首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aflatoxins are a series of highly toxic and carcinogenic secondary metabolites that are synthesized by Aspergillus species. The degradation of aflatoxin enzymes is an important regulatory mechanism which modulates mycotoxin producing. The retromer complex is responsible for the retrograde transport of specific biomolecules and the vacuolar fusion in the intracellular transport. Late endosomal-associated GTPase (Rab7) has been shown to be a downstream effector protein of the retromer complex. A deficiency in the retromer complex or Rab7 results in several cellular trafficking problems in yeast and humans, like protein abnormal accumulation. However, whether retromer dysfunction is involved in aflatoxin synthesis remains unclear. Here, we report that the core retromer complex, which comprises three vacuolar protein sorting-associated proteins (AflVps26-AflVps29-AflVps35), is essential for the development of dormant and resistant fungal forms such as conidia (asexual reproductive spore) and sclerotia (hardened fungal mycelium), as well as aflatoxin production and pathogenicity, in Aspergillus flavus. In particular, we show the AflVps26-AflVps29-AflVps35 complex is negatively correlated with aflatoxin exportation. Structural simulation, site-specific mutagenesis, and coimmunoprecipitation experiments showed that interactions among AflVps26, AflVps29, and AflVps35 played crucial roles in the retromer complex executing its core functions. We further found an intrinsic connection between AflRab7 and the retromer involved in vesicle-vacuole fusion, which in turn affected the accumulation of aflatoxin synthesis-associated enzymes, suggesting that they work together to regulate the production of toxins. Overall, these results provide mechanistic insights that contribute to our understanding of the regulatory role of the core retromer complex in aflatoxin metabolism.  相似文献   

3.
Cell culture and western blotting studies revealed that aflatoxin B(1) (AFB(1)) inhibits the biosynthesis of two of the constituent polypeptides of signal recognition particle (SRP) (SRP54 and 72). SRP escorts polyribosomes carrying signal peptides from free form in the cytosol to the bound form on endoplasmic reticulum (ER) membrane during protein targeting. These effects of AFB(1) on SRP biosynthesis may inhibit the formation of functional SRP. Our experiments have further shown that AFB(1) also inhibits the biosynthesis/translocation of a secretory protein, preprolactin, which fails to appear in the lumen of ER consequent to the treatment with this hepatocarcinogen. The results of the experiments presented in this article therefore enable us to infer for the first time that aflatoxin B(1) may inhibit the functioning of SRP as an escort and deplete the ER of polyribosomes for secretory protein synthesis. As these secretory proteins are important components of the plasma membrane, gap junctions and intercellular matrix, their absence from these locations could disturb cell to cell communication leading to tumorigenesis.  相似文献   

4.
Aflatoxins are polyketide-derived secondary metabolites produced by Aspergillus spp. The toxic effects of aflatoxins have adverse consequences for human health and agricultural economics. The aflR gene, a regulatory gene for aflatoxin biosynthesis, encodes a protein containing a zinc-finger DNA-binding motif. AFLR-Protein three-dimensional model was generated using Robetta server. The modeled AFLR-Protein was further optimization and validation using Rampage. In the simulations, we monitored the backbone atoms and the C-α-helix of the modeled protein. The low RMSD and the simulation time indicate that, as expected, the 3D structural model of AFLR-protein represents a stable folding conformation. This study paves the way for generating computer molecular models for proteins whose crystal structures are not available and which would aid in detailed molecular mechanism of inhibition of aflatoxin.  相似文献   

5.
PksA catalyzes the formation of the polyketide backbone necessary for aflatoxin biosynthesis. Based on reporter assays and sequence comparisons of the nor1-pksA intergenic region in different aflatoxin-producing Aspergillus species, cis-acting elements for the aflatoxin pathway-specific regulatory protein, AflR, and the global-acting regulatory proteins BrlA and PacC are involved in pksA promoter activity.  相似文献   

