首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mast cells and basophils have been implicated in the host defense system against pathogens and in the development of allergic disorders. Although IgE-dependent responses via FcepsilonRI on these cells have been extensively studied, little is known about cell surface molecules that are selectively expressed by these cells and engaged in their activation via an IgE-independent mechanism. We have recently established two mAbs that reacted specifically with murine mast cells and basophils, and one of them selectively depleted basophils when administered in vivo. Biochemical and flow cytometric analyses revealed that both mAbs specifically recognized a CD200R-like protein, CD200R3, but not other CD200R family members. CD200R3 existed as a disulfide-linked dimer, unlike other CD200Rs, and was expressed on mast cells and basophils primarily in association with an ITAM-bearing adaptor DAP12. Cross-linking of CD200R3 with the mAbs induced degranulation in mast cells and production of the cytokine IL-4 in basophils in vitro. Administration of the nondepleting mAb in vivo elicited systemic and local anaphylaxis in a CD200R3-dependent manner. These results suggest that CD200R3 functions as an activating receptor on mast cells and basophils to regulate IgE-independent immune responses in cooperation with an inhibitory receptor CD200R, similar to the paired receptors expressed on NK cells.  相似文献   

2.
AIDS patients often contain HIV-1-infected mast cells (MCs)/basophils in their peripheral blood, and in vivo-differentiated MCs/basophils have been isolated from the blood of asthma patients that are HIV-1 susceptible ex vivo due to their surface expression of CD4 and varied chemokine receptors. Because IL-16 is a ligand for CD4 and/or an undefined CD4-associated protein, the ability of this multifunctional cytokine to regulate the development of human MCs/basophils from nongranulated progenitors residing in cord or peripheral blood was evaluated. After 3 wk of culture in the presence of c-kit ligand, IL-16 induced the progenitors residing in the blood of normal individuals to increase their expression of chymase and tryptase about 20-fold. As assessed immunohistochemically, >80% of these tryptase(+) and/or chymase(+) cells expressed CD4. The resulting cells responded to IL-16 in an in vitro chemotaxis assay, and this biologic response could be blocked by anti-IL-16 and anti-CD4 Abs as well as by a competitive peptide inhibitor corresponding to a sequence in the C-terminal domain of IL-16. The additional finding that IL-16 induces calcium mobilization in the HMC-1 cell line indicates that IL-16 acts directly on MCs and their committed progenitors. IL-16-treated MCs/basophils also are less susceptible to infection by an M/R5-tropic strain of HIV-1. Thus, IL-16 regulates MCs/basophils at a number of levels, including their vulnerability to retroviral infection.  相似文献   

3.
CD4+CD25+ T regulatory (T(R)) cells are an important regulatory component of the adaptive immune system that limit autoreactive T cell responses in various models of autoimmunity. This knowledge was generated by previous studies from our lab and others using T(R) cell supplementation and depletion. Contrary to dogma, we report here that injection of anti-CD25 mAb results in the functional inactivation, not depletion, of T(R) cells, resulting in exacerbated autoimmune disease. Supporting this, mice receiving anti-CD25 mAb treatment display significantly lower numbers of CD4+CD25+ T cells but no change in the number of CD4+FoxP3+ T(R) cells. In addition, anti-CD25 mAb treatment fails to both reduce the number of Thy1.1+ congenic CD4+CD25+ T(R) cells or alter levels of CD25 mRNA expression in treatment recipients. Taken together, these findings have far-reaching implications for the interpretation of all previous studies forming conclusions about CD4+CD25+ T(R) cell depletion in vivo.  相似文献   

4.
Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and development of new therapeutics for Th2-mediated immune diseases such as AD.  相似文献   

