共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Nucleosides, nucleotides & nucleic acids》2013,32(5-7):851-854
Oligonucleotides containing 7-deazapurines or 9-deazapurines with propynyl groups at the 7- or 9-position were prepared. The stabilizing effect of the propynyl group was studied on DNA duplexes, hairpins and triplexes. 相似文献
3.
I-Te Chu Chia-Chuan Wu Ta-Chau Chang 《Biochimica et Biophysica Acta (BBA)/General Subjects》2019,1863(2):418-425
Background
Mitochondrial DNA (mtDNA) mutations could lead to mitochondrial dysfunction, which plays a major role in aging, neurodegeneration, and cancer. Recently, we have highlighted G-quadruplex (G4) formation of putative G4-forming (PQF) mtDNA sequences in cells. Herein, we examine structural variation of G4 formation due to mutation of mtDNA sequences in vitro.Methods
The combined circular dichroism (CD), nuclear magnetic resonance (NMR), and polyacrylamide gel electrophoresis (PAGE) results provide complementary insights into the structural variation of the studied G-rich sequence and its mutants.Results
This study illustrates the structural diversity of mt10251, a G-rich mtDNA sequence with a 16-nt loop, (GGGTGGGAGTAGTTCCCTGCTAAGGGAGGG), including the coexistence of a hairpin structure and monomeric, dimeric, and tetrameric G4 structures of mt10251 in 20?mM K+ solution. Moreover, a single-base mutation of mt10251 can cause significant changes in terms of structural populations and polymorphism. In addition, single-base mutations of near-but-not-PQF sequences can potentially change not-G4 to G4 structures. We further found 124 modified PQF sequences due to single-base mutations of near-but-not-PQF sequences in mtDNA.Conclusions
Single-base mutations of mt10251 could make significant changes in its structural variation and some single-base mutated sequences in mtDNA could form G4 structures in vitro.General significance
We illustrate the importance of single-base mutations of DNA sequences to the change of G4 formation in vitro. The use of single-base mutations by generating the fourth G-tract and followed by selection in shortening the longest loop size in the near-but-not-PQF sequences was conducted for the G4 formation. 相似文献4.
Summary A novel deletion derivative, kal, of the kalilo senescence plasmid from Neurospora intermedia, was recovered from a culture treated with chloramphenicol. The deletion derivative exists in mitochondria as two different, equally abundant forms: a 2.8 kb duplex DNA molecule kal-2.8) and a 1.4 kb hairpin form kal-1.4). The kal-2.8 plasmid contains the 1366 by terminal inverted repeats and a partially duplicated 102 by segment of the unique sequence of the 8.6 kb kalilo plasmid. In contrast, the kal-1.4 hairpin plasmid appears to result from the folding of single strands that are generated during the replication of kal-2.8. Both forms of kal have covalently linked terminal proteins. Sequence analysis suggests that kal was generated either by slippage of the tip of a growing strand during the replication of kalilo, or by illegitimate recombination between two copies of the plasmid at non-homologous palindromic sequences that might form cruciform structures. In either case, the deletion process was mediated at least in part by an inverted repeat of 5 by in the unique region of kalilo. Since the terminal segments of kalilo DNA that are implicated in plasmid integration might also form cruciform structures, it is possible, but improbable, that the process that generated the first kal molecule is related to that which mediates integration of the plasmid into mitochondrial DNA. 相似文献
5.
《Nucleosides, nucleotides & nucleic acids》2013,32(5-8):1483-1485
Abstract The interaction of monomeric and dimeric quinacridines with quadruplex DNA has been investigated using a variety of biophysical methods. Both series of compounds were shown to exhibit a high affinity for the G4 conformation with two equivalent binding sites. As shown from the SPR and dialysis experiments the macrocyclic dimer appears more selective than its monomeric counterpart. 相似文献
6.
