首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatitis E virus (HEV) genome is a single‐stranded, positive‐sense RNA that encodes three proteins including the ORF1 replicase. Mechanisms of HEV replication in host cells are unclear, and only a few cellular factors involved in this step have been identified so far. Here, we used brefeldin A (BFA) that blocks the activity of the cellular Arf guanine nucleotide exchange factors GBF1, BIG1, and BIG2, which play a major role in reshuffling of cellular membranes. We showed that BFA inhibits HEV replication in a dose‐dependent manner. The use of siRNA and Golgicide A identified GBF1 as a host factor critically involved in HEV replication. Experiments using cells expressing a mutation in the catalytic domain of GBF1 and overexpression of wild type GBF1 or a BFA‐resistant GBF1 mutant rescuing HEV replication in BFA‐treated cells, confirmed that GBF1 is the only BFA‐sensitive factor required for HEV replication. We demonstrated that GBF1 is likely required for the activity of HEV replication complexes. However, GBF1 does not colocalise with the ORF1 protein, and its subcellular distribution is unmodified upon infection or overexpression of viral proteins, indicating that GBF1 is likely not recruited to replication sites. Together, our results suggest that HEV replication involves GBF1‐regulated mechanisms.  相似文献   

2.
Viruses are intracellular parasites whose reproduction relies on factors provided by the host. The cellular protein GBF1 is critical for poliovirus replication. Here we show that the contribution of GBF1 to virus replication is different from its known activities in uninfected cells. Normally GBF1 activates the ADP‐ribosylation factor (Arf) GTPases necessary for formation of COPI transport vesicles. GBF1 function is modulated by p115 and Rab1b. However, in polio‐infected cells, p115 is degraded and neither p115 nor Rab1b knock‐down affects virus replication. Poliovirus infection is very sensitive to brefeldin A (BFA), an inhibitor of Arf activation by GBF1. BFA targets the catalytic Sec7 domain of GBF1. Nevertheless the BFA block of polio replication is rescued by expression of only the N‐terminal region of GBF1 lacking the Sec7 domain. Replication of BFA‐resistant poliovirus in the presence of BFA is uncoupled from Arf activation but is dependent on GBF1. Thus the function(s) of this protein essential for viral replication can be separated from those required for cellular metabolism.  相似文献   