5.
Malaria infections display variation patterns of clinical course and outcome. Although CD4+CD25+Foxp3+ regulatory T (Treg) cells play an essential role in immune homeostasis, the immune regulatory roles involved in malaria infection remains to be elucidated. Herein, we compared the disparity in Treg cells response during the course of blood stage Plasmodium chabaudi chabaudi AS (P. c chabaudi AS) infection in DBA/2 and BALB/c mice. BALB/c mice initiated a Th1/Th2 profile respond to P. c chabaudi AS infection, but DBA/2 mice failed to control P. c chabaudi AS infection and almost of them died post-peak parasitemia. At the peak parasitemia, we found that higher proportion of Treg cells with elevated Foxp3 expression in DBA/2 than in BALB/c mice. We used anti-CD25 mAb to deplete Treg cells and found that the survival time and rate were prolonged in DBA/2 mice treated with anti-CD25 mAb. Treatment with anti-CD25 mAb in vivo led to enhanced pro-inflammation responses and Foxp3 expression decline on Treg cells. In contrast, after DBA/2 was treatment with anti-IL-10R mAb, IL-10R blockade in vivo caused excessive pro-inflammation responses and Foxp3 expression loss on CD4+CD25+ T cells. Earlier death was found in all of DBA/2 mice with anti-IL-10R mAb. It suggested that IL-2 and IL-10 signal involved in maintaining Foxp3 expression on Treg cells. In all, the moderate suppressive activity of Treg cells may facilitate resistance to P. c chabaudi AS infection.  相似文献   

6.
During allergic reactions, basophils migrate from the blood compartment to inflammatory sites, where they act as effector cells in concert with eosinophils. Because transendothelial migration (TEM) represents an essential step for extravasation of cells, for the first time we have studied basophil TEM using HUVEC. Treatment of HUVEC with IL-1beta significantly enhanced basophil TEM, which was further potentiated by the presence of a CCR3-specific ligand, eotaxin/CCL11. In addition to CCR3 ligands, MCP-1/CCL2 was also active on basophil TEM. Although stromal cell-derived factor-1/CXCL12, a CXCR4 ligand, failed to induce TEM in freshly isolated basophils, it caused strong TEM in 24-h cultured cells. IL-3 enhanced basophil TEM by increasing the chemokinetic response. Spontaneous TEM across activated HUVEC was inhibited by treatment of cells with anti-CD18 mAb, but not with anti-CD29 mAb, and also by treatment of HUVEC with anti-ICAM-1 mAb. Anti-VCAM-1 mAb alone failed to inhibit TEM, but showed an additive inhibitory effect in combination with anti-ICAM-1 mAb. In contrast, eotaxin- and IL-3-mediated TEM was significantly inhibited by anti-CD29 mAb as well as anti-CD18 mAb. These results indicate that beta2 integrins play the primary role in basophil TEM, but beta1 integrins are also involved, especially in TEM of cytokine/chemokine-stimulated basophils. In conclusion, the regulatory profile of basophil TEM is very similar to that reported for eosinophils. Our results thus support the previous argument for a close relationship between basophils and eosinophils and suggest that the in vivo kinetics of these two cell types are similar.  相似文献   

7.
We have developed an in vitro system to assess the early stages of B cell activation induced by peripheral blood T helper cells. Peripheral blood mononuclear cells are cultured for 16 hr with anti-CD3 monoclonal antibody (mAb), T lymphocytes are then removed by sheep red blood cell rosette depletion, and expression of the B cell surface activation antigen CD23 (BLAST-2) is assessed by indirect immunofluorescence. Anti-CD3 mAb, but not a control anti-CD5 mAb, stimulates the expression of CD23 on 20-50% of peripheral blood B cells cultured with autologous T cells. T cell subset depletion studies show that the CD4+ T cell subset is responsible for anti-CD3-mediated induction of CD23 on autologous B cells. Anti-CD3-induced, T helper cell-dependent CD23 expression is not MHC-restricted, as allogeneic combinations of T and non-T cells, cultured in the presence of anti-CD3 antibody, also result in the expression of B cell CD23. Individuals whose monocyte Fc receptors bind murine IgG1 mAb poorly fail to trigger T cell proliferation in response to murine IgG1 anti-CD3 mAb and also fail to express B cell CD23 following culture of PBMC with IgG1 anti-CD3 mAb, while the usual expression of CD23 is seen after culture with IgG2a anti-CD3 mAb. The mechanism of anti-CD3-induced B cell activation was addressed in experiments using a two-chamber culture system. While little IL-4 activity was detected in anti-CD3-stimulated culture supernatants, optimal induction of CD23 was observed when T and B cells were cultured together in a single chamber. This suggests that under physiologic conditions, in which quantities of lymphokine may be limiting, close physical contact between the anti-CD3-activated Th cell and B cell may be required for CD23 expression. The anti-CD3-induced BLAST-2 assay will facilitate the analysis of Th cell-mediated B cell activation in any individual and should permit us to separately evaluate the roles of Th cells and B cells in the impaired immunoregulation characteristic of autoimmune disorders.  相似文献   

