首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Paaby AB  Schmidt PS 《PloS one》2008,3(4):e1987

Background

Longevity and age-specific patterns of mortality are complex traits that vary within and among taxa. Multiple candidate genes for aging have been identified in model systems by extended longevity mutant phenotypes, including the G-protein coupled receptor methuselah (mth) in D. melanogaster. These genes offer important insights into the mechanisms of lifespan determination and have been major targets of interest in the biology of aging. However, it is largely unknown whether these genes contribute to genetic variance for lifespan in natural populations, and consequently contribute to lifespan evolution.

Methodology/Principle Findings

For a gene to contribute to genetic variance for a particular trait, it must meet two criteria: natural allelic variation and functional differences among variants. Previous work showed that mth varies significantly among wild populations; here we assess the functional significance of wild-derived mth alleles on lifespan, fecundity and stress resistance using a quantitative complementation scheme. Our results demonstrate that mth alleles segregating in nature have a functional effect on all three traits.

Conclusions/Significance

These results suggest that allelic variation at mth contributes to observed differences in lifespan and correlated phenotypes in natural populations, and that evaluation of genetic diversity at candidate genes for aging can be a fruitful approach to identifying loci contributing to lifespan evolution.  相似文献   

2.
3.
Polačik M  Reichard M 《PloS one》2011,6(8):e22684

Background

Interspecific reproductive isolation is typically achieved by a combination of intrinsic and extrinsic barriers. Behavioural isolating barriers between sympatric, closely related species are often of primary importance and frequently aided by extrinsic factors causing spatial and temporal interspecific separation. Study systems with a severely limited role of extrinsic factors on reproductive isolation may provide valuable insights into how reproductive isolation between sympatric species is maintained. We used no-choice experimental set-up to study reproductive barriers between two closely related sympatric African killifish species, Nothobranchius furzeri and Nothobranchius orthonotus. These fish live in small temporary savannah pools and have complete spatial and temporal overlap in reproductive activities and share a similar ecology.

Principal Findings

We found that the two species display largely incomplete and asymmetric reproductive isolation. Mating between N. furzeri males and N. orthonotus females was absent under standard experimental conditions and eggs were not viable when fish were forced to mate in a modified experimental setup. In contrast, male N. orthonotus indiscriminately mated with N. furzeri females, the eggs were viable, and offspring successfully hatched. Most spawnings, however, were achieved by male coercion and egg production and embryo survival were low. Behavioural asymmetry was likely facilitated by mating coercion from larger males of N. orthonotus and at relatively low cost to females. Interestingly, the direction of asymmetry was positively associated with asymmetry in post-mating reproductive barriers.

Significance

We showed that, in fish species with a promiscuous mating system and multiple matings each day, selection for strong mate preferences was relaxed. This effect was likely due to the small proportion of resources allocated to each single mating and the high potential cost to females from mating refusal. We highlight and discuss the fact that males of rarer species may often coercively mate with females of a related, more abundant species.  相似文献   

4.

Background

Outcomes of lifespan studies in model organisms are particularly susceptible to variations in technical procedures. This is especially true of dietary restriction, which is implemented in many different ways among laboratories.

Principal Findings

In this study, we have examined the effect of laboratory stock maintenance, genotype differences and microbial infection on the ability of dietary restriction (DR) to extend life in the fruit fly Drosophila melanogaster. None of these factors block the DR effect.

Conclusions

These data lend support to the idea that nutrient restriction genuinely extends lifespan in flies, and that any mechanistic discoveries made with this model are of potential relevance to the determinants of lifespan in other organisms.  相似文献   

5.

Background

Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV) on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females.

Methods/Principal Findings

After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2nd and 3rd weeks post-infection, and also longer overall blood-feeding times in the 3rd week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3rd week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group.

Conclusions

The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes.  相似文献   

6.

Background

The annual fish Nothobranchius furzeri is the vertebrate with the shortest known life span in captivity. Fish of the GRZ strain live only three to four months under optimal laboratory conditions, show explosive growth, early sexual maturation and age-dependent physiological and behavioral decline, and express aging related biomarkers. Treatment with resveratrol and low temperature significantly extends the maximum life span. These features make N. furzeri a promising new vertebrate model for age research.

