首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BBK32 is a fibronectin-binding lipoprotein on Borrelia burgdorferi, the causative agent of Lyme disease. Analysis using secondary structure prediction programs suggested that BBK32 is composed of two domains, an N-terminal segment lacking well defined secondary structure and a C-terminal segment composed largely of alpha-helices. Analysis of purified recombinant forms of the two domains by circular dichroism spectroscopy, gel permeation chromatography, and intrinsic viscosity determination were consistent with an N-terminal-extended, unstructured segment and a C-terminal globular domain in BBK32. Solid phase binding experiments suggest that the unstructured N-terminal domain binds fibronectin. Analysis of changes in circular dichroism spectra of the N-terminal segment of BBK32 upon binding of the N-terminal domain of fibronectin revealed an increase in beta-sheet content in the complex. Hence, BBK32, which belongs to a different family of proteins and shows no overall sequence similarity with the fibronectin binding MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) of Gram-positive bacteria, binds fibronectin by a mechanism that is reminiscent of the "tandem beta-zipper" previously demonstrated for the fibronectin binding of streptococcal adhesins.  相似文献   

2.
Lactococci are noninvasive bacteria frequently used as protein delivery vectors and, more recently, as in vitro and in vivo DNA delivery vehicles. We previously showed that a functional eukaryotic enhanced green fluorescent protein (eGFP) expression plasmid vector was delivered in epithelial cells by Lactococcus lactis producing Listeria monocytogenes internalin A (L. lactis InlA+), but this strategy is limited in vivo to transgenic mice and guinea pigs. In this study, we compare the internalization ability of L. lactis InlA+ and L. lactis producing either the fibronectin-binding protein A of Staphylococcus aureus (L. lactis FnBPA+) or its fibronectin binding domains C and D (L. lactis CD+). L. lactis FnBPA+ and L. lactis InlA+ showed comparable internalization rates in Caco-2 cells, while the internalization rate observed with L. lactis CD+ was lower. As visualized by conventional and confocal fluorescence microscopy, large clusters of L. lactis FnBPA+, L. lactis CD+, and L. lactis InlA+ were present in the cytoplasm of Caco-2 cells after internalization. Moreover, the internalization rates of Lactobacillus acidophilus NCFM and of an NCFM mutant strain with the gene coding for the fibronectin-binding protein (fbpA) inactivated were also evaluated in Caco-2 cells. Similar low internalization rates were observed for both wild-type L. acidophilus NCFM and the fbpA mutant, suggesting that commensal fibronectin binding proteins have a role in adhesion but not in invasion. L. lactis FnBPA+, L. lactis CD+, and L. lactis InlA+ were then used to deliver a eukaryotic eGFP expression plasmid in Caco-2 cells: flow cytometry analysis showed that the highest percentage of green fluorescent Caco-2 cells was observed after coculture with either L. lactis FnBPA+ or L. lactis InlA+. Analysis of the in vivo efficiency of these invasive recombinant strains is currently in progress to validate their potential as DNA vaccine delivery vehicles.The mucosal administration of bacterial carriers to deliver antigens and plasmid DNA constitutes a promising vaccination strategy. Pathogenic bacteria that have the capacity to invade cells, such as Listeria, Salmonella, and Shigella strains, have been used to deliver DNA constructs into mammalian cells (23). Nevertheless, the risk associated with possible reversion to a virulent phenotype of these pathogens is a major concern (5). Lactococcus lactis, the food-grade, gram-positive, noninvasive model bacterium, has been intensively used to deliver antigens and cytokines at the mucosal level (30). We previously showed (i) that native L. lactis can deliver a eukaryotic expression cassette coding for the bovine β-lactoglobulin (BLG), one of the major cow''s milk allergens, into mammalian epithelial Caco-2 cells, and (ii) that these cells were able to express and secrete BLG protein in its native conformation (10). Recently, we demonstrated the ability of native noninvasive L. lactis to deliver a fully functional plasmid to murine intestinal cells in vivo (2).The internalization of the bacterial carrier is a fundamental step to achieve efficient DNA delivery in eukaryotic cells (7). In order to increase DNA delivery by lactic acid bacteria (LAB), invasin genes were expressed in L. lactis. Due to the safety profile of LAB, recombinant lactococci expressing invasin genes from intracellular bacteria are attractive as potential DNA delivery vectors compared to the attenuated pathogens presently used.In this field, we previously demonstrated that L. lactis bacteria expressing the main Listeria monocytogenes invasin, internalin A (L. lactis InlA+), were able to invade eukaryotic cells and efficiently deliver a functional green fluorescent protein (GFP) expression plasmid into epithelial/endothelial cells (9). Even though attractive, the experimental use of lactococci expressing InlA in a mouse model has a major bottleneck: InlA, which binds to human E-cadherin (15), does not interact with murine E-cadherin. Consequently, in vivo experimental studies using lactococci expressing InlA as DNA delivery vehicles are limited to transgenic mice expressing human E-cadherin or to guinea pigs (13).Fibronectin binding protein A (FnBPA) of Staphylococcus aureus is another bacterial invasin that is involved in intracellular spreading of S. aureus in the host (27). It is a multifunctional adhesion protein having both fibrinogen and fibronectin binding capacities (24). Its N-terminal part, also called domain A, is responsible for fibrinogen (29) and elastin (20) binding, whereas its C-terminal part, including domains B, C, and D, binds to fibronectin (25). FnBPA is known to mediate adhesion to host tissue and bacterial uptake into nonphagocytic host cells (27). Its expression by L. lactis was previously shown to be sufficient to confer the ability to invade nonphagocytic cells in vitro and in vivo, while the expression of domains C and D confers invasivity only in vitro (19).In this study, we show that L. lactis bacteria expressing full-length FnBPA of S. aureus (L. lactis FnBPA+) or a truncated form encompassing only its C and D domains (L. lactis CD+) are internalized as efficiently as L. lactis InlA+ in the human intestinal cell line Caco-2. We also provide, for the first time, direct microscopic evidence of the intracellular location of the internalized lactococci, showing that the bacteria are heterogeneously distributed in the cell monolayer and that their number per cell can reach a surprisingly high level. However, we demonstrate that FbpA, a fibronectin binding protein from the commensal Lactobacillus acidophilus NCFM, does not mediate bacterial internalization: no difference in invasivity was observed between the wild-type (wt) strain and the mutant with fbpA inactivated. This result indicates that, although widely distributed among bacteria, fibronectin binding proteins are not universal mediators of bacterial internalization, even at low levels. Finally, we also demonstrate that, similarly to L. lactis InlA+, L. lactis FnBPA+ and L. lactis CD+ can efficiently deliver a eukaryotic GFP expression plasmid in Caco-2 cells and trigger GFP expression in these cells. Consequently, L. lactis FnBPA+ can be used for further DNA delivery experiments in vivo.  相似文献   

3.