8.
Granuloma formation around parasite eggs during schistosomal infection is considered to be controlled by Th2 cytokines. However, it is still controversial which cell populations are responsible for the host Th2 cytokine-dependent granuloma formation. Basophils have recently attracted attention because of their ability to produce large amounts of IL-4. Therefore, we investigated whether basophils play an essential role in the induction of granuloma formation induced by Schistosoma mansoni eggs. Together with our previous observation that basophil numbers increased markedly in the spleen at 7 weeks postinfection, immunohistochemical staining using anti-mMCP8 monoclonal antibody (mAb) showed basophil infiltration in the granulomatous lesions formed around parasite eggs. To examine the roles of basophils more directly, we treated mice with anti-CD200R3 mAb to deplete basophils. Depletion of basophils resulted in a reduction of basophil number with concomitant downregulation of egg granuloma formation at 7 weeks postinfection. Moreover, we observed a significant reduction in the size of egg granulomas formed in basophil-depleted mice in the pulmonary granuloma model. Taken together, these findings indicated that basophils are essential for S. mansoni egg-induced granuloma formation, and this may serve as a novel therapeutic target in ameliorating the pathology of schistosomiasis.  相似文献   

9.
10.
mAb were selected that inhibited IgE-mediated histamine release from human basophils. The two mAb, HB 9AB6 and HB 10AB2, are of the IgG1 subclass and have a 50% inhibitory concentration of 0.16 to 1.1 micrograms/ml. The mAb required several hours of incubation with the basophils at 37 degrees C to induce maximum inhibition. Neither mAb directly released histamine from human basophils nor did they inhibit release induced by formylmethionine tripeptide, calcium ionophore A23187, or PMA. There was little inhibition of IgE-mediated release when the cells were preincubated with the mAb at 4 degrees C. By FACS analysis the 2 mAb bound to all peripheral blood leukocytes and immunoprecipitated a approximately 200-kDa protein from peripheral blood leukocytes and several cell lines of human origin. In binding studies and by sequential immunoprecipitation the 2 mAb and a known anti-CD45 mAb bound to the same protein. However, the mAb recognized different epitopes. Therefore, mAb to the CD45 surface Ag, a membrane protein tyrosine phosphatase, inhibits IgE-receptor mediated histamine release from human basophils. The data suggest a link between protein tyrosine phosphorylation and high affinity IgE receptor-mediated signal transduction in human basophils.  相似文献   

11.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

12.
Incubation of human T lymphocytes with saturating concentrations of combinations of certain anti-CD2 and -CD4 mAb results in reciprocal down-regulation of the cell surface density expression of the respective CD molecules. Such reciprocal down-regulation occurs at 0 degrees C in the presence of sodium azide and appears selective for CD2 and CD4 molecules because mAb identifying various other CD T cell surface molecules (anti-Leu2a, -OK-CLL, -W6/32, -beta 2-microglobulin, -4B4) do not modulate CD2 or CD4 R density, and because anti-CD2 mAb (anti-OKT11 and -D66 clone-1) do not alter CD8 R density (anti-OKT8, -Leu2a) and vice versa. Down-regulation of CD2 by mAb specific to CD4 is epitope-specific but does not vary on the basis of the antibody isotype used. The anti-CD4 mAb, Leu3a, was the strongest CD2 down-regulator examined followed by OKT4F. mAb specific to other CD4 epitopes (B, C, D, and E) caused only slight down-regulation of CD2 expression whereas anti-OKT4 and -OKT4A mAb had no significant regulatory effect. Also, mAb specific to the 9.6 (anti-OKT11) and D66 (anti-D66 clone 1) epitopes of the CD2 molecule down-regulated CD4 density detectable with Leu3a, OKT4, and OKT4A anti-CD4 mAb. Down-regulation of CD2 by anti-CD4 mAb also occurred with the transformed T cell line, KE-37, which demonstrates that such effects can occur without mononuclear phagocytic accessory cells. From these data it can be concluded that important T cell immunoregulatory signals may be transmitted intramembranally between CD2 and CD4 glycoproteins.  相似文献   

