首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent structures of DNA polymerase complexes with dGMPCPP/dT and dCTP/dA mispairs at the insertion site have shown that they adopt Watson‐Crick geometry in the presence of Mn2+ indicating that the tautomeric or ionization state of the base has changed. To see whether the tautomeric or ionization state of base‐pair could be affected by its microenvironment, we determined 10 structures of an RB69 DNA polymerase quadruple mutant with dG/dT or dT/dG mispairs at position n‐1 to n‐5 of the Primer/Template duplex. Different shapes of the mispairs, including Watson‐Crick geometry, have been observed, strongly suggesting that the local environment of base‐pairs plays an important role in their tautomeric or ionization states.  相似文献   

2.
3.
RNA is now known to possess various structural, regulatory and enzymatic functions for survival of cellular organisms. Functional RNA structures are generally created by three-dimensional organization of small structural motifs, formed by base pairing between self-complementary sequences from different parts of the RNA chain. In addition to the canonical Watson–Crick or wobble base pairs, several non-canonical base pairs are found to be crucial to the structural organization of RNA molecules. They appear within different structural motifs and are found to stabilize the molecule through long-range intra-molecular interactions between basic structural motifs like double helices and loops. These base pairs also impart functional variation to the minor groove of A-form RNA helices, thus forming anchoring site for metabolites and ligands. Non-canonical base pairs are formed by edge-to-edge hydrogen bonding interactions between the bases. A large number of theoretical studies have been done to detect and analyze these non-canonical base pairs within crystal or NMR derived structures of different functional RNA. Theoretical studies of these isolated base pairs using ab initio quantum chemical methods as well as molecular dynamics simulations of larger fragments have also established that many of these non-canonical base pairs are as stable as the canonical Watson–Crick base pairs. This review focuses on the various structural aspects of non-canonical base pairs in the organization of RNA molecules and the possible applications of these base pairs in predicting RNA structures with more accuracy.  相似文献   

4.
DNA has proved to be a successful material for creation of nanoscale structures because of its inherent programmability and predictable structural features. However, the assembly of periodic three-dimensional (3D) DNA crystals is hampered by the junctions needed to connect the inherently linear Watson–Crick duplexes. Here, we examine how predictable noncanonical base pairing motifs can be used in conjunction with Watson–Crick duplexes to assemble macroscopic 3D crystals with useful nanoscale features. Parallel-stranded homopurine 5′-GGA base pairs serve as a junction region in a continuously base paired 13-mer DNA crystal (Paukstelis et al., 2004). This motif is predictable and has been used in different sequence contexts to rationally design DNA crystals with different lattice dimensions. These designed crystals have been utilized as macromolecular sieves for capturing or excluding proteins (Paukstelis, 2006). Further, we have demonstrated that a protein enzyme encapsulated in the crystal solvent channels is capable of performing catalysis. Enzyme-infused DNA crystals are capable of multiple cycles of catalysis following removal of substrate and products, and may offer potential new routes for enzyme replacement therapies or the creation of new biodegradable solid-state catalysts and sensors. A structurally similar homoparallel region, 5′-CGAA, has also been used to generate crystals that are capable of making concerted in crystallo structural transitions in response to pH perturbations (Muser & Paukstelis, 2012). These studies highlight potential uses of DNA crystals as stimuli-responsive biomaterials. Despite these successes, the ability to use noncanonical DNA motifs in crystal design is limited by both the number of available noncanonical DNA structures, and our understanding of how these structures self-assemble. To address this we have initiated a high-throughput crystallization screen of short DNA oligonucleotides to identify new noncanonical base pairing motifs and to address the broad question: How structurally diverse is DNA?  相似文献   

