首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cytokine》2014,65(2):126-129
Neutrophil microparticles (NMs) are scarce in the circulation but are highly enriched at sites of inflammation and exert profound effects on immune cells. In the present study, we addressed whether NMs modulate cytokine-producing capacity of natural killer (NK) cells. NMs inhibited the production of IFN-γ and TNF-α but enhanced the release of TGF-β1 by IL-2/IL-12-activated NK cells. The inhibitory effect of NMs was strongly attenuated by blockade of phosphatidylserine exposed on NMs. Thus, NMs skew the cytokine profile of NK cells from pro-inflammatory toward anti-inflammatory, potentially favoring the resolution of inflammation.  相似文献   

2.
BackgroundThe balance between oxidation and anti-oxidation is believed to be critical in maintaining healthy biological systems. However, our endogenous antioxidant defense systems are incomplete without exogenous antioxidants and, therefore, there is a continuous demand for exogenous antioxidants to prevent stress and ageing associated disorders. Nanotechnology has yielded enormous variety of nanomaterials (NMs) of which metallic and carbonic (mainly fullerenes) NMs, with redox property, have been found to be strong scavengers of ROS and antioxidants in preclinical in vitro and in vivo models.Scope of reviewRedox activity of metal based NMs and membrane translocation time of fullerene NMs seem to be the major determinants in ROS scavenging potential exhibited by these NMs. A comprehensive knowledge about the effects of ROS scavenging NMs in cellular antioxidant signalling is largely lacking. This review compiles the mechanisms of ROS scavenging as well as antioxidant signalling of the aforementioned metallic and fullerene NMs.Major conclusionsDirect interaction between NMs and proteins does greatly affect the corona/adsorption formation dynamics but such interaction does not provide the explanation behind diverse biological outcomes induced by NMs. Indirect interaction, however, that could occur via NMs uptake and dissolution, NMs ROS induction and ROS scavenging property, and NMs membrane translocation time seem to work as a central mode of interaction.General significanceThe usage of potential antioxidant NMs in biological systems would greatly impact the field of nanomedicine. ROS scavenging NMs hold great promise in the future treatment of ROS related degenerative disorders.  相似文献   

3.
Manufactured nanomaterials (NM) are already used in consumer products and exposure modelling predicts releases of ng to low μg l(-1) levels of NMs into surface waters. The exposure of aquatic ecosystems, and therefore fishes, to manufactured NMs is inevitable. This review uses a physiological approach to describe the known effects of NMs on the body systems of fishes and to identify the internal target organs, as well as outline aspects of colloid chemistry relevant to fish biology. The acute toxicity data, suggest that the lethal concentration for many NMs is in the mg l(-1) range, and a number of sublethal effects have been reported at concentrations from c. 100 μg to 1 mg l(-1). Exposure to NMs in the water column can cause respiratory toxicity involving altered ventilation, mucus secretion and gill pathology. This may not lead, however, to overt haematological disturbances in the short term. The internal target organs include the liver, spleen and haematopoietic system, kidney, gut and brain; with toxic effects involving oxidative stress, ionoregulatory disturbances and organ pathologies. Some pathology appears to be novel for NMs, such as vascular injury in the brain of rainbow trout Oncorhynchus mykiss with carbon nanotubes. A lack of analytical methods, however, has prevented the reporting of NM concentrations in fish tissues, and the precise uptake mechanisms across the gill or gut are yet to be elucidated. The few dietary exposure studies conducted show no effects on growth or food intake at 10-100 mg kg(-1) inclusions of NMs in the diet of O. mykiss, but there are biochemical disturbances. Early life stages are sensitive to NMs with reports of lethal toxicity and developmental defects. There are many data gaps, however, including how water quality alters physiological responses, effects on immunity and chronic exposure data at environmentally relevant concentrations. Overall, the data so far suggest that the manufactured NMs are not as toxic as some traditional chemicals (e.g. some dissolved metals) and the innovative, responsible, development of nanotechnology should continue, with potential benefits for aquaculture, fisheries and fish health diagnostics.  相似文献   

4.
NMs (nanomaterials), defined as materials with at least one dimension smaller than 100?nm, are able to induce genotoxic effects. One of the hypotheses of the mode-of-action in which they exert their genotoxic potential is to mechanically interfere with subcellular structures, in particular the microtubules. In the present paper, we review studies exploring interactions between NMs and tubulin; therefore a PubMed literature search was performed. From this search 12 studies, applying both acellular and cellular assays, were retrieved and are summarized according to endpoint and particle type. These studies show that there are interactions between different types of NMs and tubulins in both acellular and cellular systems. For several types of NMs, the multi-walled carbon nanotubes, amorphous SiO(2), TiO(2) and CoCr, an induction of aneuploidy was observed in vitro. There is, therefore, a critical need to assess the capacity of NMs to interfere with the cytoskeleton, and in particular the tubulins. This might require definition of relevant dosimetry, adaptations of some testing protocols, possibly development of new methodologies and studies on a larger size-range of NMs.  相似文献   

