首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Lung cancer is the leading cause of cancer-related death worldwide. Previous studies revealed that miR-183-5p is frequently involved in various human cancers. However, the exact role of miR-183-5p in regulating the pathogenesis of lung cancer remains unclear.

Method

Bioinformatic analysis, luciferase reporter assay, and Western blotting was used to investigate whether miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. Furthermore, an si-miR-183-5p and PIK3CA siRNA was used to evaluate whether PIK3CA expression increased and whether cell proliferation, migration and invasion ability were promoted.

Results

miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. miR-183-5p also acted as a tumor suppressor, and contrary to most studies, its expression was downregulated in lung cancer. Functional studies revealed that overexpression of miR-183-5p reduced cell proliferation, migration, and invasion and that miR-183-5p induced cell cycle arrest and increased cell apoptosis. PIK3CA expression, cell proliferation, migration and invasion ability increased. siRNA-mediated silencing of PIK3CA in lung cancer cells decreased their proliferation and invasive capabilities, suggesting that miR-183-5p inhibited cell proliferation and invasion of lung cancer cells at least partly through downstream targeting of PIK3CA.

Conclusion

Our studies suggest that miR-183-5p may function as a tumor suppressor in lung cancer via the miR-183-5p/PIK3CA regulatory axis and identify a potentially effective therapeutic strategy for lung cancer.  相似文献   

2.
Although the short isoform of ErbB3-binding protein 1 (Ebp1), p42 has been considered to be a potent tumor suppressor in a number of human cancers, whether p42 suppresses tumorigenesis of lung cancer cells has never been clarified. In the current study we investigated the tumor suppressor role of p42 in non-small cell lung cancer cells. Our data suggest that the expression level of p42 is inversely correlated with the cancerous properties of NSCLC cells and that ectopic expression of p42 is sufficient to inhibit cell proliferation, anchorage-independent growth, and invasion as well as tumor growth in vivo. Interestingly, p42 suppresses Akt activation and overexpression of a constitutively active form of Akt restores the tumorigenic activity of A549 cells that is ablated by exogenous p42 expression. Thus, we propose that p42 Ebp1 functions as a potent tumor suppressor of NSCLC through interruption of Akt signaling. [BMB Reports 2015; 48(3): 159-165]  相似文献   

3.
4.
FHIT is a novel tumor suppressor gene located at human chromosome 3p14.2. Restoration of wild-type FHIT in 3p14.2-deficient human lung cancer cells inhibits cell growth and induces apoptosis. In this study, we analyzed potential upstream/downstream molecular targets of the FHIT protein and found that FHIT specifically targeted and regulated death receptor (DR) genes in human non-small-cell lung cancer (NSCLC) cells. Exogenous expression of FHIT by a recombinant adenoviral vector (Ad)-mediated gene transfer upregulated expression of DR genes. Treatment with a recombinant TRAIL protein, a DR-specific ligand, in Ad-FHIT-transduced NSCLC cells considerably enhanced FHIT-induced apoptosis, further demonstrating the involvement of DRs in FHIT-induced apoptosis. Moreover, we also found that FHIT targeted downstream of the DR-mediated signaling pathway. FHIT overexpression disrupted mitochondrial membrane integrity and activated multiple pro-apoptotic proteins in NSCLC cell. These results suggest that FHIT induces apoptosis through a sequential activation of DR-mediated pro-apoptotic signaling pathways in human NSCLC cells.  相似文献   

5.
Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.  相似文献   

6.
With the global pandemic of hepatitis B and C infections, the incidence of Hepatocellular carcinoma (HCC) is rapidly increasing world wide. We identified glypican-3 (GPC3), a novel oncofetal gene over-expressed specifically in human HCC, as based on data of cDNA microarrays. As GPC3 is a GPI-anchored membrane protein and could be secreted, we attempted to detect secreted GPC3 protein in sera from HCC patients using Western blotting and ELISA. GPC3 protein was positive in sera of 40.0% (16/40) of HCC patients, and negative in sera from subjects with liver cirrhosis (LC) (0/13), chronic hepatitis (CH) (0/34), and healthy donors (0/60). All subjects were Japanese. Although 12 of 40 HCC patients were negative for both alpha-fetoprotein (AFP) and PIVKA-II well known tumor markers of HCC, four of these were GPC3-positive in the sera. We also observed vanishing GPC3 protein in the sera of three patients after the surgical treatment for HCC. On the other hand, immunohistochemical analysis revealed that HCC expressed GPC3 protein in all 14 HCC patients tested. In conclusion, GPC3, as defined in this study was shown to be a useful tumor marker for cancer-diagnosis for large numbers of patients with HCC.  相似文献   