5.
DNA is a widely used biopolymer for the construction of nanometer‐scale objects due to its programmability and structural predictability. One long‐standing goal of the DNA nanotechnology field has been the construction of three‐dimensional DNA crystals. We previously determined the X‐ray crystal structure of a DNA 13‐mer that forms a continuously hydrogen bonded three‐dimensional lattice through Watson‐Crick and non‐canonical base pairs. Our current study sets out to understand how the sequence of the Watson‐Crick duplex region influences crystallization of this 13‐mer. We screened all possible self‐complementary sequences in the hexameric duplex region and found 21 oligonucleotides that crystallized. Sequence analysis showed that one specific Watson‐Crick pair influenced the crystallization propensity and the speed of crystal self‐assembly. We determined X‐ray crystal structures for 13 of these oligonucleotides and found sequence‐specific structural changes that suggests that this base pair may serve as a structural anchor during crystal assembly. Finally, we explored the crystal self‐assembly and nucleation process. Solution studies indicated that these oligonucleotides do not form base pairs in the absence of cations, but that the addition of divalent cations leads to rapid self‐assembly to higher molecular weight complexes. We further demonstrate that crystals grown from mixtures of two different oligonucleotide sequences contain both oligonucleotides. These results suggest that crystal self‐assembly is nucleated by the formation of the Watson‐Crick duplexes initiated by a simple chemical trigger. This study provides new insight into the role of sequence for the assembly of periodic DNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 618–626, 2015.  相似文献   

6.
The acyclic chiral nucleic acid analogue, Glycol Nucleic Acid (GNA), displayed exceptional structural simplicity and atom economy while forming self-paired duplexes, using canonical Watson–Crick base pairing. We disclose here that the replacement of phosphodiester linker in GNA with somewhat rigid and shorter carbamate linker in Glycol Carbamate Nucleic Acid (GCNA) backbone allows unprecedented stability to the antiparallel self-paired duplexes. The R-GCNA oligomers were further found to form cross-paired antiparallel duplexes with cDNA and RNA following Watson–Crick base pairing. The stability of cross-paired GCNA:DNA and GCNA:RNA duplexes was higher than the corresponding DNA:DNA and DNA:RNA duplexes. The chiral (R) and (S) precursors were easily accessible from naturally occurring l-serine.  相似文献   

7.
Wobble GU pairs (or GoU) occur frequently within double‐stranded RNA helices interspersed within the standard G═C and A─U Watson‐Crick pairs. However, other types of GoU pairs interacting on their Watson‐Crick edges have been observed. The structural and functional roles of such alternative GoU pairs are surprisingly diverse and reflect the various pairings G and U can form by exploiting all the subtleties of their electronic configurations. Here, the structural characteristics of the GoU pairs are updated following the recent crystallographic structures of functional ribosomal complexes and the development in our understanding of ribosomal translation.  相似文献   

8.
The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function.  相似文献   

9.
More than 60 years have passed since the work of Rosalind Franklin, James Watson, and Francis Crick led to the discovery of the 3D-DNA double-helix structure. Nowadays, due to the simple and elegant architecture of its double helix, the structure of DNA is widely known. The biological role of the DNA molecule (e.g., genetic information), however, along with the cellular mechanisms involving the DNA double helix (e.g., DNA replication) are topics that have not yet reached a broader public. In this educational article, we aim to provide a way for schoolchildren to live a three-dimensional experience that focuses on the DNA double helix structure. Moreover, taking advantage of an engaging and visual protocol, students will experience an overview of its biological implications. To do so, starting from a gene sequence, students will have the opportunity to build their own 3D-DNA double helix structure using PlayMais flakes.  相似文献   

