutation in a crucial cytoplasmic tail motif (YRSL) are unable to access the transcytotic route. Instead, they were found to travel to the axon on a direct route. Therefore, our results suggest that multiple distinct pathways operate in hippocampal neurons to achieve axonal accumulation of membrane proteins.  相似文献   

15.
Role of the PAR-3-KIF3 complex in the establishment of neuronal polarity   总被引:2,自引:0,他引:2  
Neurons polarize to form elaborate multiple dendrites and one long axon. The establishment and maintenance of axon/dendrite polarity are fundamentally important for neurons. Recent studies have demonstrated that the polarity complex PAR-3-PAR-6-atypical protein kinase C (aPKC) is involved in polarity determination in many tissues and cells. The function of the PAR-3-PAR-6-aPKC protein complex depends on its subcellular localization in polarized cells. PAR-3 accumulates at the tip of growing axons in cultured rat hippocampal neurons, but the molecular mechanism of this localization remains unknown. Here we identify a direct interaction between PAR-3 and KIF3A, a plus-end-directed microtubule motor protein, and show that aPKC can associate with KIF3A through its interaction with PAR-3. The expression of dominant-negative PAR-3 and KIF3A fragments that disrupt PAR-3-KIF3A binding inhibited the accumulation of PAR-3 and aPKC at the tip of the neurites and abolished neuronal polarity. These results suggest that PAR-3 is transported to the distal tip of the axon by KIF3A and that the proper localization of PAR-3 is required to establish neuronal polarity.  相似文献   

16.
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal‐specific kinase cyclin‐dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5‐dependent phosphorylation of the dynein regulator Ndel1 is required for proper re‐routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis‐sorting defects. While inhibition of the CDK5‐Ndel1‐Lis1‐dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein‐dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.   相似文献   

17.
The assembly of functional neuronal networks in the developing animal relies on the polarization of neurons, i.e., the formation of a single axon and multiple dendrites. Breaking the symmetry of neurons depends on cytoskeletal rearrangements. In particular, axon specification requires local dynamic instability of actin and stabilization of microtubules. The polarized cytoskeleton also provides the basis for selective trafficking and retention of cellular components in the future somatodendritic or axonal compartments. Hence, these mechanisms are not only essential to achieve neuronal polarization, but also to maintain it. Different extracellular and intracellular signals converge on the regulation of the cytoskeleton. Most notably, Rho GTPases, PI3K, Ena/VASP, cofilin and SAD kinases are major intracellular regulators of neuronal polarity. Analyzing polarity signals under physiological conditions will provide a better understanding of how neurons can be induced to repolarize under pathological conditions, i.e., to regenerate their axons after central nervous system (CNS) injury.One ambitious aim in cellular biology is to unravel the molecular mechanisms driving cellular asymmetry and polarization. The polarity of neurons is particularly dramatic as neurons undergo complex morphological rearrangements to assemble into neuronal circuits and propagate signals. They start as round neuronal spheres, gradually adopting a complex morphology by forming one long axon and several shorter dendrites to eventually connect to other neurons via synapses. Neuronal compartments segregate into molecularly and functionally distinct zones. For example, signal input takes place at the postsynaptic densities where a chemical signal elicits electric postsynaptic potentials. These potentials are integrated along the dendritic tree and cell body to trigger an action potential arising at the axon hillock and propagating further along the axon. At their terminals, the electrical signal is reconverted into a chemical signal by the release of synaptic vesicles containing neurotransmitter.Neurons maintain their polarity throughout life by different intracellular mechanisms and molecular signals. During the last decade, cell biological and molecular approaches helped to discover many of the molecules and signaling mechanisms regulating neuronal polarity (Yoshimura et al. 2006; Arimura and Kaibuchi 2007; Witte and Bradke 2008). The aim of this article is to summarize the current knowledge and principles of breaking neuronal symmetry to generate functional neurons, and to discuss the future challenges in the field. The article covers two different topics: intrinsic mechanisms that govern symmetry breaking in the absence of external cues (in vitro systems) and the role of extracellular signaling in the establishment of neuronal polarity in vivo.  相似文献   

