首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exploring vegetation distribution spatial patterns facilitates understanding how biodiversity addresses the potential threat of future climate variability, especially for highly diverse and threatened tropical plant communities, but few empirical studies have been performed. Dacrydium pectinatum is a constructive and endangered species in the tropical mountain forests of Hainan Island, China. In this study, sixty‐eight 30 m × 30 m permanent plots of D. pectinatum were investigated, and species‐based and phylogenetic‐based methods were used to analyze the α‐ and β‐diversity pattern variation and its key drivers. Our study showed that species and phylogenetic α‐diversity patterns are different on a local scale. However, on a regional scale, the variations in the two α‐diversity patterns tend to converge, and they decrease with increasing elevation. The phylogenetic structure changes from overdispersion to convergence with increasing elevation. Soil (SOM, TP, AP), topography (EL, SL), and stand (CD) factors and α‐diversity showed close correlations. Species and phylogenetic β‐diversity have significant positive correlations with changing environmental distance and geographical distance; however, as a representative form of habitat heterogeneity, elevation distance has a greater impact on β‐diversity changes than geographical distance. In conclusion, the α‐ and β‐diversity patterns of the D. pectinatum community are mainly related to habitat filtering, especially in high‐elevation areas, and the colonization history of various regions also affects the formation of diversity patterns. Species‐based and phylogenetic‐based methods robustly demonstrated the key role of the habitat filtering hypothesis in community assembly. We believe that more plant diversity patterns need to be explored to understand the biodiversity formation mechanisms in tropical forests. We also recommend strengthening the construction and management of nature reserves to help address the biodiversity loss crisis in endangered tropical plant communities.  相似文献   

2.
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α‐ and β‐diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α‐diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α‐diversity was mainly influenced by dispersal limitation. Species and phylogenetic β‐diversity were mainly consisted of turnover component. The functional β‐diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β‐diversity and their turnover component of species and phylogenetic β‐diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α‐diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α‐ and β‐diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α‐ and β‐diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.  相似文献   

3.
Nitrogen (N) deposition poses a serious threat to terrestrial biodiversity and alters plant and soil microbial community composition. Species turnover and nestedness reflect the underlying mechanisms of variations in community composition. However, it remains unclear how species turnover and nestedness contribute to different responses of taxonomic groups (plants and soil microbes) to N enrichment. Here, based on a 13‐year consecutive multi‐level N addition experiment in a semiarid steppe, we partitioned community β‐diversity into species turnover and nestedness components and explored how and why plant and microbial communities reorganize via these two processes following N enrichment. We found that plant, soil bacterial, and fungal β‐diversity increased, but their two components showed different patterns with increasing N input. Plant β‐diversity was mainly driven by species turnover under lower N input but by nestedness under higher N input, which may be due to a reduction in forb species, with low tolerance to soil Mn2+, with increasing N input. However, turnover was the main contributor to differences in soil bacterial and fungal communities with increasing N input, indicating the phenomenon of microbial taxa replacement. The turnover of bacteria increased greatly whereas that of fungi remained within a narrow range with increasing N input. We further found that the increased soil Mn2+ concentration was the best predictor for increasing nestedness of plant communities under higher N input, whereas increasing N availability and acidification together contributed to the turnover of bacterial communities. However, environmental factors could explain neither fungal turnover nor nestedness. Our findings reflect two different pathways of community changes in plants, soil bacteria, and fungi, as well as their distinct community assembly in response to N enrichment. Disentangling the turnover and nestedness of plant and microbial β‐diversity would have important implications for understanding plant–soil microbe interactions and seeking conservation strategies for maintaining regional diversity.  相似文献   

