首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although retroviruses have been extensively studied for many years, basic questions about how retroviral infections are detected by the immune system and which innate pathways are required for the generation of immune responses remain unanswered. Defining these pathways and how they contribute to the anti-retroviral immune responses would assist in the development of more effective vaccines for retroviral pathogens such as HIV. We have investigated the roles played by CD11c+ dendritic cells (DCs) and by Toll-like receptor (TLR) signaling pathways in the generation of an anti-retroviral immune response against a mouse retroviral pathogen, Friend murine leukemia virus (F-MLV). Specific deletion of DCs during F-MLV infection caused a significant increase in viral titers at 14 days post-infection, indicating the importance of DCs in immune control of the infection. Similarly, Myd88 knockout mice failed to control F-MLV, and sustained high viral titers (107 foci/spleen) for several months after infection. Strikingly, both DC-depleted mice and Myd88 knockout mice exhibited only a partial reduction of CD8+ T cell responses, while the IgG antibody response to F-MLV was completely lost. Furthermore, passive transfer of immune serum from wild-type mice to Myd88 knockout mice rescued control of F-MLV. These results identify TLR signaling and CD11c+ DCs as playing critical roles in the humoral response to retroviruses.  相似文献   

2.
West Nile virus (WNV) is a RNA virus of the family Flaviviridae and the leading cause of mosquito-borne encephalitis in the United States. Humoral immunity is essential for protection against WNV infection; however, the requirements for initiating effective antibody responses against WNV infection are still unclear. CD22 (Siglec-2) is expressed on B cells and regulates B cell receptor signaling, cell survival, proliferation, and antibody production. In this study, we investigated how CD22 contributes to protection against WNV infection and found that CD22 knockout (Cd22−/−) mice were highly susceptible to WNV infection and had increased viral loads in the serum and central nervous system (CNS) compared to wild-type (WT) mice. This was not due to a defect in humoral immunity, as Cd22−/− mice had normal WNV-specific antibody responses. However, Cd22−/− mice had decreased WNV-specific CD8+ T cell responses compared to those of WT mice. These defects were not simply due to reduced cytotoxic activity or increased cell death but, rather, were associated with decreased lymphocyte migration into the draining lymph nodes (dLNs) of infected Cd22−/− mice. Cd22−/− mice had reduced production of the chemokine CCL3 in the dLNs after infection, suggesting that CD22 affects chemotaxis via controlling chemokine production. CD22 was not restricted to B cells but was also expressed on a subset of splenic DCIR2+ dendritic cells that rapidly expand early after WNV infection. Thus, CD22 plays an essential role in controlling WNV infection by governing cell migration and CD8+ T cell responses.  相似文献   

3.
Obesity-associated activation of inflammatory pathways represents a key step in the development of insulin resistance in peripheral organs, partially via activation of TLR4 signaling by fatty acids. Here, we demonstrate that palmitate acting in the central nervous system (CNS) inhibits leptin-induced anorexia and Stat3 activation. To determine the functional significance of TLR signaling in the CNS in the development of leptin resistance and diet-induced obesity in vivo, we have characterized mice deficient for the TLR adaptor molecule MyD88 in the CNS (MyD88ΔCNS). Compared to control mice, MyD88ΔCNS mice are protected from high-fat diet (HFD)-induced weight gain, from the development of HFD-induced leptin resistance, and from the induction of leptin resistance by acute central application of palmitate. Moreover, CNS-restricted MyD88 deletion protects from HFD- and icv palmitate-induced impairment of peripheral glucose metabolism. Thus, we define neuronal MyD88-dependent signaling as a key regulator of diet-induced leptin and insulin resistance in vivo.  相似文献   

4.
金城 《微生物学通报》2010,37(6):0935-0936
<正>沙眼衣原体(Chlamydia trachomatis,Ct)是引起泌尿生殖道感染的常见性病病原体之一,并可导致不孕、异位妊娠、宫颈鳞状细胞癌等并发症[1]。但有关沙眼衣原体确切的致病机制及机体的抗感染机制目前尚不清  相似文献   