6.
Aflatoxins: Detection,toxicity, and biosynthesis   总被引:1,自引:0,他引:1  
Aflatoxins are toxic and carcinogenic secondary metabolites produced mainly byAspergillus flavus andAspergillus parasiticus. The aflatoxins present in food and feed are hazardous to both human and animal health. A number of studies have been conducted on the detection, toxicity, biosynthesis, and regulation of aflatoxins due to the discovery of serious aflatoxicosis in farm animals, and the presence of aflatoxins in many food products. There are many reviews that focus on the biosynthesis of aflatoxin, yet there are few examinations of the overall aspects of aflatoxins, including detection, toxicity, and the regulation on biosynthesis. Thus, the goal of this article is to give an overview of the overall aspects of aflatoxins. This review consists of four parts; i) detection methods for aflatoxins, ii) the toxicity mechanism of aflatoxin B1, iii) gene cluster for aflatoxin biosynthesis, and iv) the regulation of aflatoxin biosynthesis.  相似文献   

7.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   

8.
Aflatoxins are notorious toxic secondary metabolites known for their impacts on human and animal health, and their effects on the marketability of key grain and nut crops. Understanding aflatoxin biosynthesis is the focus of a large and diverse research community. Concerted efforts by this community have led not only to a well-characterized biosynthetic pathway, but also to the discovery of novel regulatory mechanisms. Common to secondary metabolism is the clustering of biosynthetic genes and their regulation by pathway specific as well as global regulators. Recent data show that arrangement of secondary metabolite genes in clusters may allow for an important global regulation of secondary metabolism based on physical location along the chromosome. Available genomic and proteomic tools are now allowing us to examine aflatoxin biosynthesis more broadly and to put its regulation in context with fungal development and fungal ecology. This review covers our current understanding of the biosynthesis and regulation of aflatoxin and highlights new and emerging information garnered from structural and functional genomics. The focus of this review will be on studies in Aspergillus flavus and Aspergillus parasiticus, the two agronomically important species that produce aflatoxin. Also covered will be the important contributions gained by studies on production of the aflatoxin precursor sterigmatocystin in Aspergillus nidulans.  相似文献   

9.
10.
In the aflatoxin biosynthetic pathway, 5′-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2′S,5′S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5′-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism.  相似文献   

11.
A number of 21Aspergillus sp. strains isolated from cowpeas from Benin (Africa) were characterized by RAPD methodology. Seven of these strains grouped withA. flavus in the dendrogram generated with the RAPD data. Only three were able to produce aflatoxin in significant amounts. Twelve other isolates grouped withA. parasiticus. All of these strains except 3 produced aflatoxin. Two additional strains neither fit with theA. flavus group, nor theA. parasiticus group according to their RAPD pattern. Both did not produce aflatoxin in measurable amounts. Generally the aflatoxin positive strains produced high amounts of aflatoxin after growth on YES medium. However after growth on cowpea based medium aflatoxin biosynthesis was strongly ceased, albeit the growth of the colony was only partly reduced. This was true for media made either with the whole cowpea seed or with cowpea seed without seed coat. Interestingly when the cowpea medium was heat sterilized the fungus was able to produce high amounts of aflatoxin. This, however, was not the case after the use of gamma irradiation as sterilization method for the medium. The expression of thenor- 1 gene, which is one of the early genes involved in aflatoxin biosynthesis, was significantly repressed after growth on gamma irradiated cowpea medium in contrast to YES medium. This study was part of the project “Capability Building for Research and Quality Assurance in Traditional Food Processing in West Africa”  相似文献   

12.
A number of polyketide synthase gene sequences fromAspergillus ochraceus were isolated by both SSH-PCR and degenerate PCR. The deduced amino acid sequences of the corresponding clonedpks DNA fragments were then aligned with the amino acid sequences of other polyketide synthase enzymes. One of thesepks genes is essential for ochratoxin A biosynthesis (OTA-PKS). The OTA-PKS was most similar to methylsalicylic acid synthase (MSAS) type PKS proteins based on the alignment of the ketosynthase domains while if the acyl transferase domains were aligned it appeared to be more similar to PKS enzymes fromCochliobolus heterostrophus. The three PKS proteins identified by degenerate PCR were all from different PKS types, one was a MSAS type enzyme, the second was similar to the PKS proteins involved in lovastatin biosynthesis while the third was not similar to any of the other phylogenetic groupings. Data is presented which suggests that the use of phylogenetic analysis to predict the function of PKS proteins/genes is likely to be significantly enhanced by analyzing more than one domain of the protein. Presented at the EU-USA Bilateral Workshop on Toxigenic Fungi & Mycotoxins, New Orleans, USA, July 5–7, 2005 Financial support: Irish Government under the National Development Plan 2000–2006  相似文献   