Romera C Bombarde O Bonnet R Gomez D Dumy P Calsou P Gwan JF Lin JH Defrancq E Pratviel G 《Biochimie》2011,93(8):1310-1317
G-quadruplex nucleic acids are emerging as therapeutic targets for small molecules referred to as small-molecule G-quadruplex ligands. The porphyrin H2-TMPyP4 was early reported to be a suitable motif for G-quadruplex DNA recognition. It probably binds to G-quadruplex nucleic acid through π-π stacking with the external G-quartets. We explored chemical modifications of this porphyrin such as insertion of various metal ions in the centre of the aromatic core and addition of bulky substituents that may improve the specificity of the compound toward G-quadruplex DNA. Porphyrin metallation, affording a G4-ligand with two symmetric faces, allowed the conclusion that the presence of an axial water molecule perpendicular to the aromatic plane lowered but did not hamper π-π stacking interactions between the aromatic parts of the ligand on the one hand and the external G-quartet on the other. The charge introduced in the centre of the porphyrin had little influence on binding. Thus, the ionic channel in the centre of G-quadruplex nucleic acids was not found to provide clear additional molecular clues for G-quadruplex nucleic acids targeting by porphyrins tested in the present study. Furthermore, we confirmed the unique G-quadruplex selectivity of a porphyrin modified with four bulky substituents at the meso positions and showed that although the compound is not “drug-like” it was capable of entering cells in culture and mediated some of the typical cellular effects of small-molecule G-quadruplex ligands. 相似文献
7.
Chandrasekhar Reddy Gade Nagendra K. Sharma 《Bioorganic & medicinal chemistry letters》2017,27(24):5424-5428
This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC5) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions. 相似文献
8.
Effective sequence-specific recognition of duplex DNA is possible by triplex formation with natural oligonucleotides via Hoogsteen H-bonding. However, triplex formation is in practice limited to pyrimidine oligonucleotides that bind duplex A-T or G-C base pair DNA sequences specifically at homopurine sites in the major groove as T·A-T and C+ ·G-C triplets. Here we report the successful modelling of novel unnatural nucleosides that recognize the C-G DNA base pair by Hoogsteen-like major groove interaction. These novel Hoogsteen nucleotides are examined within model A-type and B-type conformation triplex structures since the DNA triplex can be considered to incorporate A-type and/or B-type configurational properties. Using the same deoxyribose-phosphodiester and base-deoxyribose dihedral angle configuration, a triplet comprised of a C-G base pair and the novel Hoogsteen nucleotide, Y2, replaces the central T·A-T triplet in the triplex. The presence of any structural or energetic perturbations due to the central triplet in the energy-minimized triplex is assessed with respect to the unmodified energy minimized (T·A-T)11 starting structures. Incorporation of this novel triplet into both A-type and B-type natural triplex structures provokes minimal change in the configuration of the central and adjacent triplets. 相似文献
9.
Blair McCarte Owen T. Yeung Alexander J. Speakman Alistair Elfick Katherine E. Dunn 《Biochemistry and Biophysics Reports》2022
Non-canonical forms of DNA are attracting increasing interest for applications in nanotechnology. It is frequently convenient to characterize DNA molecules using a label-free approach such as ultraviolet absorption spectroscopy. In this paper we present the results of our investigation into the use of this technique to probe the folding of quadruplex and triplex nanoswitches. We confirmed that four G-quartets were necessary for folding at sub-mM concentrations of potassium and found that the wrong choice of sequence for the linker between G-tracts could dramatically disrupt folding, presumably due to the presence of kinetic traps in the folding landscape. In the case of the triplex nanoswitch we examined, we found that the UV spectrum showed a small change in absorbance when a triplex was formed. We anticipate that our results will be of interest to researchers seeking to design DNA nanoswitches based on quadruplexes and triplexes. 相似文献
10.
A label-free colorimetric assay, using non-crosslinking AuNP aggregation, has been developed for the screening of specific triplex DNA binders. The relative binding affinities can be simultaneously determined. Our novel assay is simple in design and fast in operation, avoiding either AuNPs modification or oligonucleotide labeling, and easy to implement for visual detection. This strategy may offer a new approach for developing low cost, sensitive and high-throughput screening platform that is likely to be highly useful in a wide range of applications. 相似文献
11.