5.
Ischemia-reperfusion lung injury is a common cause of acute morbidity and mortality in lung transplant recipients and has been associated with subsequent development of bronchiolitis obliterans syndrome. Recognition of endogenous ligands released during cellular injury (damage-associated molecular patterns; DAMPs) by Toll-like receptors (TLRs), especially TLR4, has increasingly been recognized as a mechanism for inflammation resulting from tissue damage. TLR4 is implicated in the pathogenesis of ischemia-reperfusion injury of multiple organs including heart, liver, kidney and lung. Additionally, activation of TLRs other than TLR4 by DAMPs has been identified in tissues other than the lung. Because all known TLRs, with the exception of TLR3, signal via the MyD88 adapter protein, we hypothesized that lung ischemia-reperfusion injury was mediated by MyD88-dependent signaling. To test this hypothesis, we subjected C57BL/6 wildtype, Myd88 -/-, and Tlr4 -/- mice to 1 hr of left lung warm ischemia followed by 4 hr of reperfusion. We found that Myd88 -/- mice had significantly less MCP-1/CCL2 in the left lung following ischemia-reperfusion as compared with wildtype mice. This difference was associated with dramatically reduced lung permeability. Interestingly, Tlr4 -/- mice had only partial protection from ischemia-reperfusion as compared to Myd88 -/- mice, implicating other MyD88-dependent pathways in lung injury following ischemia-reperfusion. We also found that left lung ischemia-reperfusion caused remote inflammation in the right lung. Finally, using chimeric mice with MyD88 expression restricted to either myeloid or non-myeloid cells, we found that MyD88-dependent signaling in myeloid cells was necessary for ischemia-reperfusion induced lung permeability. We conclude that MyD88-dependent signaling through multiple receptors is important in the pathogenesis of acute lung inflammation and injury following ischemia and reperfusion.  相似文献   

6.
Neuroinflammation is critical in the neural cell death seen in stroke. It has been shown that CNS and peripheral responses drive this neuroinflammatory response in the brain. The Toll-like receptors (TLRs) are important regulators of inflammation in response to both exogenous and endogenous stressors. Taking advantage of a downstream adapter molecule that controls the majority of TLR signalling, this study investigated the role of the TLR adaptor protein myeloid differentiation factor 88 (MyD88) in the control of CNS and peripheral inflammation. Reversible middle-cerebral artery occlusion was used as the model of stroke in vivo; in vitro primary cultured neurons and glia were subject to four hours of oxygen and glucose deprivation (OGD). Both in vitro and in vivo Myd88−/− animals or cells were compared with wild type (WT). We found that after stroke Myd88−/− animals have a larger infarct volume compared to WT animals. Interestingly, in vitro there was no difference between the survival of Myd88−/− and WT cells following OGD, suggesting that peripheral responses were influencing stroke outcome. We therefore generated bone marrow chimeras and found that Myd88−/− animals have a smaller stroke infarct than their radiation naive counterparts if their hematopoietic cells are WT. Furthermore, WT animals have a larger stroke than their radiation naive counterparts if the hematopoietic cells are Myd88−/−. We have demonstrated that MyD88-dependent signalling in the hematopoietic cell lineage reduces infarct size following stroke and that infiltrating cells to the site of neuroinflammation are neuroprotective following stroke.  相似文献   

7.
The ehrlichiae are small Gram-negative obligate intracellular bacteria in the family Anaplasmataceae. Ehrlichial infection in an accidental host may result in fatal diseases such as human monocytotropic ehrlichiosis, an emerging, tick-borne disease. Although the role of adaptive immune responses in the protection against ehrlichiosis has been well studied, the mechanism by which the innate immune system is activated is not fully understood. Using Ehrlichia muris as a model organism, we show here that MyD88-dependent signaling pathways play a pivotal role in the host defense against ehrlichial infection. Upon E. muris infection, MyD88-deficient mice had significantly impaired clearance of E. muris, as well as decreased inflammation, characterized by reduced splenomegaly and recruitment of macrophages and neutrophils. Furthermore, MyD88-deficient mice produced markedly lower levels of IL-12, which correlated well with an impaired Th1 immune response. In vitro, dendritic cells, but not macrophages, efficiently produced IL-12 upon E. muris infection through a MyD88-dependent mechanism. Therefore, MyD88-dependent signaling is required for controlling ehrlichial infection by playing an essential role in the immediate activation of the innate immune system and inflammatory cytokine production, as well as in the activation of the adaptive immune system at a later stage by providing for optimal Th1 immune responses.  相似文献   