5.
Nanomaterials (NMs) are particles with at least one dimension between 1 and 100 nm and a large surface area to volume ratio, providing them with exceptional qualities that are exploited in a variety of industrial fields. Deposition of NMs into environmental waters during or after use leads to the adsorption of an ecological (eco‐) corona, whereby a layer of natural biomolecules coats the NM changing its stability, identity and ultimately toxicity. The eco‐corona is not currently incorporated into ecotoxicity tests, although it has been shown to alter the interactions of NMs with organisms such as Daphnia magna (D. magna). Here, the literature on environmental biomolecule interactions with NMs is synthesized and a framework for understanding the eco‐corona composition and its role in modulating NMs ecotoxicity is presented, utilizing D. magna as a model. The importance of including biomolecules as part of the current international efforts to update the standard testing protocols for NMs, is highlighted. Facilitating the formation of an eco‐corona prior to NMs ecotoxicity testing will ensure that signaling pathways perturbed by the NMs are real rather than being associated with the damage arising from reactive NM surfaces “acquiring” a corona by pulling biomolecules from the organism's surface.  相似文献   

6.

Due to their large-scale manufacture and widespread application, there have been a number of studies related to toxicological assessment of nanomaterials (NMs) over the past decade. Although there has been extensive research on the cytotoxicity of NMs, concerns have been raised about their possible genotoxicity. The genome is constantly exposed to genotoxic insults that can lead to DNA damage, which in turn can have consequences for health, such as the induction of carcinogenesis. This comprehensive review focuses on the direct and indirect interactions of NMs with DNA. Factors influencing the genotoxicity of NMs, such as their physicochemical characteristics, are also discussed. The mechanisms involved in the direct and indirect interactions of NMs with DNA are also reviewed. Many studies have shown that ENMs have genotoxic effects, such as chromosomal fragmentation, DNA strand breaks, point mutations, oxidative DNA adducts, apoptosis, hypoxic responses, mitochondrial dysfunction, and epigenetic modifications. As the data reported to date are inconsistent, it is difficult to draw definitive conclusions regarding the features of NMs that promote genotoxicity. Therefore, challenges and future research perspectives are discussed. This review provides insights into the genotoxic effects of NMs and their consequences for human health.

  相似文献   

7.
Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.  相似文献   

8.
Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry – hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO – uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques – precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially ‘weak-embryotoxic’ and ZnO and SiO2 NMs as ‘non-embryotoxic’. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects.  相似文献   

9.
Neuromelanins (NMs) are neuronal pigments of melanic-lipidic type which accumulate during aging. They are involved in protective and degenerative mechanisms depending on the cellular context, however their structures are still poorly understood. NMs from nine human brain areas were analyzed in detail. Elemental analysis led to identification of three types of NM, while infrared spectroscopy showed that NMs from neurons of substantia nigra and locus coeruleus, which selectively degenerate in Parkinson’s disease, have similar structure but different from NMs from brain regions not targeted by the disease. Synthetic melanins containing Fe and bovine serum albumin were prepared to model the natural product and help clarifying the structure of NMs. Extensive nuclear magnetic resonance spectroscopy studies showed the presence of dolichols both in the soluble and insoluble parts of NM. Diffusion measurements demonstrated that the dimethyl sulfoxide soluble components consist of oligomeric precursors with MWs in the range 1.4–52 kDa, while the insoluble part contains polymers of larger size but with a similar composition. These data suggest that the selective vulnerability of neurons of substantia nigra and locus coeruleus in Parkinson’s disease might depend on the structure of the pigment. Moreover, they allow to propose a pathway for NM biosynthesis in human brain.  相似文献   