7.
Vaccinia H1-related phosphatase (VHR) is classified as a dual specificity phosphatase. Unlike typical dual specificity phosphatases, VHR lacks the MAPK-binding domain and shows poor activity against MAPKs. We found that EGF receptor (EGFR) was a direct substrate of VHR and that overexpression of VHR down-regulated EGFR phosphorylation, particularly at Tyr-992 residue. Expression of VHR inhibited the activation of phospholipase Cγ and protein kinase C, both downstream effectors of Tyr-992 phosphorylation of EGFR. Decreasing VHR expression by RNA interference caused higher EGFR phosphorylation at Tyr-992. In addition to EGFR, VHR also directly dephosphorylated ErbB2. Consistent with these results, suppression of VHR augmented the foci formation ability of H1299 non-small cell lung cancer (NSCLC) cells, whereas overexpression of VHR suppressed cell growth in both two- and three-dimensional cultures. Expression of VHR also suppressed tumor formation in a mouse xenograft model. Furthermore, VHR expression was significantly lower in NSCLC tissues in comparison to that in normal lung tissues. Collectively, this study shows that down-regulation of VHR expression enhances the signaling of ErbB receptors and may be involved in NSCLC pathogenesis.  相似文献   

8.
9.
UNC5A has been reported to be related with human cancers. However, the function and mechanism in non-small cell lung carcinoma (NSCLC) remains unknown. We analyzed two NSCLC cell lines (A549 and H157), one normal human bronchial epithelial cell line (BEAS-2B) and the tissues of NSCLC. We used quantitative real-time PCR (qRT-PCR), western blot and immunohistochemical (IHC) staining to examine the expression of UNC5A. Methylation status of the UNC5A promoter was analyzed using methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP). We used western blot to analyzed protein levels of PI3K/Akt pathway. We found that the mRNA expression of UNCA5 was significantly downregulated in NSCLC cells and tissues. The promoter of UNC5A was hypermethylated in NSCLC cells compared to normal control cells. The expression of UNC5A could be reversed by demethylation agent in NSCLC cells. The expression of UNC5A was decreased in NSCLC samples and significantly associated with the advanced types of NSCLC. Functionally, knockdown of UNC5A promoted cell proliferation, migration, invasion and induced apoptosis in NSCLC, overexpression of UNC5A yielded the opposite result. Moreover, we found that UNC5A negatively regulated PI3K/Akt signaling pathway in NSCLC. UNC5A is a novel epigenetically silenced gene in NSCLC and consequent under-expression of UNC5A may contribute to NSCLC tumorigenesis through regulating PI3K/Akt pathway.  相似文献   

10.
The complement system can be specifically targeted to tumor cells due to molecular changes on their surfaces that are recognized by complement directly or via naturally occurring antibodies. However, tumor cells often overexpress membrane-bound complement inhibitors protecting them from complement attack. We have previously shown that non-small cell lung cancer (NSCLC) cells, additionally to membrane-bound inhibitors, produce substantial amounts of soluble regulators such as factor I (FI) and factor H (FH). Since low oxygen concentration is associated with rapidly growing solid tumors, we studied how NSCLC cells protect themselves from complement attack under hypoxic conditions. Unexpectedly, mRNA levels and secretion of both FI and FH were significantly decreased already after 24 h exposure to hypoxia while cell viability measured by XTT assay and annexin V/7-AAD staining was affected only marginally. Furthermore, we observed decrease of mRNA level and loss of membrane-bound complement inhibitor CD46 and increased deposition of early (C3b) and terminal (C9) complement components on hypoxic NSCLC cells. All three complement pathways (classical, lectin and alternative) were employed to deposit C3b on cell surface. Taken together, our results imply that under hypoxic conditions NSCLC give up some of their available defense mechanisms and become more prone to complement attack.  相似文献   

11.
Microtubule associated tumor suppressor 1 (MTUS1) has been recognized as a tumor suppressor gene in multiple cancers. However, the molecular mechanisms underlying the regulation of MTUS1 are yet to be investigated. This study aimed to clarify the significance of DNA methylation in silencing MTUS1 expression. We report that MTUS1 acts as tumor suppressor in non-small cell lung carcinoma (NSCLC). Analysis of in silico database and subsequent knockdown of DNMT1 suggested an inverse correlation between DNMT1 and MTUS1 function. Interestingly, increased methylation at MTUS1 promoter is associated with low expression of MTUS1. Treatment with DNA methyltransferases (DNMTs) inhibitor, 5-aza-2′-deoxycytidine (AZA) leads to both reduced promoter methylation accompanied with enrichment of H3K9Ac and enhanced MTUS1 expression. Remarkably, knockdown of MTUS1 showed increased proliferation and migration of NSCLC cells in contrast to diminished proliferation and migration, upon treatment with AZA. We concluded that low expression of MTUS1 correlates to DNA methylation and histone deacetylation in human NSCLC.  相似文献   