3.
Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected.  相似文献   

4.
The replication of enteroviruses is sensitive to brefeldin A (BFA), an inhibitor of endoplasmic reticulum-to-Golgi network transport that blocks activation of guanine exchange factors (GEFs) of the Arf GTPases. Mammalian cells contain three BFA-sensitive Arf GEFs: GBF1, BIG1, and BIG2. Here, we show that coxsackievirus B3 (CVB3) RNA replication is insensitive to BFA in MDCK cells, which contain a BFA-resistant GBF1 due to mutation M832L. Further evidence for a critical role of GBF1 stems from the observations that viral RNA replication is inhibited upon knockdown of GBF1 by RNA interference and that replication in the presence of BFA is rescued upon overexpression of active, but not inactive, GBF1. Overexpression of Arf proteins or Rab1B, a GTPase that induces GBF1 recruitment to membranes, failed to rescue RNA replication in the presence of BFA. Additionally, the importance of the interaction between enterovirus protein 3A and GBF1 for viral RNA replication was investigated. For this, the rescue from BFA inhibition of wild-type (wt) replicons and that of mutant replicons of both CVB3 and poliovirus (PV) carrying a 3A protein that is impaired in binding GBF1 were compared. The BFA-resistant GBF1-M832L protein efficiently rescued RNA replication of both wt and mutant CVB3 and PV replicons in the presence of BFA. However, another BFA-resistant GBF1 protein, GBF1-A795E, also efficiently rescued RNA replication of the wt replicons, but not that of mutant replicons, in the presence of BFA. In conclusion, this study identifies a critical role for GBF1 in CVB3 RNA replication, but the importance of the 3A-GBF1 interaction requires further study.Enteroviruses are small, nonenveloped, positive-stranded RNA viruses that include many important pathogens, such as poliovirus (PV), coxsackievirus, echovirus, and human rhinovirus. Following virus entry and uncoating, the 7.5-kb enteroviral RNA genome is directly translated into a large polyprotein. This polyprotein is proteolytically processed by the virus-encoded proteases 2Apro, 3Cpro, and 3CDpro into the structural P1 region proteins and the nonstructural P2 and P3 region proteins that are involved in viral RNA replication.All RNA viruses with a positive-stranded genome induce the remodeling of cellular membranes to create a scaffold for genomic RNA replication. The organelle origin and morphology of these membranous replication sites, however, appear to vary for different viruses. Enteroviruses replicate their RNA genomes in nucleoprotein complexes that are associated with small vesicular membrane structures (6). The enteroviral proteins 2B, 2C, and 3A have been implicated in vesicle formation (4, 6, 27), but the mechanism and pathway of membrane reorganization are poorly understood. There are strong indications that these vesicular membranous structures, which are referred to here as “vesicles,” are derived from the early secretory pathway. Vesicles produced in PV-infected cells may form at the endoplasmic reticulum (ER) by the cellular COP-II budding machinery and may therefore share components with the membranous vesicles mediating ER-to-Golgi network transport (26). Further support for the involvement of the secretory pathway stems from the observation that brefeldin A (BFA), a well-known inhibitor of ER-to-Golgi network transport, completely inhibits enteroviral RNA replication (17, 20). In addition, the autophagocytic pathway appears to contribute to the formation of the membrane vesicles, many of which exhibit a double-membrane morphology characteristic of autophagosomes (18, 27). The utilization of individual components or reactions from different membrane metabolic pathways, rather than subversion of an entire pathway in toto, may represent a common strategy for building viral replication machinery.BFA inhibits activation of the small monomeric GTPase ADP ribosylation factor 1 (Arf1), a major regulator of intracellular protein transport (2). Arf1 cycles between an inactive, GDP-bound, cytosolic state and an active, GTP-bound, membrane-associated state, and this cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (13). BFA blocks the activities of the large GEFs GBF1, BIG1, and BIG2 by stabilizing an intermediate, abortive complex with inactive Arf1 (23), thus efficiently preventing activation of Arf1 and eventually formation of transport intermediates.Not only the fact that BFA blocks enteroviral replication suggests a role for Arf1 and/or its large GEFs in this process; recently, it was shown that Arf1 accumulates on membranes during PV infection (3). Arf1 translocation to membranes can be induced independently by enterovirus protein 3A or 3CD in vitro (5), but the underlying mechanisms seem to differ; the 3A protein specifically triggers the recruitment of GBF1 to membranes, most likely through a direct interaction with this GEF (32, 33), whereas 3CD recruits BIG1 and BIG2 to membranes (3). Here, we report the involvement of Arf1 and its large BFA-sensitive GEFs in coxsackievirus B3 (CVB3) replication.  相似文献   

5.
The Golgi apparatus and its resident proteins are utilized and regulated by viruses to facilitate their proliferation. In this study, we investigated Classical swine fever virus (CSFV) proliferation when the function of the Golgi was disturbed. Golgi function was disturbed using chemical inhibitors, namely, brefeldin A (BFA) and golgicide A (GCA), and RNA interfering targets, such as the Golgi-specific BFA-resistance guanine nucleotide exchange factor 1 (GBF1) and Rab2 GTPases. CSFV proliferation was significantly inhibited during RNA replication and viral particle generation after BFA and GCA treatment. CSFV multiplication dynamics were retarded in cells transfected with GBF1 and Rab2 shRNA. Furthermore, CSFV proliferation was promoted by GBF1 and Rab2 overexpression using a lentiviral system. Hence, Golgi function is important for CSFV multiplication, and GBF1 and Rab2 participate in CSFV proliferation. Further studies must investigate Golgi-resident proteins to elucidate the mechanism underlying CSFV replication.  相似文献   

6.
Viruses coopt cellular membrane transport to invade cells, establish intracellular sites of replication, and release progeny virions. Recent genome-wide RNA interference (RNAi) screens revealed that genetically divergent viruses require biosynthetic membrane transport by the COPI coatomer complex for efficient replication. Here we found that disrupting COPI function by RNAi inhibited an early stage of vesicular stomatitis virus (VSV) replication. To dissect which replication stage(s) was affected by coatomer inactivation, we used visual and biochemical assays to independently measure the efficiency of viral entry and gene expression in hamster (ldlF) cells depleted of the temperature-sensitive ε-COP subunit. We show that ε-COP depletion for 12 h caused a primary block to virus internalization and a secondary defect in viral gene expression. Using brefeldin A (BFA), a chemical inhibitor of COPI function, we demonstrate that short-term (1-h) BFA treatments inhibit VSV gene expression, while only long-term (12-h) treatments block virus entry. We conclude that prolonged coatomer inactivation perturbs cellular endocytic transport and thereby indirectly impairs VSV entry. Our results offer an explanation of why COPI coatomer is frequently identified in screens for cellular factors that support cell invasion by microbial pathogens.  相似文献   