10.
The effects of Fipronil as well as the comparison between synaptosomal natural membranes (NMs) of mammal (NMBt) and insect (NMTi), that contain the ionotropic receptor GABA, was studied.This is the first report of biophysical studies of insect NMs and one of the first on the effects of Fipronil over membranes.Our result showed that NMTi appears to be more disordered than NMBt, generates more compressible films at the air-water interphase and they both showed a 2D transition in its compression isotherm. Each NM showed different lateral distribution and characteristic domain shapes when observed by DiI-C18 epifluorescence microscopy. Laurdan GP images suggested that in NMTi films, Ld and Ld-Lo phases are evenly abundant whereas in NMBt the Ld-Lo phase predominates. The differences observed might be attributed to differences in NMs lipid composition.The lipophilic insecticide Fipronil penetrated both NMs packed up to bilayer-compatible lateral pressures. The interface rearrangement after πt affected the interaction of Fipronil mainly in NMTi. The capability of the compound to be incorporated in expanded Langmuir films and remain when they are compressed was also observed. Fluorescence microscopy images suggest a disordering effect in NMTi while it ordered NMBt, showing that Fipronil affected the lateral distribution of lipids in NMs.We suggest that changes in order and lipid lateral organization caused by Fipronil might contribute to its mechanism of action.Our experiments evidenced that differences in the physical state of insect and mammal membranes become relevant for the design of new compounds with potential biological activity.  相似文献   

11.
Muller C  Calsou P  Salles B 《Biochimie》2000,82(1):25-28
The DNA-dependent protein kinase plays a critical role in mammalian DNA double strand break (DSB) repair and in specialized recombination, such as lymphoid V(D)J recombination. Its regulatory subunit Ku (dimer of the Ku70 and Ku80 protein) binds to DNA and recruits the kinase catalytic sub-unit, DNA-PKcs. We show here that three different strains deficient in either the Ku80 (xrs-6) or DNA-PKcs (V-3, scid) component of DNA-PK are markedly sensitive (3.5- to 5-fold) to a group of DNA cross-linking agents, the nitrogen mustards (NMs) (melphalan and mechlorethamine) as compared to their parental cell line. Importantly, the level of hypersensitivity to these drugs was close to the level of hypersensitivity observed for radiomimetic agents that create DSBs in DNA (bleomycin and neocarzinostatin). In addition, sensitivity to NMs was restored to the parental level in the xrs-6 cell line stably transfected with the human Ku80 gene (xrs-6/Ku80), showing unequivocally that DNA-PK is involved in this phenotype. These results indicate that a function of the whole DNA-PK protein complex is involved in the cellular response to NMs and suggest that the repair of DNA interstrand cross-links induced in DNA by NMs involved a DNA-PK dependent pathway that shares common features with DNA DSBs repair.  相似文献   

12.
The zebrafish posterior lateral line (pLL) is a sensory system that comprises clusters of mechanosensory organs called neuromasts (NMs) that are stereotypically positioned along the surface of the trunk. The NMs are deposited by a migrating pLL primordium, which is organized into polarized rosettes (proto-NMs). During migration, mature proto-NMs are deposited from the trailing part of the primordium, while progenitor cells in the leading part give rise to new proto-NMs. Wnt signaling is active in the leading zone of the primordium and global Wnt inactivation leads to dramatic disorganization of the primordium and a loss of proto-NM formation. However, the exact cellular events that are regulated by the Wnt pathway are not known. We identified a mutant strain, lef1(nl2), that contains a lesion in the Wnt effector gene lef1. lef1(nl2) mutants lack posterior NMs and live imaging reveals that rosette renewal fails during later stages of migration. Surprisingly, the overall primordium patterning, as assayed by the expression of various markers, appears unaltered in lef1(nl2) mutants. Lineage tracing and mosaic analyses revealed that the leading cells (presumptive progenitors) move out of the primordium and are incorporated into NMs; this results in a decrease in the number of proliferating progenitor cells and eventual primordium disorganization. We concluded that Lef1 function is not required for initial primordium organization or migration, but is necessary for proto-NM renewal during later stages of pLL formation. These findings revealed a novel role for the Wnt signaling pathway during mechanosensory organ formation in zebrafish.  相似文献   

13.
The conventional colorimetric assays based on measurement of the metabolic activity are routinely used to evaluate the cytotoxicity of nanomaterials (NMs). However, due to the varying absorbance properties of plasmonic NMs in the visible region of the spectrum, obtained results can be misleading. In this study, MTT, MTS, and WST-1 colorimetric cell viability assays were evaluated in the presence of gold (AuNPs) or silver nanoparticles (AgNPs). Since a living cell a complex system containing many molecular and ionic species, the plasmonic AuNP and AgNPs may selectively interact with intracellular components possessing thiol, amino, and carboxyl group moieties change the aggregation behavior of the NMs and thus their absorbance. A series of UV/Vis and DLS experiments were conducted to understand the interference possibility of the tested plasmonic NMs. The results show that the AuNPs and AgNPs do not have absorption at the wavelength where MTT formazan is measured while the both NPs may interfere with absorbance of MTS and WST-1 formazan.The overall assessments show that MTT assay is more suitable for the cell viability evaluation of spherical AuNPs and AgNPs with an average diameter of 50 nm. This study also suggests that a preliminary ex situ evaluation of plasmonic nanoparticles can provide valuable information for the suitability of the assay.  相似文献   

14.
15.
Context: Magnetic nanomaterials (Fe3O4 NMs) have become novel tools with multiple biological and medical applications because of their biocompatibility. However, adverse health effects of these NMs are of great interest to learn.