I. F. Hermans G. K. Chambers T. W. Jordan C. A. Morris N. R. Towers 《Animal genetics》1993,24(5):385-388
Genomic DNA, prepared from 12 animals from four sheep flocks, was digested with either HaeIII or Hin fI and probed with three DNA fingerprinting probes. Mean DNA fingerprint band sharing and band frequency calculated for each flock were used to estimate genetic diversity. Each of the DNA fingerprinting systems showed the same trend in diversity within the sampled flocks, and greater diversity between the flocks than within the flocks. DNA fingerprinting therefore provides a useful measure of genetic diversity in sheep. 相似文献
12.
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. 相似文献
13.
Genetic diversity of Cheju horses (Equus caballus) determined by using mitochondrial DNA D-loop polymorphism 总被引:6,自引:0,他引:6
We used sequence polymorphism of the mitochondrial DNA D-loop (968 bp excluding the tandem repeat region) to determine genetic diversity of horses inhabiting Cheju (a southern island of Korea). Seventeen haplotypes with frequencies from 1.5 to 21.5% were found among 65 Cheju horse samples. Genetic diversity (h) of the 17 haplotypes was calculated to be 0.91, indicating that the extant Cheju horse population consists of diverse genetic groups in their maternal lineage. Phylogenetic analysis showed that 17 types of Cheju (D-loop sequences determined), 5 Mongolian, 6 Arabian, 3 Belgian, 2 Tsushima, 2 Yunnan, 1 Przewalskii, and 3 Thoroughbred horses (published sequences for the latter seven breeds) showed that Cheju horses were distributed into many different clusters in the tree. Four Mongolian horses clustered with separate Cheju horse groups, showing that some Cheju horses are clearly of Mongolian origin. The analysis of partial sequences (284 bp) of the D-loop of 109 horses showed that Thoroughbred, Mongolian, Lipizzan, and Arabian breeds are as diverse as Cheju horses. Our data together with others' suggest that most horse breeds tested with reasonably sufficient numbers of samples are diverse in their maternal lineages and also are not uniquely different from each other. 相似文献
14.
《Nucleosides, nucleotides & nucleic acids》2013,32(5-7):783-788
The effects of incorporation of 8-oxoadenosine in two different truncations of human telomeric sequence forming quadruplex structures are reported. In order to characterise their structures, a combination of NMR and UV spectroscopy and computational techniques were used. Both oligonucleotides have been found to form fourfold symmetric quadruplex structures. As a tautomeric equilibrium between keto and enol forms of 8-oxoadenosine may establish in solution and intrinsic stabilities effects, such as internal H-bonds, for example, may determine the predominance of some particular tautomer, molecular modelling studies were performed on quadruplex structures containing both the tautomeric forms. Both molecules resulted to be thermally less stable than the natural. 相似文献
15.
Christophe Biju-Duval Hajer Ennafaa Nicole Dennebouy Monique Monnerot Françoise Mignotte Ramon C. Soriguer Amel El Gaaïed Ali El Hili Jean-Claude Mounolou 《Journal of molecular evolution》1991,33(1):92-102
Summary A characterization was conducted on mitochondrial DNA (mtDNA) molecules extracted separately from 107 European rabbits (Oryctolagus cuniculus) both wild and domestic, 13 European hares (Lepus capensis), and 1 eastern cottontail (Sylvilagus floridanus). Experimentally this study took into account restriction site polymorphism, overall length variation of the noncoding region, and numbers of repeated sequences. Nucleotide divergences indicate that the mtDNAs from the three species derived from a common ancestor some 6–8 million years (Myr) ago. Every animal appeared heteroplasmic for a set of molecules with various lengths of the noncoding region and variable numbers of repeated sequences that contribute to them. This systematic heteroplasmy, most probably generated by a rate of localized mtDNA rearrangements high enough to counterbalance the cellular segregation of rearranged molecules, is a shared derived character of leporids.The geographic distribution of mtDNA polymorphism among wild rabbit populations over the western European basin shows that two molecular lineages are represented, one in southern Spain, the second over northern Spain, France, and Tunisia. These two lineages derived from a common ancestor some 2 Myr ago. Their present geographical distribution may be correlated to the separation of rabbits into two stocks at the time of Mindel glaciation.Finally the distribution of mtDNA diversity exhibits a mosaic pattern both at inter- and intrapopulation levels. 相似文献
16.