10.
On April 25th 1953, three publications in Nature forever changed the face of the life sciences in reporting the structure of DNA. Sixty years later, Raymond Gosling shares his memories of the race to the double helix.It has not escaped our attention that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.James D Watson and Francis HC Crick [1]By including this statement in their April 25th 1953 Nature article describing a model for the structure of DNA, Watson and Crick made one of the great understatements in history. In that moment, the seeds for the double helix''s infamy - alongside the names ''Watson'' and Crick'' - were sown. Lesser known outside scientific circles is that this article did not include one iota of experimental data: Watson and Crick, who were based at the University of Cambridge''s Cavendish laboratory, contributed deductive reasoning alone to the double helix model, albeit reasoning of an undoubtedly Nobel Prize-worthy standard. Instead, as has now been described many times, the model relied on X-ray diffraction data obtained by others, at King''s College, and these data did not reach Watson and Crick by entirely wholesome means [2]. To add to the insult, Watson and Crick''s report of the double helix did not fully credit the work of King''s as being essential to the construction of their model, although the King''s team did enjoy co-publication of their data alongside the double helix article, in the form of two articles in the same issue of Nature [3,4]. One of these articles described the X-ray diffraction work performed by senior researcher Rosalind E Franklin, together with PhD student Raymond G Gosling, and contained the highest quality diffraction patterns yet achieved for DNA [3]. It was these data that had proved invaluable in Watson and Crick''s quest for the double helix.Earlier still, before Franklin arrived at King''s, Gosling had achieved a major breakthrough in the search for DNA''s structure when he became the first person to crystallize genes, under the guidance of Maurice Wilkins, who was the lead author of the other King''s article to accompany Watson and Crick''s model [4].Watson published his controversial memoir of the discovery, aptly named ''The Double Helix'', in the 1960s [5], and in doing so propelled the story to worldwide fame, establishing DNA''s structure as an icon of science in the popular imagination. However, events were relayed in Watson''s book very much from his own point of view and at times, it has been argued, even verged on the fictitious.Aside from Watson, Ray Gosling is the only surviving member of the select group of seven scientists to feature as an author on one of the three Nature articles. Gosling and his wife, Mary, were kind enough to welcome Genome Biology into their home, where he shared with us his perspective of the events of 60 years ago.Elsewhere, Genome Biology has marked the anniversary by canvassing our Editorial Board for their opinions on the most important advances in the field since 1953 [6].  相似文献   

11.
Watson–Crick base pairs (bps) are the fundamental unit of genetic information and the building blocks of the DNA double helix. However, A-T and G-C can also form alternative ‘Hoogsteen’ bps, expanding the functional complexity of DNA. We developed ‘Hoog-finder’, which uses structural fingerprints to rapidly screen Hoogsteen bps, which may have been mismodeled as Watson–Crick in crystal structures of protein–DNA complexes. We uncovered 17 Hoogsteen bps, 7 of which were in complex with 6 proteins never before shown to bind Hoogsteen bps. The Hoogsteen bps occur near mismatches, nicks and lesions and some appear to participate in recognition and damage repair. Our results suggest a potentially broad role for Hoogsteen bps in stressed regions of the genome and call for a community-wide effort to identify these bps in current and future crystal structures of DNA and its complexes.  相似文献   

12.
Cisplatin (cis-diamminedichloroplatinum) is a common chemotherapeutic drug that reacts with the N7 atoms of adjacent guanines in DNA to form the Pt-1,2-d(GpG) intrastrand cross-link (Pt-GG), a major product to block DNA replication. Translesion DNA synthesis has been implicated in chemoresistance during cisplatin treatment of cancer due to Pt-GG lesion bypass. Gene knockdown studies in human cells have indicated a role for polκ during translesion synthesis of the Pt-GG lesion. However, the bypass activity of polκ with cisplatin lesions has not been well characterized. In this study, we investigated polκ's ability to bypass Pt-GG lesion in vitro and determined two crystal structures of polκ in complex with Pt-GG DNA. The ternary complex structures represent two consecutive stages of lesion bypass: nucleotide insertion opposite the 5′G (Pt-GG2) and primer extension immediately after the lesion (Pt-GG3). Our biochemical data showed that polκ is very efficient and accurate in extending DNA primers after the first G of the Pt-GG lesion. The structures demonstrate that the efficiency and accuracy is achieved by stably accommodating the bases with the cisplatin adduct in the active site for proper Watson–Crick base pairing with the incoming nucleotide in both the second insertion and post-insertion complexes. Our studies suggest that polκ works as an extender for efficient replication of the Pt-GG lesion in cells. This work holds promise for considering polκ, along with polη, as potential targets for drug design, which together could improve the efficacy of cisplatin treatment for cancer therapy.  相似文献   