4.
β‐Diversity, which describes the extent of change in species composition in a given region, has become a core issue in ecology in recent years. However, it is hard to understand the underlying mechanisms of β‐diversity by using indices that yield identical values under species replacement and nestedness pattern. Partitioning β‐diversity into turnover (caused by species replacement among plots) and nestedness components (caused by species loss or gain among plots) may provide improved understanding of the variation in species composition. Here, we collected presence–absence data of 456 one‐tenth ha circular plots in the temperate forests of Northeastern China spanning a latitudinal range of 12° (41–53°N). We decomposed β‐diversity to assess the relative contribution of the turnover and nestedness components across latitudinal gradients. We used regression analysis to assess the relationship between spatial distance and β‐diversity. We applied variation partitioning to evaluate the importance of the measured environmental and spatial variables in explaining β‐diversity. We used the Tukey honest significant difference test to test the differences of β‐diversity along latitudinal gradients. Pearson correlations (r) and significance (p‐value) were computed using the Mantel tests to verify the relationship between distance and β‐diversity. The ANOVA test was used to verify whether the variation of β‐diversity explained by the environment and distance was significant. Our results showed that (1) β‐diversity and the turnover component were higher at low latitudes (zones A and B) than at high latitudes (zones C and D), while there was no relationship between the nestedness component and latitude. (2) The turnover component was dominant. (3) The spatial distance explained more variation of β‐diversity than the measured environmental factors. Therefore, we conclude that β‐diversity is mainly a product of species turnover in our temperate forests, suggesting that different localities harbor different species. We find that decomposing β‐diversity into the turnover and nestedness components is a useful approach to explore the variation of community composition and their causes.  相似文献   

5.
The large-scale deep-sea biodiversity distribution of the benthic fauna was explored in the Mediterranean Sea, which can be seen as a miniature model of the oceans of the world. Within the framework of the BIOFUN project (“Biodiversity and Ecosystem Functioning in Contrasting Southern European Deep-sea Environments: from viruses to megafauna”), we investigated the large spatial scale variability (over >1,000 km) of the bathyal macrofauna communities that inhabit the Mediterranean basin, and their relationships with the environmental variables. The macrofauna abundance, biomass, community structure and functional diversity were analysed and the α-diversity and β-diversity were estimated across six selected slope areas at different longitudes and along three main depths. The macrobenthic standing stock and α-diversity were lower in the deep-sea sediments of the eastern Mediterranean basin, compared to the western and central basins. The macrofaunal standing stock and diversity decreased significantly from the upper bathyal to the lower bathyal slope stations. The major changes in the community composition of the higher taxa and in the trophic (functional) structure occurred at different longitudes, rather than at increasing water depth. For the β-diversity, very high dissimilarities emerged at all levels: (i) between basins; (ii) between slopes within the same basin; and (iii) between stations at different depths; this therefore demonstrates the high macrofaunal diversity of the Mediterranean basins at large spatial scales. Overall, the food sources (i.e., quantity and quality) that characterised the west, central and eastern Mediterranean basins, as well as sediment grain size, appear to influence the macrobenthic standing stock and the biodiversity along the different slope areas.  相似文献   

6.
Despite many studies showing biodiversity responses to warming, the generality of such responses across taxonomic groups remains unclear. Very few studies have tested for evidence of bryophyte community responses to warming, even though bryophytes are major contributors to diversity and functioning in many ecosystems. Here, we report an empirical study comparing long‐term change in bryophyte and vascular plant communities in two sites with contrasting long‐term warming trends, using “legacy” botanical records as a baseline for comparison with contemporary resurveys. We hypothesized that ecological changes would be greater in sites with a stronger warming trend and that vascular plant communities, with narrower climatic niches, would be more sensitive than bryophyte communities to climate warming. For each taxonomic group in each site, we quantified the magnitude of changes in species'' distributions along the elevation gradient, species richness, and community composition. We found contrasted temporal changes in bryophyte vs. vascular plant communities, which only partially supported the warming hypothesis. In the area with a stronger warming trend, we found a significant increase in local diversity and dissimilarity (β‐diversity) for vascular plants, but not for bryophytes. Presence–absence data did not provide sufficient power to detect elevational shifts in species distributions. The patterns observed for bryophytes are in accordance with recent literature showing that local diversity can remain unchanged despite strong changes in composition. Regardless of whether one taxon is systematically more or less sensitive to environmental change than another, our results suggest that vascular plants cannot be used as a surrogate for bryophytes in terms of predicting the nature and magnitude of responses to warming. Thus, to assess overall biodiversity responses to global change, abundance data from different taxonomic groups and different community properties need to be synthesized.  相似文献   