8.
9.
10.
Zoonotic coronaviruses, including the one that caused severe acute respiratory syndrome (SARS), cause significant morbidity and mortality in humans. No specific therapy for any human coronavirus is available, making vaccine development critical for protection against these viruses. We previously showed that recombinant SARS coronavirus (SARS-CoV) (Urbani strain based) lacking envelope (E) protein expression (rU-ΔE) provided good but not perfect protection in young mice against challenge with virulent mouse-adapted SARS-CoV (MA15). To improve vaccine efficacy, we developed a second set of E-deleted vaccine candidates on an MA15 background (rMA15-ΔE). rMA15-ΔE is safe, causing no disease in 6-week-, 12-month-, or 18-month-old BALB/c mice. Immunization with this virus completely protected mice of three ages from lethal disease and effected more-rapid virus clearance. Compared to rU-ΔE, rMA15-ΔE immunization resulted in significantly greater neutralizing antibody and SARS-CoV-specific CD4 and CD8 T cell responses. After challenge, inflammatory cell infiltration, edema, and lung destruction were decreased in the lungs of rMA15-ΔE-immunized mice compared to those in rU-ΔE-immunized 12-month-old mice. Collectively, these results show that immunization with a species-adapted attenuated coronavirus lacking E protein expression is safe and provides optimal immunogenicity and long-term protection against challenge with lethal virus. This approach will be generally useful for development of vaccines protective against human coronaviruses as well as against coronaviruses that cause disease in domestic and companion animals.  相似文献   

11.
NOD-like receptor (NLR) proteins (Nlrps) are cytosolic sensors responsible for detection of pathogen and danger-associated molecular patterns through unknown mechanisms. Their activation in response to a wide range of intracellular danger signals leads to formation of the inflammasome, caspase-1 activation, rapid programmed cell death (pyroptosis) and maturation of IL-1β and IL-18. Anthrax lethal toxin (LT) induces the caspase-1-dependent pyroptosis of mouse and rat macrophages isolated from certain inbred rodent strains through activation of the NOD-like receptor (NLR) Nlrp1 inflammasome. Here we show that LT cleaves rat Nlrp1 and this cleavage is required for toxin-induced inflammasome activation, IL-1 β release, and macrophage pyroptosis. These results identify both a previously unrecognized mechanism of activation of an NLR and a new, physiologically relevant protein substrate of LT.  相似文献   

12.
Previous studies have shown that the Bacillus anthracis lethal toxin can induce both necrosis and apoptosis in mouse macrophage-like J774A.1 cells depending on both the toxin concentration and the phosphatase activity. In this study several protein kinase or phosphatase inhibitors were employed to evaluate the hypothesis that the lethal toxin induces cell death via protein phosphorylation processes. Pretreatment with a serine/threonine phosphatase inhibitor Calyculin A (300 nM) could inhibit about 78% of cell death induced by the lethal toxin, whereas inhibitors of kinases, such as H7, HA, Sphingosine, and Genestein, but other inhibitors of phosphatases, such as Okadaic acid, Tautomycin, and Cyclosporin A, did not. In addition, recent reports have demonstrated that the MEK1 protein may serve as a proteolytic target within its N-terminus for lethal factor cleavage. In this study, Calyculin A is shown to enhance the phosphorylation of the MEK1 protein. This prevents the cleavage of the MEK1 by lethal factor. These results suggest that a putative Calyculin A-sensitive protein phosphatase is involved in anthrax toxin induced cytotoxicity and that the blocking effect of Calyculin A on lethal factor cytotoxicity may be mediated through the MEK signaling pathway. Received: 27 December 2000 / Accepted: 1 June 2001  相似文献   