13.
In recent decades studies on RNA structure and function have gained significance due to discoveries on diversified functions of RNA. A common element for RNA secondary structure formed by series of non-Watson/Watson Crick base pairs, internal loops and pseudoknots have been the highlighting feature of recent structural determination of RNAs. The recent crystal structure of group-I introns has demonstrated that these might constitute RNA structural motifs in ribozymes, playing a crucial role in their enzymatic activity. To understand the functional significance of these non-canonical base pairs in catalytic RNA, we analysed the sequences of group-I introns from nuclear genes. The results suggest that they might form the building blocks of folded RNA motifs which are crucial to the catalytic activity of the ribozyme. The conservation of these, as observed from divergent organisms, argues for the presence of non-canonical base pairs as an important requisite for the structure and enzymatic property of ribozymes by enabling them to carry out functions such as replication, polymerase activity etc. in primordial conditions in the absence of proteins.  相似文献   

14.
自从1953年Watson和Crick发现DNA双螺旋结构以来, 以DNA重组技术为基础的转基因技术迅速发展, 不可避免地对人们的日常生活产生了巨大的影响。该文回顾了植物转基因技术的发展历程和现状, 重点介绍了基因定点突变技术ZFN和TALEN, 以期帮助读者全面快速地了解这一令人充满期待的新的转基因技术。  相似文献   

15.
Peter B Moens 《Génome》2003,46(6):936-937
The nature of meiotic genetic recombination was resolved at the DNA level by the 1953 Watson and Crick model. What remains to be determined are the roles of the various recombination proteins and the distribution and localization of recombination events in the meiotic prophase nucleus.  相似文献   

16.
The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the 1H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson–Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 43 possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA 1H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.  相似文献   

17.
The transferase activity of non-proofreading DNA polymerases is a well-known phenomenon that has been utilized in cloning and sequencing applications. The non-templated addition of modified nucleotides at DNA blunt ends is a potentially useful feature of DNA polymerases that can be used for selective transformation of DNA 3′ ends. In this paper, we characterized the tailing reaction at perfectly matched and mismatched duplex ends with Cy3- and Cy5-modified pyrimidine nucleotides. It was shown that the best DNA tailing substrate does not have a perfect Watson–Crick base pair at the end. Mismatched duplexes with a 3′ dC were the most efficient in the Taq DNA polymerase-catalysed tailing reaction with a Cy5-modified dUTP. We further demonstrated that the arrangement of the dye residue relative to the nucleobase notably affects the outcome of the tailing reaction. A comparative study of labelled deoxycytidine and deoxyuridine nucleotides showed higher efficiency for dUTP derivatives. The non-templated addition of modified nucleotides by Taq polymerase at a duplex blunt end was generally complicated by the pyrophosphorolysis and 5′ exonuclease activity of the enzyme.  相似文献   

18.
Human DNA polymerase iota (Pol ι) is a Y-family polymerase that can bypass various DNA lesions but possesses very low fidelity of DNA synthesis in vitro. Structural analysis of Pol ι revealed a narrow active site that promotes noncanonical base-pairing during catalysis. To better understand the structure-function relationships in the active site of Pol ι we investigated substitutions of individual amino acid residues in its fingers domain that contact either the templating or the incoming nucleotide. Two of the substitutions, Y39A and Q59A, significantly decreased the catalytic activity but improved the fidelity of Pol ι. Surprisingly, in the presence of Mn2+ ions, the wild-type and mutant Pol ι variants efficiently incorporated nucleotides opposite template purines containing modifications that disrupted either Hoogsteen or Watson–Crick base-pairing, suggesting that Pol ι may use various types of interactions during nucleotide addition. In contrast, in Mg2+ reactions, wild-type Pol ι was dependent on Hoogsteen base-pairing, the Y39A mutant was essentially inactive, and the Q59A mutant promoted Watson–Crick interactions with template purines. The results suggest that Pol ι utilizes distinct mechanisms of nucleotide incorporation depending on the metal cofactor and reveal important roles of specific residues from the fingers domain in base-pairing and catalysis.  相似文献   