12.
13.
Chang JW  Lee SH  Jeong JY  Chae HZ  Kim YC  Park ZY  Yoo YJ 《FEBS letters》2005,579(13):2873-2877
In eukaryotic cells, peroxiredoxins are both antioxidants and regulators of H(2)O(2)-mediated signaling. We previously found that peroxiredoxin-I (Prx-I) was overexpressed in non-small cell lung cancer (NSCLC) tissue. Since overexpressed protein can induce a humoral immune response, we examined whether serum from NSCLC patients exhibited immunoreactivity against Prx-I using Western blotting. We found that 25 (47%) of 53 NSCLC patients tested had autoantibodies against Prx-I in their sera, whereas such activity was detected in 4 (8%) sera from 50 healthy subjects. Prx-I itself was detected in the sera from 18 (34%) of 53 NSCLC patients but in only 1 (2%) serum from 50 controls. Moreover, 17% of NSCLC sera were positive to both Prx-I antibody and antigen but none in control sera. The data indicate both Prx-I autoantibody and circulating antigen are potential biomarkers for use in serological diagnosis of NSCLC. Interestingly enough, we found that Prx-I was secreted by lung adenocarcinoma cells (A549) but not by non-cancer lung cells (BEAS 2B) or breast cancer cells (MCF7). This cell culture study suggests the possibility of Prx-I secretion from NSCLC tumor tissues.  相似文献   

14.
To further characterize the molecular events supporting the tumor suppressor activity of Scrib in mammals, we aim to identify new binding partners. We isolated MCC, a recently identified binding partner for β-catenin, as a new interacting protein for Scrib. MCC interacts with both Scrib and the NHERF1/NHERF2/Ezrin complex in a PDZ-dependent manner. In T47D cells, MCC and Scrib proteins colocalize at the cell membrane and reduced expression of MCC results in impaired cell migration. By contrast to Scrib, MCC inhibits cell directed migration independently of Rac1, Cdc42 and PAK activation. Altogether, these results identify MCC as a potential scaffold protein regulating cell movement and able to bind Scrib, β-catenin and NHERF1/2.

Structured summary

MINT-7211022: SCRIB (uniprotkb:Q14160) and MCC (uniprotkb:P23508) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7210609: SCRIB (uniprotkb:Q14160) physically interacts (MI:0915) with MCC (uniprotkb:P23508) by two hybrid (MI:0018)MINT-7210759, MINT-7210792: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with PIX beta (uniprotkb:Q14155) by pull down (MI:0096)MINT-7210883, MINT-7210820: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with MCC (uniprotkb:P23508) by anti bait coimmunoprecipitation (MI:0006)MINT-7210634, MINT-7210690, MINT-7210731: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with MCC (uniprotkb:P23508) by pull down (MI:0096)MINT-7211267: E6 (uniprotkb:P06463) physically interacts (MI:0915) with SCRIB (uniprotkb:Q14160), SNX27 (uniprotkb:Q96L92), UTRN (uniprotkb:P46939), CASK (uniprotkb:O14936), DMD (uniprotkb:P11532) and Dlg (uniprotkb:Q12959) by pull down (MI:0096)MINT-7211237: MCC (uniprotkb:P23508) physically interacts (MI:0915) with SCRIB (uniprotkb:Q14160), EZR (uniprotkb:P15311), SNX27 (uniprotkb:Q96L92), NHERF1 (uniprotkb:O14745) and NHERF2 (uniprotkb:Q15599) by pull down (MI:0096)  相似文献   