13.
Plant defense involves a complex array of biochemical interactions, many of which occur in the extracellular environment. The apical 1- to 2-mm root tip housing apical and root cap meristems is resistant to infection by most pathogens, so growth and gravity sensing often proceed normally even when other sites on the root are invaded. The mechanism of this resistance is unknown but appears to involve a mucilaginous matrix or “slime” composed of proteins, polysaccharides, and detached living cells called “border cells.” Here, we report that extracellular DNA (exDNA) is a component of root cap slime and that exDNA degradation during inoculation by a fungal pathogen results in loss of root tip resistance to infection. Most root tips (>95%) escape infection even when immersed in inoculum from the root-rotting pathogen Nectria haematococca. By contrast, 100% of inoculated root tips treated with DNase I developed necrosis. Treatment with BAL31, an exonuclease that digests DNA more slowly than DNase I, also resulted in increased root tip infection, but the onset of infection was delayed. Control root tips or fungal spores treated with nuclease alone exhibited normal morphology and growth. Pea (Pisum sativum) root tips incubated with [32P]dCTP during a 1-h period when no cell death occurs yielded root cap slime containing 32P-labeled exDNA. Our results suggest that exDNA is a previously unrecognized component of plant defense, an observation that is in accordance with the recent discovery that exDNA from white blood cells plays a key role in the vertebrate immune response against microbial pathogens.Root diseases caused by soil-borne plant pathogens are a perennial source of crop loss worldwide (Bruehl, 1986; Curl and Truelove, 1986). These diseases are of increasing concern, as pesticides like methyl bromide are removed from the market due to environmental concerns (Gilreath et al., 2005). One possible alternative means of crop protection is to exploit natural mechanisms of root disease resistance (Nelson, 1990; Goswami and Punja, 2008; Shittu et al., 2009). Direct observation of root systems under diverse conditions has revealed that root tips, in general, are resistant to infection even when lesions are initiated elsewhere on the same plant root (Foster et al., 1983; Bruehl, 1986; Curl and Truelove, 1986; Smith et al., 1992; Gunawardena et al., 2005; Wen et al., 2007). This form of disease resistance is important for crop production because root growth and its directional movement in response to gravity, water, and other signals can proceed normally as long as the root tip is not invaded. The 1- to 2-mm apical region of roots houses the root meristems required for root growth and cap development, and when infection does occur, root development ceases irreversibly within a few hours even in the absence of severe necrosis (Gunawardena and Hawes, 2002). Mechanisms underlying root tip resistance to infection are unclear, but the phenomenon appears to involve root cap “slime,” a mucilaginous matrix produced by the root cap (Morré et al., 1967; Rougier et al., 1979; Foster, 1982; Chaboud, 1983; Guinel and McCully, 1986; Moody et al., 1988; Knee et al., 2001; Barlow, 2003; Iijima et al., 2008). Within the root cap slime of cereals, legumes, and most other crop species are specialized populations of living cells called root “border cells” (Supplemental Fig. S1; Hawes et al., 2000). Border cell numbers increase in response to pathogens and toxins such as aluminum, and the cell populations maintain a high rate of metabolic activity even after detachment from the root cap periphery (Brigham et al., 1995; Miyasaka and Hawes, 2000).As border cells detach from roots of cereals and legumes, a complex of more than 100 proteins, termed the root cap secretome, is synthesized and exported from living cells into the matrix ensheathing the root tip (Brigham et al., 1995). The profile of secreted proteins changes in response to challenge with soil-borne bacteria (De-la-Peña et al., 2008). In pea (Pisum sativum), root tip resistance to infection is abolished in response to proteolytic degradation of the root cap secretome (Wen et al., 2007). In addition to an array of antimicrobial enzymes and other proteins known to be components of the extracellular matrix and apoplast of higher plants, the DNA-binding protein histone H4 unexpectedly was found to be present among the secreted proteins (Wen et al., 2007). One explanation for the presence of histone is global leakage of material from disrupted nuclei in dead cells, but no cell death occurs during delivery of the secretome (Brigham et al., 1995; Wen et al., 2007). An alternative explanation for the presence of a secreted DNA-binding protein is that extracellular DNA (exDNA) also is present in root cap slime.exDNA has long been known to be a component of slimy biological matrices ranging from purulent localized human infections to bacterial capsules, biofilms, and snail exudate (Sherry and Goeller, 1950; Leuchtenberger and Schrader, 1952; Braun and Whallon, 1954; Smithies and Gibbons, 1955; Catlin, 1956; Fahy et al., 1993; Allesen-Holm et al., 2006; Spoering and Gilmore, 2006; Qin et al., 2007; Izano et al., 2008). Specialized white blood cells in humans and other species including fish recently have been shown to deploy a complex neutrophil extracellular “trap” (NET), composed of DNA and a collection of enzymes, in response to infection (Brinkmann et al., 2004; Brinkmann and Zychlinsky, 2007; Palić et al., 2007; Wartha et al., 2007; Yousefi et al., 2008). NETs appear to kill bacterial, fungal, and protozoan pathogens by localizing them within a matrix of antimicrobial peptides and proteins (Urban et al., 2006; Wartha et al., 2007; Guimaraes-Costa et al., 2009). Several extracellular peptides and proteins implicated in neutrophil function, including histone, also are present within the pea root cap secretome (Wen et al., 2007). exDNA linked with extracellular histone is a structural component of NETs, and treatment with DNase destroys NET integrity and function (Wartha et al., 2007). Moreover, human pathogens including group A Streptococcus and Streptococcus pneumoniae release extracellular DNase (Sherry and Goeller, 1950). When these activities are eliminated by mutagenesis of the encoding genes, bacteria lose their normal ability to escape the NET and multiply at the site of infection (Sumby et al., 2005; Buchanan et al., 2006). Here, we report that, in addition to histone and other secretome proteins, exDNA also is a component of root cap slime. When this exDNA is digested enzymatically, root tip resistance to infection is abolished.  相似文献   