Objective: This study was designed to assess the size and dose-dependent effects of Fe3O4 NMs and its bulk on oxidative stress biomarkers after post–subacute treatment in female Wistar rats.

Methods: Rats were daily administered with 30, 300 and 1000?mg/kg b.w. doses for 28?d of Fe3O4 NMs and its bulk for biodistribution and histopathological studies.

Results: Fe3O4 NMs treatment caused significant increase in lipid peroxidation levels of treated rats. It was also observed that the NM treatment elicited significant changes in enzyme activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase in treated rat organs with major reduction in glutathione content. Metal content analysis revealed that tissue deposition of NM in the organs was higher when compared to bulk and caused histological changes in liver.

Conclusion: This study demonstrated that for same dose, NM showed higher bioaccumulation, oxidative stress and tissue damage than its bulk. The difference in toxic effect of Fe3O4 nano and bulk could be related to their altered physicochemical properties.  相似文献   

16.
The alveolar respiratory unit constitutes one of the main targets of inhaled nanoparticles; the effect of engineered nanomaterials (NMs) on human health is largely unknown. Surfactant protein D (SP-D) is synthesized by alveolar type II epithelial cells and released into respiratory secretions; its main function is in immune defence, notably against inhaled microbes. SP-D also plays an important role in modulating an appropriate inflammatory response in the lung, and reduced SP-D is associated with a number of inflammatory lung diseases. Adsorption of SP-D to inhaled NMs may facilitate their removal via macrophage phagocytosis. This study addresses the hypothesis that the chemistry, size and surface modification of engineered NMs will impact on their interaction with, and adsorption of, SP-D. To this purpose, we have examined the interactions between SP-D in human lung lavage and two NMs, carbon nanotubes and polystyrene nanoparticles, with different surface functionalization. We have demonstrated that particle size, functionalization and concentration affect the adsorption of SP-D from human lung lavage. Functionalization with negatively charged groups enhanced the amount of SP-D binding. While SP-D binding would be expected to enhance macrophage phagocytosis, these results suggest that the degree of binding is markedly affected by the physicochemistry of the NM and that deposition of high levels of some nanoparticles within the alveolar unit might deplete SP-D levels and affect alveolar immune defence mechanisms.  相似文献   

17.
In this work in situ proliferation of A549 human lung epithelial carcinoma cells exposed to nanomaterials (NMs) was investigated in the presence or absence of 10% serum. NMs were selected based on chemical composition, size, charge and shape (Lys-SiO(2), TiO(2), ZnO, and multi walled carbon nanotubes, MWCNTs). Cells were treated with NMs and 4h later, cytochalasin-B was added. 36 h later, cell morphology was analyzed under a light microscope. Nuclearity was scored to determine the cytokinesis-block proliferation index (CBPI). CBPI, based on percentage of mono-, bi- and multi-nucleated cells, reflects cell toxicity and cell cycle delay. For some conditions depending on NM type (TiO(2) and MWCNT) and serum concentration (0%) scoring of CBPI was impossible due to overload of agglomerated NMs. Moreover, where heavy agglomeration occurs, micronuclei (MN) detection and scoring under microscope was prevented. A statistically significant decrease of CBPI was found for ZnO NM suspended in medium in the absence or presence of 10% serum at 25 μg/ml and 50 μg/ml, respectively and for Lys-SiO(2) NM at 3.5 μg/ml in 0% serum. Increase in MN frequency was observed in cells treated in 10% serum with 50 μg/ml ZnO. In 0% serum, the concentrations tested led to high toxicity. No genotoxic effects were induced by Lys-SiO(2) both in the absence or presence of serum up to 5 μg/ml. No toxicity was detected for TiO(2) and MWCNTs in both 10% and 0% serum, up to the dose of 250 μg/ml. Restoration of CBPI comparable to untreated control was shown for cells cultured without serum and treated with 5 μg/ml of Lys-SiO(2) NM pre-incubated in 100% serum. This observation confirms the protective effect of serum on Lys-SiO(2) NM cell toxicity. In conclusion in situ CBPI is proposed as a simple preliminary assay to assess both NMs induced cell toxicity and feasibility of MN scoring under microscope.  相似文献   