7.
Infection of cells with poliovirus induces a massive intracellular membrane reorganization to form vesicle-like structures where viral RNA replication occurs. The mechanism of membrane remodeling remains unknown, although some observations have implicated components of the cellular secretory and/or autophagy pathways. Recently, we showed that some members of the Arf family of small GTPases, which control secretory trafficking, became membrane-bound after the synthesis of poliovirus proteins in vitro and associated with newly formed membranous RNA replication complexes in infected cells. The recruitment of Arfs to specific target membranes is mediated by a group of guanine nucleotide exchange factors (GEFs) that recycle Arf from its inactive, GDP-bound state to an active GTP-bound form. Here we show that two different viral proteins independently recruit different Arf GEFs (GBF1 and BIG1/2) to the new structures that support virus replication. Intracellular Arf-GTP levels increase approximately 4-fold during poliovirus infection. The requirement for these GEFs explains the sensitivity of virus growth to brefeldin A, which can be rescued by the overexpression of GBF1. The recruitment of Arf to membranes via specific GEFs by poliovirus proteins provides an important clue toward identifying cellular pathways utilized by the virus to form its membranous replication complex.  相似文献   

8.
The genus Enterovirus, belonging to the family Picornaviridae, includes well-known pathogens, such as poliovirus, coxsackievirus, and rhinovirus. Brefeldin A (BFA) impedes replication of several enteroviruses through inhibition of Golgi-specific BFA resistance factor 1 (GBF1), a regulator of secretory pathway integrity and transport. GBF1 mediates the GTP exchange of Arf1, which in activated form recruits coatomer protein complex I (COP-I) to Golgi vesicles, a process important in transport between the endoplasmic reticulum and Golgi vesicles. Recently, the drugs AG1478 and Golgicide A (GCA) were put forward as new inhibitors of GBF1. In this study, we investigated the effects of these putative GBF1 inhibitors on secretory pathway function and enterovirus replication. We show that both drugs induced fragmentation of the Golgi vesicles and caused dissociation of Arf1 and COP-I from Golgi membranes, yet they differed in their effect on GBF1 localization. The effects of AG1478, but not those of GCA, could be countered by overexpression of Arf1, indicating a difference in their molecular mechanism of action. Consistent with this idea, we observed that GCA drastically reduced replication of coxsackievirus B3 (CVB3) and other human enterovirus species, whereas AG1478 had no effect at all on enterovirus replication. Time-of-addition studies and analysis of RNA replication using a subgenomic replicon both showed that GCA suppresses RNA replication of CVB3, which could be countered by overexpression of GBF1. These results indicate that, in contrast to AG1478, GCA inhibits CVB3 RNA replication by targeting GBF1. AG1478 and GCA may be valuable tools to further dissect enterovirus replication.The Enterovirus genus, belonging to the Picornaviridae family, includes many important human pathogens, such as poliovirus, human rhinovirus, echovirus, and coxsackievirus. These are small, nonenveloped viruses that contain a single-stranded RNA genome of positive polarity. The genome is approximately 7.5 kb in length and encodes a single large polyprotein, which is processed into capsid proteins, encoded in the P1 region, and the nonstructural P2 and P3 region proteins that mediate viral RNA replication.Brefeldin A (BFA), a fungal metabolite, is a well-known inhibitor of enteroviruses. BFA blocks transport of cargo from the endoplasmic reticulum (ER) to the Golgi vesicles by disrupting the Golgi vesicles and ER-Golgi intermediate compartment (ERGIC) integrity through inhibition of several guanine nucleotide exchange factors (GEFs), including Golgi-specific BFA resistance factor 1 (GBF1), BFA-inhibited GEF 1 (BIG1), and BIG2 (3, 18). These GEFs regulate the activity of GTPase ADP-ribosylation factor 1 (Arf1) by stimulating GTP exchange. Upon activation, Arf1-GTP binds to Golgi membranes where it induces formation of secretory vesicles via recruitment of coatomer protein complex I (COP-I), a coatomer protein involved in the transport between the Golgi vesicles and the ER. The inhibitory effect of BFA on enterovirus replication is attributed to the inhibition of GBF1 and does not seem to involve BIG1 or BIG2 (2, 11). Besides enteroviruses, other plus-strand RNA viruses, such as mouse hepatitis virus and hepatitis C virus, also seem to rely on GBF1 for efficient replication (2, 8, 11, 21). The viral protein 3A of the enteroviruses poliovirus and coxsackievirus B3 (CVB3) has been shown to interact directly with GBF1 (22, 22a, 23), but the exact function of this interaction remains to be established.Recently, two compounds, AG1478 and Golgicide A (GCA), have been proposed to specifically inhibit GBF1. AG1478 was identified by screening a library of compounds for their ability to induce Golgi complex disassembly (13). AG1478, known as an inhibitor of the epidermal growth factor receptor (EGFR), had effects on the Golgi membranes highly similar to those of BFA through a mechanism not involving the inhibition of EGFR. Arf1-GTP pulldown assays showed that AG1478 inhibited Arf1 activation. Furthermore, overexpression of GBF1 was shown to counter the effect of AG1478 on COP-I localization. Based on these results, AG1478 was proposed to be a GBF1 inhibitor.GCA was identified in a high-throughput screen for small molecules that protected Vero cells from the effects of Shiga toxin (15). Similar to AG1478 and BFA, GCA was reported to fragment the Golgi vesicles and to inhibit Arf1 activation. Furthermore, overexpression of either wild-type GBF1 or the BFA-resistant mutant GBF1-M832L relieved the effects of GCA. In addition, the authors constructed a structural model of the catalytic Sec7 domain of GBF1 in complex with GCA, showing that GCA binds GBF1 at the same site as BFA. Collectively, their results provided convincing lines of evidence that GCA specifically inhibits GBF1 in a manner similar to BFA and does not act on BIG1 and BIG2.BFA has been instrumental in elucidating the membrane requirements for enterovirus replication. Therefore, we investigated the effects of AG1478 and GCA on enterovirus replication after first characterizing the effects of these drugs on BGM cells, the cell line that we routinely use in our studies on coxsackievirus B3 replication. Treatment with other AG1478 or GCA fragmented the Golgi vesicles and caused dissociation of Arf1 and COP-I from Golgi membranes, yet these drugs had different effects on GBF1 localization. Interestingly, the effects of AG1478, but not those of GCA, could be countered by overexpression of Arf1. Next, GCA was found to abrogate enterovirus replication, whereas surprisingly AG1478 did not affect replication at all. Together these results indicate that AG1478 on one hand and GCA and BFA on the other hand have different mechanisms of action, leading to a disparate effect on enterovirus replication.  相似文献   