14.
15.
Post-exposure prophylaxis (PEP) against rabies infection consists of a combination of passive immunisation with plasma-derived human or equine immune globulins and active immunisation with vaccine delivered shortly after exposure. Since anti-rabies immune globulins are expensive and scarce, there is a need for cheaper alternatives that can be produced more consistently. Previously, we generated potent virus-neutralising VHH, also called Nanobodies, against the rabies glycoprotein that are effectively preventing lethal disease in an in vivo mouse model. The VHH domain is the smallest antigen-binding functional fragment of camelid heavy chain-only antibodies that can be manufactured in microbial expression systems. In the current study we evaluated the efficacy of half-life extended anti-rabies VHH in combination with vaccine for PEP in an intranasal rabies infection model in mice. The PEP combination therapy of systemic anti-rabies VHH and intramuscular vaccine significantly delayed the onset of disease compared to treatment with anti-rabies VHH alone, prolonged median survival time (35 versus 14 days) and decreased mortality (60% versus 19% survival rate), when treated 24 hours after rabies virus challenge. Vaccine alone was unable to rescue mice from lethal disease. As reported also for immune globulins, some interference of anti-rabies VHH with the antigenicity of the vaccine was observed, but this did not impede the synergistic effect. Post exposure treatment with vaccine and human anti-rabies immune globulins was unable to protect mice from lethal challenge. Anti-rabies VHH and vaccine act synergistically to protect mice after rabies virus exposure, which further validates the possible use of anti-rabies VHH for rabies PEP.  相似文献   