13.
Anti-CD3 mAb can activate T cells to help in B cell activation as detected by late events, such as maturation of B cells into Ig-secreting cells (IgSC), or by early events, such as B cell surface expression of the activation marker CD23. Two different anti-CD2 mAb each inhibited anti-CD3-induced T cell-dependent B cell activation in a dose-dependent fashion. Neither irradiation of the T cells prior to culture nor depletion of CD8+ cells abrogated the inhibitory effects of anti-CD2 mAb. Despite the ability of these anti-CD2 mAb to inhibit anti-CD3-induced IL2 production, addition of exogenous IL2 to anti-CD2 mAb-containing cultures could not fully reverse the inhibitory effects on IgSC generation. Furthermore, addition of various combinations of IL1, IL2, IL4, and IL6 or crude PBMC or monocyte culture supernatants also could not reverse anti-CD2-driven inhibition. In T cell-depleted cultures, anti-CD2 mAb had no effect on the ability of IL4 to induce B cell CD23 expression, confirming that anti-CD2 mAb had no direct effect on B cells. However, in cultures containing T+ non-T cells, anti-CD2 mAb did partially inhibit IL4-induced B cell CD23 expression. Taken together, these observations demonstrate that certain CD2 ligands can modulate T cell-dependent B cell activation by a mechanism which, at least in part, involves a direct effect by the CD2 ligand on the T cell itself.  相似文献   

14.
A study was carried out on cord blood T cell activation via the CD2-mediated pathway. Despite similar percentages of circulating CD3+ and CD2+ cells in adult and cord blood, the proliferation of cord PBMC to the anti-CD3 mAb and cord T cells to anti-CD2 mAb were defective. The T cell CD3-surface structure was normally able to control CD2-mediated activation, as its modulation by a non-mitogenic anti-CD3 mAb blocked cord PBMC proliferation induced by anti-CD2 mAb. CD2-stimulated cord T cells did not proliferate and did not produce a significant amount of IL-2 in culture, although they expressed the IL-2R. This observation was confirmed by the optimal proliferation of CD2-induced cord T cells when rIL-2 was added. Despite the alternative T cell activation pathway is monocyte-independent in adults, the defective cord T cell activation via the CD2 molecule could also be bypassed by the addition of PMA, small amounts of either autologous or allogeneic adult and cord AC or simply rIL-1 alone. Our findings provide evidence for an intrinsic functional defect in cord CD2-mediated T cell activation, which is linked to an impaired increase of free cytoplasmic calcium, as confirmed by the effectiveness of calcium ionophore A23187 in restoring a good CD2-induced cord T cell proliferation and by measurement of cellular calcium uptake after activation via the CD2 molecule. The characteristics of cord T cells revealed by this study recall the thymocyte functional pattern and may represent functional expression of the previously described phenotypic immaturity of cord T cells.  相似文献   

15.
在ConA和固相抗CD_3单抗刺激系统中,应用抗LFA-1/ICAM-1单抗,研究其在胸腺细胞活化中的功能作用,结果证明,培养初期加入可溶性抗LFA-1可完全阻断ConA活化胸腺细胞增殖,对固相抗CD3单抗诱导的胸腺细胞活化也表现出相同的抑制效应,但对ConA刺激24h后的胸腺细胞应答以及IL-1 IL-2诱导的胸腺细胞增殖无影响。在可溶性抗LFA-1单抗的存在下,ConA诱导胸腺细胞合成IL-2和IL-6的能力显著下降,IL-2R的表达降低。此外,当用固相抗LFA-1和固相抗CD3或用二抗交联LFA-1和CD3刺激胸腺细胞时,抗LFA-1则具有明显地促增殖应答效应,单纯固相抗LFA-1刺激或交联LFA-1均无诱导活化作用,研究结果表明,LFA-1是未成熟胸腺细胞活化的重要辅助分子之一,它可参与TCR/CD3途径介导的早期活化信号的传导,并为胸腺细胞表达IL-2R 和产生IL-2可能提供复合刺激信号。  相似文献   