19.
Non-canonical base pairs play important roles in organizing the complex three-dimensional folding of RNA. Here, we outline methodology developed both to analyze the spatial patterns of interacting base pairs in known RNA structures and to reconstruct models from the collective experimental information. We focus attention on the structural context and deformability of the seven pairing patterns found in greatest abundance in the helical segments in a set of well-resolved crystal structures, including (i–ii) the canonical A·U and G·C Watson–Crick base pairs, (iii) the G·U wobble pair, (iv) the sheared G·A pair, (v) the A·U Hoogsteen pair, (vi) the U·U wobble pair, and (vii) the G·A Watson–Crick-like pair. The non-canonical pairs stand out from the canonical associations in terms of apparent deformability, spanning a broader range of conformational states as measured by the six rigid-body parameters used to describe the spatial arrangements of the interacting bases, the root-mean-square deviations of the base-pair atoms, and the fluctuations in hydrogen-bonding geometry. The deformabilties, the modes of base-pair deformation, and the preferred sites of occurrence depend on sequence. We also characterize the positioning and overlap of the base pairs with respect to the base pairs that stack immediately above and below them in double-helical fragments. We incorporate the observed positions of the bases, base pairs, and intervening phosphorus atoms in models to predict the effects of the non-canonical interactions on overall helical structure.  相似文献   

20.
Despite wide interest in nucleic acid triple helices, there has beenno stereochemically satisfactory structure of an RNA triple helixin atomic detail. An RNA triplex structure has previously been proposed based on fiber diffraction and molecular modeling [S. Arnott and P. J. Bond (1973) Nature New Biology, Vol. 244. pp. 99–101; S. Arnott. P. J. Bond. E. Seising, and P. J. C. Smith (1976) Nucleic Acids Research, Vol. 3. pp.2459–2470], but it has nonallowed close contacts at every triplet and is therefore not stereochemically acceptable. We propose here a new modelfor an RNA triple helix in which the three chains have identical backbone conformations and are symmetry related. There are no short contacts. The modeling employs a novel geometrical approach using the linked atom least squares [P. J. C. Smith and S. Arnott (1978) Acta Crystallographica, Vol. A34, pp. 3–11] program and is not based on energy minimization. In general, the method leads to a range of possible structures rather than a unique structure. In the present case, however, the constraints resulting from theintroduction of a third strand limit the possible structures to a very small range of conformation space. This method was used previously to obtain a model for DNA triple helices [G. Raghunathan, H. T. Miles, and V. Sasisekharan (1993) Biochemistry, Vol. 32, pp. 455–462], subsequently confirmed by fiber-type x-ray diffraction of oligomeric crystals [K. Liu. H. T. Miles. K. D. Parris, and V. Sasisekharan (1994) Nature Structural Biology, Vol. 1. pp. 11–12]. The above triple helices have Watson–Crick–Hoogsteen [K. Hoogsteen (1963) Acta Crystallographica, Vol. 16. pp. 907–916] pairing of the three bases. The same modeling method was used to investigate the feasibility of three-dimensional structures based on the three possible alternative hydrogen-bonding schemes: Watson–Crick–reverse Hoogsteen, Donogue [J. Donohue (1953) Proceeding of the national Academy of Science USA, Vol. 39, pp. 470–475] (reverse Watson–Crick)–Hoogsteen, and Donohue–reverse Hoogsteen. We found that none of these can occur in either RNA or DNA helices because they give rise only to structures with prohibitively short contacts between backbone and base atoms in the same chain. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号