7.
The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different responses of taxonomic and phylogenetic diversity to forest modifications imply that biodiversity conservation in this subtropical landscape requires the preservation of natural and modified forests.  相似文献   

8.
While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams.  相似文献   

9.
The geographic distribution of species is the typical metric for identifying priority areas for conservation. Since most biodiversity remains poorly studied, a subset of charismatic species, such as primates, often stand as surrogates for total biodiversity. A central question is therefore, how effectively do primates predict the pooled species richness of other mammalian taxa? We used lemurs as indicator species to predict total non-primate mammal community richness in the forest ecosystems of Madagascar. We combine environmental and species occurrence data to ascertain the extent to which primate diversity can predict (1) non-primate mammal α-diversity (species richness), (2) non-primate complementarity, and (3) non-primate β-diversity (species turnover). Our results indicate that primates are effective predictors of non-primate mammal community diversity in the forest ecosystems of Madagascar after controlling for habitat. When individual orders of mammals are considered, lemurs effectively predict the species richness of carnivorans and rodents (but not afrosoricids), complementarity of rodents (but not carnivorans or afrosoricids), and all individual components of β-diversity. We conclude that lemurs effectively predict total non-primate community richness. However, surrogate species alone cannot achieve complete representation of biodiversity.  相似文献   

10.
The Amazon basin harbors a diverse ecological community that has a critical role in the maintenance of the biosphere. Although plant and animal communities have received much attention, basic information is lacking for fungal or prokaryotic communities. This is despite the fact that recent ecological studies have suggested a prominent role for interactions with soil fungi in structuring the diversity and abundance of tropical rainforest trees. In this study, we characterize soil fungal communities across three major tropical forest types in the western Amazon basin (terra firme, seasonally flooded and white sand) using 454 pyrosequencing. Using these data, we examine the relationship between fungal diversity and tree species richness, and between fungal community composition and tree species composition, soil environment and spatial proximity. We find that the fungal community in these ecosystems is diverse, with high degrees of spatial variability related to forest type. We also find strong correlations between α- and β-diversity of soil fungi and trees. Both fungal and plant community β-diversity were also correlated with differences in environmental conditions. The correlation between plant and fungal richness was stronger in fungal lineages known for biotrophic strategies (for example, pathogens, mycorrhizas) compared with a lineage known primarily for saprotrophy (yeasts), suggesting that this coupling is, at least in part, due to direct plant–fungal interactions. These data provide a much-needed look at an understudied dimension of the biota in an important ecosystem and supports the hypothesis that fungal communities are involved in the regulation of tropical tree diversity.  相似文献   

11.
Shift transitions in dominance on coral reefs from hard coral cover to fleshy macroalgae are having negative effects on Caribbean coral reef communities. Data on spatiotemporal changes in biodiversity during these modifications are important for decision support for coral reef biodiversity protection. The main objective of this study is to detect the spatiotemporal patterns of coral reef fish diversity during this transition using additive diversity-partitioning analysis. We examined α, β and γ fish diversity from 2000 to 2010, during which time a shift transition occurred at Mahahual Reef, located in Quintana Roo, Mexico. Data on coral reef fish and benthic communities were obtained from 12 transects per geomorphological unit (GU) in two GUs (reef slope and terrace) over six years (2000, 2005, 2006, 2007, 2008, 2010). Spatial analysis within and between the GUs indicated that the γ-diversity was primarily related to higher β-diversity. Throughout the six study years, there were losses of α, β and γ-diversity associated spatially with the shallow (reef slope) and deeper (reef terrace) GUs and temporally with the transition in cover from mound corals to fleshy macroalgae and boulder corals. Despite a drastic reduction in the number of species over time, β-diversity continues to be the highest component of γ-diversity. The shift transition had a negative effect on α, β and γ-diversity, primarily by impacting rare species, leading a group of small and less vulnerable fish species to become common and an important group of rare species to become locally extinct. The maintenance of fish heterogeneity (β-diversity) over time may imply the abetment of vulnerability in the face of local and global changes.  相似文献   

12.
High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in β-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models) to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100''s of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and β–diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on β-diversity at scales <290 km, while the effects of productivity were low and significant only at scales >40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance.  相似文献   