16.
Although anti-CD20 immunotherapy effectively treats human lymphoma and autoimmune disease, the in vivo effect of immunotherapy on tissue B cells and their subsets is generally unknown. To address this, anti-mouse CD20 mAbs were used in a mouse model in which the extent and kinetics of tissue B cell depletion could be assessed in vivo. CD20 mAb treatment depleted most mature B cells within 2 days, with 95-98% of B cells in the bone marrow, blood, spleen, lymph nodes, and gut-associated lymphoid tissues depleted by day 7, including marginal zone and follicular B cells. The few spleen B cells remaining after CD20 mAb treatment included pre-B, immature, transitional, and some B1 B cells that expressed CD20 at low levels. By contrast, peritoneal cavity B cells expressed normal CD20 densities and were coated with CD20 mAb, but only 30-43% of B1 cells and 43-78% of B2 cells were depleted by day 7. Spleen B cells adoptively transferred into the peritoneal cavity were similarly resistant to mAb-induced depletion, while transferred B cells that had migrated to the spleen were depleted. However, peritoneal B1 and B2 cells were effectively depleted in mAb-treated wild-type and C3-deficient mice by thioglycolate-induced monocyte migration into this otherwise privileged niche. Inflammation-elicited effector cells did not promote peritoneal cavity B cell depletion in FcR-deficient mice treated with CD20 mAb. Thus, the majority of CD20(+) cells and B cell subsets within lymphoid tissues and the peritoneum could be depleted efficiently in vivo through Fc-dependent, but C-independent pathways during anti-CD20 immunotherapy.  相似文献   

17.
We have recently shown that engagement of the human monocytic Ag CD14 by murine mAb induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1-dependent homotypic adhesion. To determine whether CD14 plays a role in monocyte-T cell interactions, we tested the effect of anti-CD14 mAb on the proliferation of human T cells. Our results show that anti-CD14 mAb strongly inhibited T cell proliferation induced by Ag, anti-CD3 mAb, and mitogenic lectins. Inhibition by anti-CD14 mAb was epitope-dependent and required physical contact between monocytes and T cells. CD14 engagement did not affect IL-2R expression or IL-2 synthesis but induced a state of unresponsiveness that was not IL-2 specific; proliferation of anti-CD3-activated T cell blasts in response to both IL-2 and IL-4 was abrogated by addition of monocytes preincubated with anti-CD14 mAb. Inhibition of T cell proliferation after engagement of CD14 on monocytes was likely to result from delivery of a negative signal to T cells, rather than from disruption of a costimulatory monocyte-derived signal, because incubation of monocytes with anti-CD14 mAb also inhibited monocyte-independent T cell proliferation induced by PMA and ionophore. These results, together, point to a role of CD14 in the monocyte-dependent regulation of T cell proliferation.  相似文献   

18.
OX40 and its ligand (OX40L) have been implicated in T cell-dependent humoral immune responses. To further characterize the role of OX40/OX40L in T-B cell interaction, we newly generated an anti-mouse OX40L mAb (RM134L) that can inhibit the costimulatory activity of OX40L transfectants for anti-CD3-stimulated T cell proliferation. Flow cytometric analyses using RM134L and an anti-mouse OX40 mAb indicated that OX40 was inducible on splenic T cells by stimulation with immobilized anti-CD3 mAb in a CD28-independent manner, while OX40L was not expressed on resting or activated T cells. OX40L was inducible on splenic B cells by stimulation with anti-IgM Ab plus anti-CD40 mAb, but not by either alone. These activated B cells exhibited a potent costimulatory activity for anti-CD3-stimulated T cell proliferation and IL-2 production. Anti-CD80 and anti-CD86 mAbs partially inhibited the costimulatory activity, and further inhibition was obtained by their combination with RM134L and/or anti-CD70 mAb. We also found the anti-IgM Ab- plus anti-CD40 mAb-stimulated B cells exhibited a potent costimulatory activity for proliferation of and IL-2 production by anti-CD3-stimulated CD28- T cells from CD28-deficient mice, which was substantially inhibited by RM134L and/or anti-CD70 mAb. These results indicated that OX40L and CD70 expressed on surface Ig- and CD40-stimulated B cells can provide CD28-independent costimulatory signals to T cells.  相似文献   