We have constructed and characterized a long-lived hybrid DNA(2)-RNA(2) i-motif that is kinetically formed by mixing equivalent amount of C-rich RNA (R) and C-rich DNA (D). Circular dichroism shows that these hybrids are distinct from their parent DNA(4) or RNA(4) i-motif. pH dependent CD and UV thermal melting experiments showed that the complexes were maximally stable at pH 4.5, the pK(a) of cytosine, consistent with the complex being held by CH(+)-C base pairs. Fluorescence studies confirmed their tetrameric nature and established the relative strand polarities of the RNA and DNA strands in the complex. These showed that in a hybrid D(2)R(2) i-motif two DNA strands occupy one narrow groove and the two RNA strands occupy the other. This suggests that even the sugar-sugar interactions are highly specific. Interestingly, this hybrid slowly disproportionates into DNA(4) i-motifs and ssRNA which would be valuable to study intermediates in DNA(4) i-motif formation. 相似文献
17.
The nucleic acids molecular mechanics program DUPLEX has been designed with useful features for surveying the potential energy surface of polynucleotides, especially ones that are modified by polycyclic aromatic carcinogens. The program features helpful strategies for addressing the multiple minimum problem: (1) the reduced variable domain of torsion angle space; (2) search strategies that emphasize large scale searches for smaller subunits, followed by building to larger units by a variety of strategies; (3) the use of penalty functions to aid the minimizer in locating selected structural types in first stage minimizations; penalty functions are released in terminal minimizations to yield final unrestrained minimum energy conformations. Predictive capability is illustrated by DNA modified by activated benzo[a]pyrenes. 相似文献
18.
19.
Ravi Prakash Mishra U.K. Tripathi M. Singh 《Archives Of Phytopathology And Plant Protection》2013,46(7):873-880
Random amplified polymorphism DNA (RAPD) analysis was done to assess the diversity among 10 species of Pleurotus. Understanding of the pattern not only addresses questions concerning evolutionary process and the development of conservation strategies, but also a pre-requisite of the efficient use of genetic resources in breeding programme. The RAPD dendogram obtained by using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) programme were grouped into the investigated strains into five clusters. RAPD bands were scored as present (1) or absent (0) for all the Pleurotus isolate. Each band was assumed to represent a unique genetic locus. The pattern and extent of RAPD variation were analysed with respect to primer, polymorphic locus and isolate. Total number of amplified fragment and polymorphic fragment produced by 40 decamer primer was 229 and 226, respectively. Polymorphism percentage was 98.69. Ten primers; SBSA11, SBSA13, SBSA15, SBSA16, SBSA18, SBSA19, SBSA20, SBSB14, SBSB15 and SBSB17 were not amplified to the DNA from any of the isolate. 相似文献
20.
Thermodynamic contributions of the reactions of DNA intramolecular structures with their complementary strands 总被引:1,自引:0,他引:1
One focus of our research is to further our understanding of the physico-chemical properties of unusual DNA structures and their interaction with complementary oligonucleotides. We have investigated three types of reactions involving the interaction of intramolecular DNA complexes with their complementary single strands of varied length. Specifically, we have used a combination of isothermal titration (ITC) and differential scanning (DSC) calorimetry and spectroscopy techniques to determine standard thermodynamic profiles for the reaction of an i-motif, G-quadruplex, and triplex with their complementary strands. The enthalpies for each reaction are measured directly in ITC titrations and compared with those obtained indirectly from Hess cycles using DSC unfolding data. All reactions investigated yielded favorable free energy contributions, indicating that each single strand is able to invade and disrupt the corresponding intramolecular DNA complex. These favorable free energy terms are enthalpy driven, which result from a compensation of exothermic contributions, due to the formation of additional base-pair stacks (or base-triplet stacks) in the duplex product (or triplex product), immobilization of electrostricted water by the base-pair and base-triplet stacks, and the removal of structural water from the reactant single strands; and endothermic contributions from the disruption of base-base stacking interactions of the reactant single strands. This investigation of nucleic acid reactions has provided new methodology, based on physico-chemical principles, to determine the molecular forces involved in the interactions between DNA nucleic acid structures. This methodology may be used in targeting reactions for the control of gene expression. 相似文献