18.
Matsuda S  Yuzaki M 《Autophagy》2008,4(6):815-816
Neurons are highly polarized cells composed of two distinct domains, the axon and the somatodendritic domain. Although AMPA-type glutamate receptors, which mediate fast excitatory neurotransmission in the vertebrate CNS, are preferentially expressed in the somatodendritic domain, the molecular mechanisms underlying such polarized distribution have remained elusive. We recently demonstrated that adaptor protein complex-4 (AP-4) binds to transmembrane AMPA receptor regulatory proteins (TARPs), thereby mediating the selective trafficking of AMPA receptors to the somatodendritic domain; genetic disruption of AP-4 (AP-4beta(-/-)), results in the mislocalization of TARPs and AMPA receptors in the axons. Similarly, low-density lipoprotein receptors and delta2 glutamate receptors are mislocalized in axons, while other cargos, such as NMDA receptors and metabotropic glutamate receptors, are properly excluded from AP-4beta(-/-) axons. These findings indicate that there exist AP-4-dependent and -independent sorting mechanisms. Unexpectedly, mislocalized AMPA receptors do not reach the cell surface and accumulate in autophagosomes in the bulging portions of AP-4beta(-/-) axons. Several lines of evidence indicate that mislocalized AMPA receptors activate the autophagic pathway. Since increased autophagy and axonal swelling are suggested to occur in various neuronal disorders, further studies using AP-4beta(-/-) mice are warranted to understand the mechanisms regulating autophagy in axons.  相似文献   

19.
During neuron development, the biosynthetic needs of the axon initially outweigh those of dendrites. However, although a localized role for the early secretory pathway in dendrite development has been observed, such a role in axon growth remains undefined. We therefore studied the localization of Sar1, a small GTPase that controls ER export, during early stages of neuronal development that are characterized by selective and robust axon growth. At these early stages, Sar1 was selectively targeted to the axon where it gradually concentrated within varicosities in which additional proteins that function in the early secretory pathway were detected. Sar1 targeting to the axon followed axon specification and was dependent on localized actin instability. Changes in Sar1 expression levels at these early development stages modulated axon growth. Specifically, reduced expression of Sar1, which was initially only detectable in the axon, correlated with reduced axon growth, where as overexpression of Sar1 supported the growth of longer axons. In support of the former finding, expression of dominant negative Sar1 inhibited axon growth. Thus, as observed in lower organisms, mammalian cells use temporal and spatial regulation of endoplasmic reticulum exit site (ERES) to address developmental biosynthetic demands. Furthermore, axons, such as dendrites, rely on ERES targeting and assembly for growth.  相似文献   

20.
BACKGROUND: A wide variety of proteins are transported across epithelial cells by vesicular carriers. This process, transcytosis, is used to generate cell surface polarity and to transport macromolecules between the luminal and serosal sides of the epithelial layer. The polymeric immunoglobulin receptor is a well-characterized transcytotic molecule in epithelia. It binds to its ligand, polymeric immunoglobulin, at the basolateral surface, and the receptor-ligand complex is transcytosed to the apical surface, where the ligand is released. Our previous studies have shown that hippocampal neurons may employ mechanisms similar to those of epithelial cells to sort proteins to two plasma membrane domains. The machinery used for axonal delivery recognizes proteins that are targeted apically in epithelia, whereas basolaterally destined proteins are delivered to the dendrites. It has not been clear, however, whether transcytosis occurs in neurons. RESULTS: We report expression of the polymeric immunoglobulin receptor in cultured hippocampal neurons, using a Semliki Forest Virus expression system, and show by immunofluorescence microscopy that the newly synthesized receptor is targeted from the Golgi complex predominantly to the dendrites - only about 20% of the infected neurons display axonal immunofluorescence. Addition of ligand leads to significant redistribution of the receptor to the axons, shown by an approximately three-fold increase in axonal immunoreactivity with the anti-receptor antibodies. CONCLUSIONS: Our results suggest that a transcytotic route, analogous to that in epithelia, exists in neurons, where it transports proteins from the somatodendritic to the axonal domain. Cultured neurons expressing the polymeric immunoglobulin receptor offer an experimental system that should be useful for further characterization of this novel neuronal pathway at the molecular and functional level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号