18.
BackgroundNanomaterials (NMs) are often exposed to a broad range of biomolecules of different abundances. Biomolecule sorption driven by various interfacial forces determines the surface structure and composition of NMs, subsequently governs their functionality and the reactivity of the adsorbed biomolecules. Isothermal titration calorimetry (ITC) is a nondestructive technique that quantifies thermodynamic parameters through in-situ measurement of the heat absorption or release associated with an interaction.Scope of reviewThis review highlights the recent applications of ITC in understanding the thermodynamics of interactions between various nanoparticles (NPs) and biomolecules. Different aspects of a typical ITC experiment that are crucial for obtaining accurate and meaningful data, as well as the strengths, weaknesses, and challenges of ITC applications to NP research were discussed.Major conclusionsITC reveals the driving forces behind biomolecule–NP interactions and the effects of the physicochemical properties of both NPs and biomolecules by quantifying the crucial thermodynamics parameters (e.g., binding stoichiometry, ΔH, ΔS, and ΔG). Complimentary techniques would strengthen the interpretation of ITC results for a more holistic understanding of biomolecule–NP interactions.General significanceThe thermodynamic information revealed by ITC and its complimentary characterizations is important for understanding biomolecule–NP interactions that are fundamental to the biomedical and environmental applications of NMs and their toxicological effects. This article is part of a Special Issue entitled Microcalorimetry in the BioSciences — Principles and Applications, edited by Fadi Bou-Abdallah.  相似文献   

19.
Skp2 (S-phase kinase associated protein 2) controls progression from G- to S-phase by promoting the proteolysis of the cyclin dependent kinase inhibitor p27KIP1. Despite the fact that a p27KIP1 decrease has been documented in melanoma progression, the role of Skp2 in these tumours is unknown. We therefore examined by immunohistochemistry the expression of Skp2, p27KIP1 and Ki-67 in 10 naevi (Ns), 15 superficial spreading melanomas (SSMs), 10 nodular melanomas (NMs) and 14 melanoma metastases (Ms). Nuclear Skp2 expression augmented with increasing malignancy (Ns: 1.4%, SSMs: 5.6%, NMs: 17.3%, Ms: 19.1%). In all tumours nuclear Skp2 expression correlated with Ki-67 (p=0.024) and inversely with p27KIP1 (p=0.007). A cytoplasmic reaction for Skp2 was also observed in most tumours and its expression decreased from Ns (12.3%) to SSMs (7.9%) and NMs (4.5%). In contrast, Ms showed an increase of cytoplasmic Skp2 (11.9%) that correlated with its nuclear expression (p=0.016). While nuclear Skp2 expression correlated with the pT-level (p=0.023), Clark-level (p=0.023) and Breslow index (p=0.019), the cytoplasmic Skp2 expression might be of biological significance only in NMs since it correlated with tumour depth (p=0.02) and pT-level (p=0.025). Our data suggests that Skp2 could contribute to melanoma progression. This is further highlighted by the fact that vertical growth phase (VGP) melanomas show significant higher nuclear Skp2 expressions when compared with the harmless radial growth phase (RGP) (p=0.047). Also nuclear Skp2 expression correlates with a reduced survival time (p=0.025) in melanoma.  相似文献   

20.
Comparative hazard identification of nanomaterials (NMs) can aid in the prioritisation for further toxicity testing. Here, we assessed the acute lung, systemic and liver responses in C57BL/6N mice for three NMs to provide a hazard ranking. A silver (Ag), non-functionalised zinc oxide (ZnO) and a triethoxycaprylylsilane functionalised ZnO NM suspended in water with 2% mouse serum were examined 24 hours following a single intratracheal instillation (I.T.). An acute pulmonary inflammation was noted (marked by a polymorphonuclear neutrophil influx) with cell damage (LDH and total protein) in broncho-alveolar lavage fluid (BALF) after administration of both non-functionalised and functionalised ZnO. The latter also induced systemic inflammation measured as an increase in blood neutrophils and a decrease in blood lymphocytes. Exposure to Ag NM was not accompanied by pulmonary inflammation or cytotoxicity, or by systemic inflammation. A decrease in glutathione levels was demonstrated in the liver following exposure to high doses of all three nanomaterials irrespective of any noticeable inflammatory or cytotoxic effects in the lung. By applying benchmark dose (BMD) modeling statistics to compare potencies of the NMs, we rank functionalised ZnO ranked the highest based on the largest number of affected endpoints, as well as the strongest responses observed after 24 hours. The non-functionalised ZnO NM gave an almost similar response, whereas Ag NM did not cause an acute response at similar doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号