9.
Poliovirus proteins 3A and 3AB are small, membrane-binding proteins that play multiple roles in viral RNA replication complex formation and function. In the infected cell, these proteins associate with other viral and cellular proteins as part of a supramolecular complex whose structure and composition are unknown. We isolated viable viruses with three different epitope tags (FLAG, hemagglutinin [HA], and c-myc) inserted into the N-terminal region of protein 3A. These viruses exhibited growth properties and characteristics very similar to those of the wild-type, untagged virus. Extracts prepared from the infected cells were subjected to immunoaffinity purification of the tagged proteins by adsorption to commercial antibody-linked beads and examined after elution for cellular and other viral proteins that remained bound to 3A sequences during purification. Viral proteins 2C, 2BC, 3D, and 3CD were detected in all three immunopurified 3A samples. Among the cellular proteins previously reported to interact with 3A either directly or indirectly, neither LIS1 nor phosphoinositol-4 kinase (PI4K) were detected in any of the purified tagged 3A samples. However, the guanine nucleotide exchange factor GBF1, which is a key regulator of membrane trafficking in the cellular protein secretory pathway and which has been shown previously to bind enteroviral protein 3A and to be required for viral RNA replication, was readily recovered along with immunoaffinity-purified 3A-FLAG. Surprisingly, we failed to cocapture GBF1 with 3A-HA or 3A-myc proteins. A model for variable binding of these 3A mutant proteins to GBF1 based on amino acid sequence motifs and the resulting practical and functional consequences thereof are discussed.  相似文献   