13.
The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and β-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while β-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms.  相似文献   

14.
Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone drives β-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in β-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity.  相似文献   

15.
Ecological communities including tropical rainforest are rapidly changing under various disturbances caused by increasing human activities. Recently in Cambodia, illegal logging and clear-felling for agriculture have been increasing. Here, we study the effects of logging, mortality and recruitment of plot trees on phylogenetic community structure in 32 plots in Kampong Thom, Cambodia. Each plot was 0.25 ha; 28 plots were established in primary evergreen forests and four were established in secondary dry deciduous forests. Measurements were made in 1998, 2000, 2004 and 2010, and logging, recruitment and mortality of each tree were recorded. We estimated phylogeny using rbcL and matK gene sequences and quantified phylogenetic α and β diversity. Within communities, logging decreased phylogenetic diversity, and increased overall phylogenetic clustering and terminal phylogenetic evenness. Between communities, logging increased phylogenetic similarity between evergreen and deciduous plots. On the other hand, recruitment had opposite effects both within and between communities. The observed patterns can be explained by environmental homogenization under logging. Logging is biased to particular species and larger diameter at breast height, and forest patrol has been effective in decreasing logging.  相似文献   

16.
Anthropogenic disturbances are detrimental to the functioning and stability of natural ecosystems. Critical ecosystem processes driven by microbial communities are subjected to these disturbances. Here, we examine the stabilizing role of bacterial diversity on community biomass in the presence of abiotic perturbations such as addition of heavy metals, NaCl and warming. Bacterial communities with a diversity gradient of 1–12 species were subjected to the different treatments, and community biomass (OD600) was measured after 24 h. We found that initial species richness and phylogenetic structure impact the biomass of communities. Under abiotic perturbations, the presence of tolerant species in community largely contributed in community biomass production. Bacterial diversity stabilized the biomass across the treatments, and differential response of bacterial species to different perturbations was the key reason behind these effects. The results suggest that biodiversity is crucial for maintaining the stability of ecosystem functioning and acts as ecological insurance under abiotic perturbations. Biodiversity in natural ecosystems may also uphold the ecosystem functioning under anthropogenic disturbance.  相似文献   

17.
We have compared the biodiversity variations in moth communities between unmanaged forests and commercial forests in a mountainous environment (Pyrenees France). The aim was to evaluate the impact of forestry activities on moth diversity. The data collected from the insects were analysed with a Bayesian specific similarity index (noted SSP index) and by statistical biodiversity indexes comparison. It was seen that diversity and richness were decreased in the plantation compared to the unmanaged forest. Interestingly, the composition of the communities of moths was shown to be not only related to the presence/absence of host plants, but also to be in relation with changes in the differences in forest architecture (i.e. the relative coverage by the different vegetation levels). However, the moth community in the commercial forest still has a high capacity to converge with the moth community present in more natural forests. We report here a list of 177 species of moths, providing information on the distribution of some uncommon species, poorly studied as yet in the Pyrenees.  相似文献   

18.
The ‘diversity–stability hypothesis’, in which higher species diversity within biological communities buffers the risk of ecological collapse, is now generally accepted. However, empirical evidence for a relationship between β-diversity (spatial turnover in community structure) and temporal stability in community structure remains equivocal, despite important implications for theoretical ecology and conservation biology. Here, we report strong β-diversity–stability relationships across a broad sample of fish taxa on Australia''s Great Barrier Reef. These relationships were robust to random sampling error and spatial and environmental factors, such as latitude, reef size and isolation. While β-diversity was positively associated with temporal stability at the community level, the relationship was negative for some taxa, for example surgeonfishes (Acanthuridae), one of the most abundant reef fish families. This demonstrates that the β-diversity–stability relationship should not be indiscriminately assumed for all taxa, but that a species’ risk of extirpation in response to disturbance is likely to be taxon specific and trait based. By combining predictions of spatial and temporal turnover across the study area with observations in marine-protected areas, we conclude that protection alone does not necessarily confer temporal stability and that taxon-specific considerations will improve the outcome of conservation efforts.  相似文献   

19.
Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition.  相似文献   

20.
Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号