Results

To contribute to establishing N. furzeri as a new model organism, we provide a first insight into its genome and a comparison to medaka, stickleback, tetraodon and zebrafish. The N. furzeri genome contains 19 chromosomes (2n = 38). Its genome of between 1.6 and 1.9 Gb is the largest among the analyzed fish species and has, at 45%, the highest repeat content. Remarkably, tandem repeats comprise 21%, which is 4-12 times more than in the other four fish species. In addition, G+C-rich tandem repeats preferentially localize to centromeric regions. Phylogenetic analysis based on coding sequences identifies medaka as the closest relative. Genotyping of an initial set of 27 markers and multi-locus fingerprinting of one microsatellite provides the first molecular evidence that the GRZ strain is highly inbred.

Conclusions

Our work presents a first basis for systematic genomic and genetic analyses aimed at understanding the mechanisms of life span determination in N. furzeri.  相似文献   

7.
According to life history theory, physiological and ecological traits and parameters influence an individual''s life history and thus, ultimately, its lifespan. Mating and reproduction are costly activities, and in a variety of model organisms, a negative correlation of longevity and reproductive effort has been demonstrated. We are employing the annual killifish Nothobranchius furzeri as a vertebrate model for ageing. N. furzeri is the vertebrate displaying the shortest known lifespan in captivity with particular strains living only three to four months under optimal laboratory conditions. The animals show explosive growth, early sexual maturation and age-dependent physiological and behavioural decline. Here, we have used N. furzeri to investigate a potential reproduction-longevity trade-off in both sexes by means of gender separation. Though female reproductive effort and offspring investment were significantly reduced after separation, as investigated by analysis of clutch size, eggs in the ovaries and ovary mass, the energetic surplus was not reallocated towards somatic maintenance. In fact, a significant extension of lifespan could not be observed in either sex. This is despite the fact that separated females, but not males, grew significantly larger and heavier than the respective controls. Therefore, it remains elusive whether lifespan of an annual species evolved in periodically vanishing habitats can be prolonged on the cost of reproduction at all.  相似文献   

8.
9.
The short-lived annual fish Nothobranchius furzeri shows extremely short captive life span and accelerated expression of age markers, making it an interesting model system to investigate the effects of experimental manipulations on longevity and age-related pathologies. Here, we tested the effects of dietary restriction (DR) on mortality and age-related markers in N. furzeri . DR was induced by every other day feeding and the treatment was performed both in an inbred laboratory line and a longer-lived wild-derived line. In the inbred laboratory line, DR reduced age-related risk and prolonged maximum life span. In the wild-derived line, DR induced early mortality, did not reduce general age-related risk and caused a small but significant extension of maximum life span. Analysis of age-dependent mortality revealed that DR reduced demographic rate of aging, but increased baseline mortality in the wild-derived strain. In both inbred- and wild-derived lines, DR prevented the expression of the age markers lipofuscin in the liver and Fluoro-Jade B (neurodegeneration) in the brain. DR also improved performance in a learning test based on conditioning (active avoidance in a shuttle box). Finally, DR induced a paradoxical up-regulation of glial fibrillary acidic protein in the brain.  相似文献   

10.

Background

While the possible sources underlying the so-called ‘missing heritability’ evident in current genome-wide association studies (GWAS) of complex traits have been actively pursued in recent years, resolving this mystery remains a challenging task. Studying heritability of genome-wide gene expression traits can shed light on the goal of understanding the relationship between phenotype and genotype. Here we used microarray gene expression measurements of lymphoblastoid cell lines and genome-wide SNP genotype data from 210 HapMap individuals to examine the heritability of gene expression traits.