10.
Poliovirus (PV) modifies membrane-trafficking machinery in host cells for its viral RNA replication. To date, ARF1, ACBD3, BIG1/BIG2, GBF1, RTN3, and PI4KB have been identified as host factors of enterovirus (EV), including PV, involved in membrane traffic. In this study, we performed small interfering RNA (siRNA) screening targeting membrane-trafficking genes for host factors required for PV replication. We identified valosin-containing protein (VCP/p97) as a host factor of PV replication required after viral protein synthesis, and its ATPase activity was essential for PV replication. VCP colocalized with viral proteins 2BC/2C and 3AB/3B in PV-infected cells and showed an interaction with 2BC and 3AB but not with 2C and 3A. Knockdown of VCP did not suppress the replication of coxsackievirus B3 or Aichi virus. A VCP-knockdown-resistant PV mutant had an A4881G (a mutation of E253G in 2C) mutation, which is known as a determinant of a secretion inhibition-negative phenotype. However, knockdown of VCP did not affect the inhibition of cellular protein secretion caused by overexpression of each individual viral protein. These results suggested that VCP is a host factor required for viral RNA replication of PV among membrane-trafficking proteins and provides a novel link between cellular protein secretion and viral RNA replication.  相似文献   

11.
Suppression of PmRab7 by dsRNA Inhibits WSSV or YHV Infection in Shrimp   总被引:1,自引:0,他引:1  
Viral entry into host cells requires endocytosis machineries of the host for viral replication. PmRab7, a Penaeus monodon small GTPase protein, was investigated for its function in vesicular transport during viral infection. The double-stranded RNA of Rab7 was injected into a juvenile shrimp before challenging with white spot syndrome virus (WSSV) or yellow head virus (YHV). PmRab7 mRNA was specifically decreased at 48 h after dsRNA-Rab7 injection. Silencing of PmRab7 dramatically inhibited WSSV-VP28 mRNA and protein expression. Unexpectedly, the silencing of PmRab7 also inhibited YHV replication in the YHV-infected shrimp. These results suggested that PmRab7 is a common cellular factor required for WSSV or YHV replication in shrimp. Because PmRab7 should function in the endosomal trafficking pathway, its silencing prevents successful viral trafficking necessary for replication. Silencing of PmRab7 could be a novel approach to prevent both DNA virus (WSSV) and RNA virus (YHV) infection of shrimp.  相似文献   

12.
The nonstructural protein (NS1) of influenza A virus performs multiple functions in the virus life cycle. Proteomic screening for cellular proteins which interact with NS1 identified the cellular protein RAP55, which is one of the components of cellular processing bodies (P-bodies) and stress granules. To verify whether NS1 interacts with cellular P-bodies, interactions between NS1, RAP55, and other P-body-associated proteins (Ago1, Ago2, and DCP1a) were confirmed using coimmunoprecipitation and cellular colocalization assays. Overexpression of RAP55 induced RAP55-associated stress granule formation and suppressed virus replication. Knockdown of RAP55 with small interfering RNA (siRNA) or expression of a dominant-negative mutant RAP55 protein with defective interaction with P-bodies blocked NS1 colocalization to P-bodies in cells. Expression of NS1 inhibited RAP55 expression and formation of RAP55-associated P-bodies/stress granules. The viral nucleoprotein (NP) was found to be targeted to stress granules in the absence of NS1 but localized to P-bodies when NS1 was coexpressed. Restriction of virus replication via P-bodies occurred in the early phases of infection, as the number of RAP55-associated P-bodies in cells diminished over the course of virus infection. NS1 interaction with RAP55-associated P-bodies/stress granules was associated with RNA binding and mediated via a protein kinase R (PKR)-interacting viral element. Mutations introduced into either RNA binding sites (R38 and K41) or PKR interaction sites (I123, M124, K126, and N127) caused NS1 proteins to lose the ability to interact with RAP55 and to inhibit stress granules. These results reveal an interplay between virus and host during virus replication in which NP is targeted to P-bodies/stress granules while NS1 counteracts this host restriction mechanism.  相似文献   

13.
14.
Gancarz BL  Hao L  He Q  Newton MA  Ahlquist P 《PloS one》2011,6(8):e23988
Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV) is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ~100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ~900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ~81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol) levels were significantly increased in strains depleted for a heat shock protein (HSF1) or proteasome components (PRE1 and RPT6), suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol) localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.  相似文献   

15.
HIV-1 utilizes cellular factors for efficient replication. The viral RNA is different from cellular mRNAs in many aspects, and is prone to attacks by cellular RNA quality control systems. To establish effective infection, the virus has evolved multiple mechanisms to protect its RNA. Here, we show that expression of the Y-box binding protein 1 (YB-1) enhanced the production of HIV-1. Downregulation of endogenous YB-1 in producer cells decreased viral production. YB-1 increased viral protein expression by stabilizing HIV-1 RNAs. The stem loop 2 in the HIV-1 RNA packaging signal was mapped to be the YB-1-responsive element. Taken together, these results indicate that YB-1 stabilizes HIV-1 genomic RNA and thereby enhances HIV-1 gene expression and viral production.  相似文献   