13.
We show here that oxidative stress is involved in both sclerotial differentiation (SD) and aflatoxin B1 biosynthesis in Aspergillus flavus. Specifically, we observed that (i) oxidative stress regulates SD, as implied by its inhibition by antioxidant modulators of reactive oxygen species and thiol redox state, and that (ii) aflatoxin B1 biosynthesis and SD are comodulated by oxidative stress. However, aflatoxin B1 biosynthesis is inhibited by lower stress levels compared to SD, as shown by comparison to undifferentiated A. flavus. These same oxidative stress levels also characterize a mutant A. flavus strain, lacking the global regulatory gene veA. This mutant is unable to produce sclerotia and aflatoxin B1. (iii) Further, we show that hydrogen peroxide is the main modulator of A. flavus SD, as shown by its inhibition by both an irreversible inhibitor of catalase activity and a mimetic of superoxide dismutase activity. On the other hand, aflatoxin B1 biosynthesis is controlled by a wider array of oxidative stress factors, such as lipid hydroperoxide, superoxide, and hydroxyl and thiyl radicals.  相似文献   

14.
Effects of different light conditions on development, growth, and secondary metabolism of three marine-derived filamentous fungi were investigated. Darkness irritated sexual development of Aspergillus glaucus HB1-19, while white, red, and blue lights improved its asexual behavior. The red and blue lights improved asexual stroma formation of Xylaria sp. (no. 2508), but the darkness and white light inhibited it. Differently, development of Halorosellinia sp. (no. 1403) turned out to be insensitive to any tested light irradiation. Upon the experimental data, no regularity was observed linking development with secondary metabolism. However, fungal growth showed inversely correlation with productions of major bioactive compounds (aspergiolide A, 1403C, and xyloketal B) from various strains. The results indicated that aspergiolide A biosynthesis favored blue light illumination, while 1403C and xyloketal B preferred red light irradiation. With the favorite light sensing conditions, productions of aspergiolide A, 1403C, and xyloketal B were enhanced by 32.9, 21.9, and 30.8 % compared with those in the dark, respectively. The phylogenetic analysis comparing the light-responding proteins of A. glaucus HB 1-19 with those in other systems indicated that A. glaucus HB 1-19 was closely related to Aspergillus spp. especially A. nidulans in spite of its role of marine-derived fungus. It indicated that marine fungi might conserve its light response system when adapting the marine environment. This work also offers useful information for process optimization involving light regulation on growth and metabolism for drug candidate production from light-sensitive marine fungi.  相似文献   

15.
Bipolaris papendorfii has been reported as a fungal plant pathogen that rarely causes opportunistic infection in humans. Secondary metabolites isolated from this fungus possess medicinal and anticancer properties. However, its genetic fundamental and basic biology are largely unknown. In this study, we report the first draft genome sequence of B. papendorfii UM 226 isolated from the skin scraping of a patient. The assembled 33.4 Mb genome encodes 11,015 putative coding DNA sequences, of which, 2.49% are predicted transposable elements. Multilocus phylogenetic and phylogenomic analyses showed B. papendorfii UM 226 clustering with Curvularia species, apart from other plant pathogenic Bipolaris species. Its genomic features suggest that it is a heterothallic fungus with a putative unique gene encoding the LysM-containing protein which might be involved in fungal virulence on host plants, as well as a wide array of enzymes involved in carbohydrate metabolism, degradation of polysaccharides and lignin in the plant cell wall, secondary metabolite biosynthesis (including dimethylallyl tryptophan synthase, non-ribosomal peptide synthetase, polyketide synthase), the terpenoid pathway and the caffeine metabolism. This first genomic characterization of B. papendorfii provides the basis for further studies on its biology, pathogenicity and medicinal potential.  相似文献   