19.
The mAb Tm 1 was obtained from a fusion of SP2/O tumor cells with spleen cells from CF1 mouse immunized with T cells modulated by an IgM anti-CD3 mAb.mAb Tm 1 reacted with IgM anti-CD3 modulated T cells (66.6%) but not with unmodulated T cells (4.4%). Tm 1 was not expressed on T cells modulated with either IgG2a or IgG1 anti-CD3 mAb. Immunoprecipitation from 125I-labeled CD3-modulated T cells showed that Tm 1 Ag is a single polypeptide of 33 kDa under reducing and nonreducing conditions. Kinetic studies revealed that Tm 1 was detectable on T cells 10 min after incubation and maximally expressed after 4 h of incubation with IgM anti-CD3 mAb. CD3 expression was markedly modulated by this anti-CD3 mAb after the same period of incubation. Studies with cycloheximide revealed that Tm 1 expression on T cells does not require new protein synthesis. Tm 1 expression persisted long after CD3-reexpression 24 h later. Tm 1 was present on a small fraction of circulating T cells, B cells, and monocytes and absent from granulocytes, platelets, E, and thymocytes. Tm 1 was not expressed on T cells after various activation stimuli but was expressed on B cells upon activation. Additional studies indicate that IgM mAb against other T cell differentiation Ag and IgM mAb against B cell Ag also lead to the expression of Tm 1 on these cells. Thus, modulation of surface Ag by IgM mAb externalizes this cytoplasmic Ag. However, one exception has been noted. Purified mAb Tm 1 was not mitogenic and was unable to block either the T cell proliferation induced by 12-O-tetradecanoyl phorbol-13-acetate plus anti-CD3 mAb and other T cell stimuli, or the B cell proliferation induced by B cell mitogens. The role of Tm 1 on lymphocyte function remains to be determined.  相似文献   

20.
Chronic administration of anti-CD4 mAb prevents autoimmune disease in NZB/NZW F1 (B/W) mice. This may be due either to CD4 cell depletion or to inhibition of CD4 cell function. To evaluate the relative importance of these mechanisms, we devised a system in which the consequences of cell depletion could be analyzed independent of the inhibitory effects of chronic mAb therapy. This was accomplished by performing adult thymectomy before mAb administration. Specifically, female B/W mice underwent thymectomy or sham thymectomy at age 6 wk, followed at age 3 mo by a short course of either anti-CD4 (2 mg/wk for 3 wk) or saline. Treatment with anti-CD4 depleted 90% of circulating CD4 cells, but a small subpopulation (10%) of CD4 cells was refractory to depletion. In non-thymectomized mice, the CD4 population gradually reconstituted after cessation of therapy. In contrast, in thymectomized mice, recovery of CD4 cells was prevented by the absence of the thymus. Despite the striking reduction in CD4 cells in thymectomized mice, severe autoimmune disease developed, with autoantibody levels, proteinuria, and mortality comparable with non-thymectomized, nondepleted controls. The unexpected development of lupus nephritis in thymectomized, CD4-depleted B/W mice suggested that the thymus might be required to achieve the benefits of therapy with anti-CD4. To exclude this possibility, we demonstrated that chronic therapy with anti-CD4 prevents autoimmunity in thymectomized B/W mice. These findings imply that: 1) substantial depletion of CD4 T cells is not sufficient to suppress autoimmunity; 2) suppression of autoimmunity requires sustained functional inhibition of CD4 T cells; and 3) a small subpopulation of CD4 cells that is refractory to depletion by anti-CD4 is sufficient to promote the full expression of murine lupus in B/W mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号