16.
Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication.  相似文献   

17.
Viral replication depends on specific interactions with host factors. For example, poliovirus RNA replication requires association with intracellular membranes. Brefeldin A (BFA), which induces a major rearrangement of the cellular secretory apparatus, is a potent inhibitor of poliovirus RNA replication. Most aspects governing the relationship between viral replication complex and the host membranes remain poorly defined. To explore these interactions, we used a genetic approach and isolated BFA-resistant poliovirus variants. Mutations within viral proteins 2C and 3A render poliovirus resistant to BFA. In the absence of BFA, viruses containing either or both of these mutations replicated similarly to wild type. In the presence of BFA, viruses carrying a single mutation in 2C or 3A exhibited an intermediate-growth phenotype, while the double mutant was fully resistant. The viral proteins 2C and 3A have critical roles in both RNA replication and vesicle formation. The identification of BFA resistant mutants may facilitate the identification of cellular membrane-associated proteins necessary for induction of vesicle formation and RNA replication. Importantly, our data underscore the dramatic plasticity of the host-virus interactions required for successful viral replication.  相似文献   

18.
Staufen1 (Stau1), a host cellular protein, along with non-structural protein 1 (NS1), an influenza viral protein, associate with each other during influenza viral infection and down-regulation of Stau1 by RNA interference reduces the yield of influenza A virus, suggesting a role for Stau1 in viral replication. In order to develop a new tool to control influenza A virus, we determined the specific regions of Staufen1 protein involved in the interaction with NS1. The linker between RBD3 and 4 was isolated as the binding regions. Expression of RBD3L, the linker including RBD3, inhibited the interaction between Stau1 and NS1, reducing the colocalization of the two proteins in the cytosol and nucleus regions. In addition, yield of influenza A virus in RBD3L-expressing cells was significantly reduced 36 h after infection. These results suggest that disruption of the Stau1-NS1 interaction can be used to control replication of influenza A virus, thereby providing a target for the development of antiviral drugs.  相似文献   

19.
《Autophagy》2013,9(3):321-328
Autophagy is involved in the replication of viruses, especially those that perform RNA assembly on the surface of cytoplasmic membrane in host cells. However, little is known about the regulatory role of autophagy in influenza A virus replication. Using fluorescence and electron microscopy, we observed that autophagosomes can be induced and identified upon influenza A virus infection. The virus increased the amount of the autophagosome marker protein microtubule-associated protein light chain 3-II (LC3-II) and enhanced autophagic flux. When autophagy was pharmacologically inhibited by either 3-methylademine or wortmannin, the titers of influenza A virus were remarkably decreased. Viral reduction via autophagy inhibition was further confirmed by RNA interference, through which two different proteins required for autophagy were depleted. Noticeably, the compounds utilized had no marked effect on virus entry or cell viability, either of which might limit viral replication. Furthermore, alteration of cellular autophagy via pharmacological reagents or RNA interference impaired viral protein accumulation. Taken together, these findings indicate that autophagy is actively involved in influenza A virus replication.  相似文献   

20.
Monocyte chemoattractant protein 1-induced protein 1 (MCPIP1), belonging to the MCPIP family with highly conserved CCCH-type zinc finger and Nedd4-BP1, YacP Nuclease domains, has been implicated in negative regulation of the cellular inflammatory responses. In this report, we demonstrate for the first time that this RNA-binding nuclease also targets viral RNA and possesses potent antiviral activities. Overexpression of the human MCPIP1, but not MCPIP2, MCPIP3 or MCPIP4, inhibited Japanese encephalitis virus (JEV) and dengue virus (DEN) replication. The functional analysis of MCPIP1 revealed that the activities of RNase, RNA binding and oligomerization, but not deubiqutinase, are required for its antiviral potential. Furthermore, infection of other positive-sense RNA viruses, such as sindbis virus and encephalomyocarditis virus, and negative-sense RNA virus, such as influenza virus, as well as DNA virus, such as adenovirus, can also be blocked by MCPIP1. Moreover, the endogenous MCPIP1 gene expression was induced by JEV and DEN infection, and knockdown of MCPIP1 expression enhanced the replication of JEV and DEN in human cells. Thus, MCPIP1 can act as a host innate defense via RNase activity for targeting and degrading viral RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号