16.
Multifunctional proteins often appear to result from fusion of smaller proteins and in such cases typically can be separated into their ancestral components simply by cleaving the linker regions that separate the domains. Though possibly guided by sequence alignment, structural evidence, or light proteolysis, determination of the locations of linker regions remains empirical. We have developed an algorithm, named UMA, to predict the locations of linker regions in multifunctional proteins by quantification of the conservation of several properties within protein families, and the results agree well with structurally characterized proteins. This technique has been applied to a family of fungal type I iterative polyketide synthases (PKS), allowing prediction of the locations of all of the standard PKS domains, as well as two previously unidentified domains. Using these predictions, we report the cloning of the first fragment from the PKS norsolorinic acid synthase, responsible for biosynthesis of the first isolatable intermediate in aflatoxin production. The expression, light proteolysis and catalytic abilities of this acyl carrier protein-thioesterase didomain are discussed.  相似文献   

17.
Boesenbergia rotunda belongs to the Zingiberaceae family. It is widely found throughout Southeast Asia and is commonly used as a food ingredient and in folk medicine. Extracts from this plant contain a number of important bioactive compounds such as boesenbergin, cardamonin, pinostrobin, pinocembrin, panduratin A and 4-hydroxypanduratin A. These compounds have been shown to exhibit anti-HIV protease, anti-dengue NS2B/ NS3 protease, antibacterial, antifungal, anti-inflammatory, anticancer, and antioxidant activity. Here we report the use of proteomic approaches to identify proteins that may be involved in the biosynthesis of these compounds. Protein expressions of B. rotunda suspension cultures for phenylalanine-treated and normal callus were compared by two-dimensional gel electrophoresis. Following image analysis, protein spots whose expressions were found to be regulated were identified using Matrix Assisted Laser Desorption-Ionization tandem mass spectrometry. In all, thirty four proteins were identified. These proteins were categorized into nine functional categories??defence mechanism, protein biosynthesis, metabolism, terpenoid biosynthesis, cell division, cell organization, energy-related, signaling processes and proteins of unknown function. Eleven of the proteins involved in the phenylpropanoid biosynthetic pathway are related to the biosynthesis of cyclohexenyl chalcone derivatives.  相似文献   

18.
19.
Bradshaw RE  Zhang S 《Mycopathologia》2006,162(3):201-213
Dothistromin is a mycotoxin that is remarkably similar in structure to versicolorin B, a precursor of both aflatoxin and sterigmatocystin. Dothistromin-producing fungi also produce related compounds, including some aflatoxin precursors as well as alternative forms of dothistromin. Dothistromin is synthesized by pathogenic species of Dothistroma in the red bands of pine needles associated with needle blight, but is also made in culture where it is strongly secreted into the surrounding medium. Orthologs of aflatoxin and sterigmatocystin biosynthetic genes have been found that are required for the biosynthesis of dothistromin, along with others that are speculated to be involved in the same pathway on the basis of their sequence similarity to aflatoxin genes. An epoxide hydrolase gene that has no homolog in the aflatoxin or sterigmatocystin gene clusters is also clustered with the dothistromin genes, and all these genes appear to be located on a minichromosome in Dothistroma septosporum. The dothistromin genes are expressed at an early stage of growth, suggesting a role in the first stages of plant invasion by the fungus. Future studies are expected to reveal more about the role of dothistromin in needle blight and about the genomic organization and expression of dothistromin genes: these studies will provide for interesting comparisons with these aspects of aflatoxin and sterigmatocystin biosynthesis.  相似文献   

20.
The most obvious effect of sunlight exclusion from grape clusters is the inhibition of anthocyanin biosynthesis in the berry skin so that no color develops. Two-dimensional gel electrophoresis coupled with mass spectrometry was used to characterize the proteins isolated from berry skins that developed under sunlight exclusion versus those from sunlight-exposed berries. Among more than 1500 spots resolved in stained gels, the accumulation patterns of 96 spots differed significantly between sunlight-excluded berry skin and that of sunlight-exposed control berries. Seventy-two proteins, including 35 down-regulated and 37 up-regulated proteins, were identified and categorized. Proteins involved in photosynthesis and secondary metabolism, especially UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT), the key step for anthocyanin biosynthesis in grape berry skin, were accumulated less in the absence of sunlight. Several isoforms of heat shock proteins were also down-regulated. The proteins that were over-accumulated in sunlight-excluded berry skin were more often related to energy production, glycolysis, the tricarboxylic-acid cycle, protein synthesis and biogenesis of cellular components. Their putative role is discussed in terms of their relevance to sunlight exclusion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号