Results

Heritability levels for expression of 10,720 genes were estimated by applying variance component model analyses and 1,043 expression quantitative loci (eQTLs) were detected. Our results indicate that gene expression traits display a bimodal distribution of heritability, one peak close to 0% and the other summit approaching 100%. Such a pattern of the within-population variability of gene expression heritability is common among different HapMap populations of unrelated individuals but different from that obtained in the CEU and YRI trio samples. Higher heritability levels are shown by housekeeping genes and genes associated with cis eQTLs. Both cis and trans eQTLs make comparable cumulative contributions to the heritability. Finally, we modelled gene-gene interactions (epistasis) for genes with multiple eQTLs and revealed that epistasis was not prevailing in all genes but made a substantial contribution in explaining total heritability for some genes analysed.

Conclusions

We utilised a mixed effect model analysis for estimating genetic components from population based samples. On basis of analyses of genome-wide gene expression from four HapMap populations, we demonstrated detailed exploitation of the distribution of genetic heritabilities for expression traits from different populations, and highlighted the importance of studying interaction at the gene expression level as an important source of variation underlying missing heritability.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-13) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.

Background and Aims

Oilseed rape (Brassica napus) is an important oil crop worldwide. The aim of this study was to identify the variation in nitrogen (N) efficiency of new-type B. napus (genome ArArCcCc) genotypes, and to characterize some critical physiological and molecular mechanisms in response to N limitation.

Methods

Two genotypes with contrasting N efficiency (D4-15 and D1-1) were identified from 150 new-type B. napus lines, and hydroponic and pot experiments were conducted. Root morphology, plant biomass, N uptake parameters and seed yield of D4-15 and D1-1 were investigated. Two traditional B. napus (genome AnAnCnCn) genotypes, QY10 and NY7, were also cultivated. Introgression of exotic genomic components in D4-15 and D1-1 was evaluated with molecular markers.

Key Results

Large genetic variation existed among traits contributing to the N efficiency of new-type B. napus. Under low N levels at the seedling stage, the N-efficient new-type D4-15 showed higher values than the N-inefficient D1-1 line and the traditional B. napus QY10 and NY7 genotypes with respect to several traits, including root and shoot biomass, root morphology, N accumulation, N utilization efficiency (NutE), N uptake efficiency (NupE), activities of nitrate reductase (NR) and glutamine synthetase (GS), and expression levels of N transporter genes and genes that are involved in N assimilation. Higher yield was produced by the N-efficient D4-15 line compared with the N-inefficient D1-1 at maturity. More exotic genome components were introgressed into the genome of D4-15 (64·97 %) compared with D1-1 (32·23 %).

Conclusions

The N-efficient new-type B. napus identified in this research had higher N efficiency (and tolerance to low-N stress) than traditional B. napus cultivars, and thus could have important potential for use in breeding N-efficient B. napus cultivars in the field.  相似文献   

13.

Background

Age-related physiological, biochemical and functional changes in mammalian skeletal muscle have been shown to begin at the mid-point of the lifespan. However, the underlying changes in DNA methylation that occur during this turning point of the muscle aging process have not been clarified. To explore age-related genomic methylation changes in skeletal muscle, we employed young (0.5 years old) and middle-aged (7 years old) pigs as models to survey genome-wide DNA methylation in the longissimus dorsi muscle using a methylated DNA immunoprecipitation sequencing approach.

Results

We observed a tendency toward a global loss of DNA methylation in the gene-body region of the skeletal muscle of the middle-aged pigs compared with the young group. We determined the genome-wide gene expression pattern in the longissimus dorsi muscle using microarray analysis and performed a correlation analysis using DMR (differentially methylated region)-mRNA pairs, and we found a significant negative correlation between the changes in methylation levels within gene bodies and gene expression. Furthermore, we identified numerous genes that show age-related methylation changes that are potentially involved in the aging process. The methylation status of these genes was confirmed using bisulfite sequencing PCR. The genes that exhibited a hypomethylated gene body in middle-aged pigs were over-represented in various proteolysis and protein catabolic processes, suggesting an important role for these genes in age-related muscle atrophy. In addition, genes associated with tumorigenesis exhibited aged-related differences in methylation and expression levels, suggesting an increased risk of disease associated with increased age.