16.
17.
The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection.  相似文献   

18.
Enterovirus 71 (EV71) causes hand, foot, and mouth disease and severe neurological disorders in children. Human scavenger receptor class B member 2 (hSCARB2) and P-selectin glycoprotein ligand-1 (PSGL-1) are identified as receptors for EV71. The underling mechanism of PSGL-1-mediated EV71 entry remains unclear. The endocytosis required for EV71 entry were investigated in Jurkat T and mouse L929 cells constitutively expressing human PSGL-1 (PSGL-1-L929) or human rhabdomyosarcoma (RD) cells displaying high SCARB2 but no PSGL-1 by treatment of specific inhibitors or siRNA. We found that disruption of clathrin-dependent endocytosis prevented EV71 infection in RD cells, while there was no influence in Jurkat T and PSGL-1-L929 cells. Disturbing caveolar endocytosis by specific inhibitor or caveolin-1 siRNA in Jurkat T and PSGL-1-L929 cells significantly blocked EV71 infection, whereas it had no effect on EV71 infection in RD cells. Confocal immunofluorescence demonstrated caveola, and EV71 was directly colocalized. pH-dependent endosomal acidification and intact membrane cholesterol were important for EV71 infection, as judged by the pretreatment of inhibitors that abrogated the infection. A receptor-dominated endocytosis of EV71 infection was observed: PSGL-1 initiates caveola-dependent endocytosis and hSCARB2 activates clathrin-dependent endocytosis.  相似文献   

19.
Plasmacytoid dendritic cells (pDCs) are the major producers of type I IFN in response to viral infection and have been shown to direct both innate and adaptive immune responses in vitro. However, in vivo evidence for their role in viral infection is lacking. We evaluated the contribution of pDCs to acute and chronic virus infection using the feeble mouse model of pDC functional deficiency. We have previously demonstrated that feeble mice have a defect in TLR ligand sensing. Although pDCs were found to influence early cytokine secretion, they were not required for control of viremia in the acute phase of the infection. However, T cell priming was deficient in the absence of functional pDCs and the virus-specific immune response was hampered. Ultimately, infection persisted in feeble mice. We conclude that pDCs are likely required for efficient T cell priming and subsequent viral clearance. Our data suggest that reduced pDC functionality may lead to chronic infection.  相似文献   

20.

Background

Helicobacter pylori, a lifelong and typically asymptomatic infection of the stomach, profoundly alters gastric immune responses, and may benefit the host in protection against other pathogens. We explored the hypothesis that H. pylori contributes to the control of infection with Mycobacterium tuberculosis.

Methodology/Principal Findings

We first examined M. tuberculosis-specific IFN-γ and H. pylori antibody responses in 339 healthy Northern Californians undergoing routine tuberculin skin testing. Of 97 subjects (29%) meeting criteria for latent tuberculosis (TB) infection (LTBI), 45 (46%) were H. pylori seropositive. Subjects with LTBI who were H. pylori-seropositive had 1.5-fold higher TB antigen-induced IFN-γ responses (p = 0.04, ANOVA), and a more Th-1 like cytokine profile in peripheral blood mononuclear cells, compared to those who were H. pylori seronegative. To explore an association between H. pylori infection and clinical outcome of TB exposure, we evaluated H. pylori seroprevalence in baseline samples from two high risk TB case-contact cohorts, and from cynomolgus macaques experimentally challenged with M. tuberculosis. Compared to 513 household contacts who did not progress to active disease during a median 24 months follow-up, 120 prevalent TB cases were significantly less likely to be H. pylori infected (AOR: 0.55, 95% CI 0.0.36–0.83, p = 0.005), though seroprevalence was not significantly different from non-progressors in 37 incident TB cases (AOR: 1.35 [95% CI 0.63–2.9] p = 0.44). Cynomolgus macaques with natural H. pylori infection were significantly less likely to progress to TB 6 to 8 months after M. tuberculosis challenge (RR: 0.31 [95% CI 0.12–0.80], p = 0.04).

Conclusions/Significance

H. pylori infection may induce bystander effects that modify the risk of active TB in humans and non-human primates. That immunity to TB may be enhanced by exposure to other microbial agents may have important implications for vaccine development and disease control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号