15.
MicroRNA-30e-5p (miR-30e-5p) is a tumor suppressor that is known to be downregulated in non-small cell lung cancer (NSCLC). However, how miR-30e-5p inhibits NSCLC tumorigenesis is not known. Ubiquitin-specific peptidase 22 (USP22) is upregulated in NSCLC and promotes tumorigenesis via a Sirt1-JAK-STAT3 pathway. In this study, we investigated whether miR-30e-5p inhibits tumor growth by targeting USP22 in NSCLC. Our results reveal that miR-30e-5p expression was correlated negatively with USP22 in NSCLC tissues. Luciferase reporter assays showed that miR-30e-5p negatively regulated USP22 expression by binding to a specific sequence in the 3?UTR. MiR-30e-5p overexpression and USP22 knockdown significantly inhibited tumor growth in vivo and induced cell cycle arrest and apoptosis in NSCLC cells in vitro. The effects of miR-30e-5p inhibition were prevented by USP22 knockdown. MiR-30e-5p inhibited SIRT1 expression and increased expression of p53 and the phosphorylated form of STAT3 (pSTAT3). Furthermore, miR-30e-5p prevented USP22-mediated regulation of SIRT1, pSTAT3, and p53 expression. Taken together, these findings suggest that miR-30e-5p suppresses NSCLC tumorigenesis by downregulatingUSP22-mediated Sirt1/JAK/STAT3 signaling. Our study has identified miR-30e-5p as a potential therapeutic target for the treatment of NSCLC.  相似文献   

16.
Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.  相似文献   

17.
S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.  相似文献   

18.
Cysteine-rich protein 61 (Cyr61) is a member of a family of growth factor-inducible immediate-early genes. It regulates cell adhesion, migration, proliferation, and differentiation and is involved in tumor growth. In our experiments, the role of Cyr61 in non-small cell lung cancer (NSCLC) was examined. Expression of Cyr61 mRNA was decreased markedly in four of five human lung tumor samples compared with their normal matched lung samples. NSCLC cell lines NCI-H520 and H460, which have no endogenous Cyr61, formed 60-90% fewer colonies after being transfected with a Cyr61 cDNA expression vector than cells transfected with the same amount of empty vector. After stable transfection of a Cyr61 cDNA expression vector, proliferation of both H520-Cyr61 and H460-Cyr61 sublines decreased remarkably compared with the cells stably transfected with empty vector. The addition of antibody against Cyr61 partially rescued the growth suppression of both H520-Cyr61 and H460-Cyr61 cells. Cell cycle analysis revealed that both H520-Cyr61 and H460-Cyr61 cells developed G(1) arrest, prominently up-regulated expression of p53 and p21(WAF1), and had decreased activity of cyclin-dependent kinase 2. The increase of pocket protein pRB2/p130 was also detected in these cells. Notably, both of the Cyr61-stably transfected lung cancer cell lines developed smaller tumors than those formed by the wild-type cells in nude mice. Taken together, we conclude that Cyr61 may play a role as a tumor suppressor in NSCLC.  相似文献   

19.
20.
Objective: Increasing RBM5 levels inhibit tumor cell growth and promote apoptosis. In this study, we investigated the role of RBM5 in the cisplatin resistance observed in human lung non-small cell lung cancer cells and evaluated the effect of RBM5 modulation on cell growth inhibition and apoptosis induced by cisplatin in the parental non-small cell lung cancer cells A549 and their cisplatin resistant counterparts, A549/DDP cells. Methods: RBM5 mRNA and protein expression in the A549 and A549/DDP cells was analyzed by semi-quantitative RT-PCR and western blot. The A549/DDP cells were then transfected with a pcDNA3-RBM5 plasmid, and an RBM5-specific siRNA was transfected into A549 cells, prior to treatment with cisplatin. Semi-quantitative RT-PCR and western blot analyses were performed to confirm the expression of RBM5 mRNA or protein, and knockdown of RBM5 mRNA or protein, respectively. MTT assays were used to evaluate chemosensitivity to cisplatin. Apoptosis was assessed by DAPI nuclear staining and flow cytometric analysis with an Annexin-V-FITC apoptosis kit. Cytosolic cytochrome c, cleaved caspase-3 and cleaved caspase-9 were detected by western blot. Results: The expression of RBM5 mRNA and protein was significantly reduced in the A549/DDP cells compared with the A549 cells. Exogenous expression of RBM5 by the pcDNA3-RBM5 resensitized the response of A549/DDP to cisplatin, resulting in a significant increase in tumor-suppressing activity induced by cisplatin. In contrast, downregulation of RBM5 with siRNA in the A549 cells inhibited cisplatin-induced apoptosis. We also found that the RBM5-enhanced chemosensitivity was associated with the release of cytochrome c into the cytosol, activation of caspase-9 and the downstream marker caspase-3. Conclusion: Our results demonstrate that RBM5 may serve as a biomarker with the ability to predict a response to cisplatin. It may also act as a prognostic indicator in lung cancer patients. Our findings suggest that there may be clinical utility for ectopic RBM5 such as enhancing and resensitizing nonresponders to cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号