Conclusions

This study provides a comprehensive analysis of genome-wide DNA methylation patterns in aging pig skeletal muscle. Our findings will serve as a valuable resource in aging studies, promoting the pig as a model organism for human aging research and accelerating the development of comparative animal models in aging research.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-653) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.

Results

We found 9634 putative autosomal CNVs across the samples affecting 6.87 % of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).

Conclusion

The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1713-z) contains supplementary material, which is available to authorized users.  相似文献   

15.
Ding L  Kuhne WW  Hinton DE  Song J  Dynan WS 《PloS one》2010,5(10):e13287

Background

Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research.

Principal Findings

The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated β-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain.

Significance

The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors.  相似文献   

16.

Background and Aims

We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species.

Methods

In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson''s single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots.

Key Results

From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations.

Conclusions

Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context.  相似文献   

17.

Background

Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age.

Results

Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues.

Conclusions

Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.  相似文献   

18.

Background

Root lifespan is an important trait that determines plants'' ability to acquire and conserve soil resources. There have been several studies investigating characteristics of root lifespan of both woody and herbaceous species. However, most of the studies have focused on non-clonal plants, and there have been little data on root lifespan for clonal plants that occur widely in temperate grasslands.

Methodology/Principal Findings

We investigated the effects of rhizome severing on overall root lifespan of Leymus chinensis, a clonal, dominant grass species in the temperate steppe in northern China, in a 2-year field study using modified rhizotron technique. More specifically, we investigated the effects of rhizome severing on root lifespan of roots born in different seasons and distributed at different soil depths. Rhizome severing led to an increase in the overall root lifespan from 81 to 103 days. The increase in root lifespan exhibited spatial and temporal characteristics such that it increased lifespan for roots distributed in the top two soil layers and for roots born in summer and spring, but it had no effect on lifespan of roots in the deep soil layer and born in autumn. We also examined the effect of rhizome severing on carbohydrate and N contents in roots, and found that root carbohydrate and N contents were not affected by rhizome severing. Further, we found that root lifespan of Stipa krylovii and Artemisia frigida, two dominant, non-clonal species in the temperate steppe, was significantly longer (118 d) than that of L. chinensis (81 d), and this value became comparable to that of L. chinensis under rhizome severing (103 d).

Conclusions/Significance

We found that root lifespan in dominant, clonal L. chinensis was shorter than for the dominant, non-clonal species of S. krylovii and A. frigida. There was a substantial increase in the root lifespan of L. chinensis in response to severing their rhizomes, and this increase in root lifespan exhibited temporal and spatial characteristics. These findings suggest that the presence of rhizomes is likely to account for the observed short lifespan of clonal plant species in the temperate steppe.  相似文献   

19.

Background and Aims

Low soil fertility limits growth and productivity in many natural and agricultural systems, where the ability to sense and respond to nutrient limitation is important for success. Helianthus anomalus is an annual sunflower of hybrid origin that is adapted to desert sand-dune substrates with lower fertility than its parental species, H. annuus and H. petiolaris. Previous studies have shown that H. anomalus has traits generally associated with adaptation to low-fertility habitats, including a lower inherent relative growth rate and longer leaf lifetime.

Methods

Here, a cDNA microarray is used to identify gene expression differences that potentially contribute to increased tolerance of low fertility of the hybrid species by comparing the nitrogen stress response of all three species with high- and low-nutrient treatments.

Key Results

Relative to the set of genes on the microarray, the genes showing differential expression in the hybrid species compared with its parents are enriched in stress-response genes, developmental genes, and genes involved in responses to biotic or abiotic stimuli. After a correction for multiple comparisons, five unique genes show a significantly different response to nitrogen limitation in H. anomalus compared with H. petiolaris and H. annuus. The Arabidopsis thaliana homologue of one of the five genes, catalase 1, has been shown to affect the timing of leaf senescence, and thus leaf lifespan.

Conclusions

The five genes identified in this analysis will be examined further as candidate genes for the adaptive stress response in H. anomalus. Genes that improve growth and productivity under nutrient stress could be used to improve crops for lower soil fertility which is common in marginal agricultural settings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号