4.
The adhesion of bacteria to host tissues is often mediated by interactions with extracellular matrices. Herein, we report on the interactions of the group A streptococcus, Streptococcus pyogenes, with the extracellular matrix protein fibulin-1. S. pyogenes bound purified fibulin-1 in a dose-dependent manner. Genetic ablation of serum opacity factor (SOF), a virulence determinant of S. pyogenes, reduced binding by ∼50%, and a recombinant peptide of SOF inhibited binding of fibulin-1 to streptococci by ∼45%. Fibulin-1 bound to purified SOF2 in a dose-dependent manner with high affinity (Kd = 1.6 nm). The fibulin-1-binding domain was localized to amino acid residues 457–806 of SOF2, whereas the fibronectin-binding domain is contained within residues 807–931 of SOF2, indicating that these two domains are separate and distinct. Fibulin-1 bound to recombinant SOF from M types 2, 4, 28, and 75 of S. pyogenes, indicating that the fibulin-1-binding domain is likely conserved among SOF from different serotypes. Mixed binding experiments suggested that gelatin, fibronectin, fibulin-1, and SOF form a quaternary molecular complex that enhanced the binding of fibulin-1. These data indicate that S. pyogenes can interact with fibulin-1 and that SOF is a major streptococcal receptor for fibulin-1 but not the only receptor. Such interactions with fibulin-1 may be involved in the adhesion of S. pyogenes to extracellular matrices of the host.Adhesion of bacteria to host surfaces is the first stage in establishing bacterial infections in the human host, and a variety of molecular mechanisms are utilized to initiate adhesion. A common mechanism for adhesion involves interactions between bacterial adhesins and components of the extracellular matrices of the host. The identification and characterization of microbial surface components recognizing adhesive matrix molecules (MSCRAMM) has led to important advances in vaccines and immunotherapies for preventing and treating bacterial infections (1).The group A streptococcus, Streptococcus pyogenes, is a major human pathogen causing diseases ranging from relative minor infections such as pharyngitis and cellulitis to severe infections with high levels of morbidity and mortality such as necrotizing fasciitis and toxic shock syndrome (2). This pathogen expresses adhesins that interact with various components of the extracellular matrix including laminin, elastin, fibronectin, fibrinogen, and collagen (37). The interactions between fibronectin and S. pyogenes have been intensely studied, and these investigations have revealed at least 10 different streptococcal proteins that bind fibronectin (4).Serum opacity factor (SOF)2 is a major fibronectin-binding protein that is involved in adhesion to host cells (811). SOF is a virulence determinant that is expressed by approximately half of the clinical isolates of S. pyogenes (8). SOF opacifies serum by binding and displacing apoA-I in high density lipoproteins (8, 1215). SOF is covalently linked to the streptococcal cell wall via an LPSTG sortase recognition site and is also released in a soluble form. SOF has two functionally distinct domains, an N-terminal domain that opacifies serum and a C-terminal domain that binds fibronectin. The role of SOF in adhesion involves both its C-terminal fibronectin-binding domain and an N-terminal region (see Fig. 1 for a schematic of structure) (9, 11). However, the nature of the interactions between the N-terminal region of SOF and host components is not well characterized.Open in a separate windowFIGURE 1.A, a schematic of the structure of SOF and its functional domains is shown. The assignment of functional domains are based on the findings of Rakonjac et al. (33), Kreikemeyer et al. (34), Courtney et al. (8, 13), and results presented in this work. Fn, fibronectin. B, the data for the binding of SOF peptides to fibronectin are from previous publications (8, 13), and the data for fibulin-1 are from the present work.Herein, we report on the interactions between a truncated form of SOF in which its fibronectin-binding domain has been deleted and the extracellular matrix protein fibulin-1. Fibulin-1 is a member of the fibulin family that currently consists of seven glycoproteins. All fibulins contain epidermal growth factor-like repeats and a unique fibulin-type module at its C terminus that define this family (16, 17). Fibulin-1 is found within the extracellular matrices and in human plasma at 30–50 μg/ml (18). It interacts with many of the components of the extracellular matrix including fibronectin, laminin, fibrinogen, nidogen-1, endostatin, aggrecan, and versican (16, 19). Due to its intimate relationship with the extracellular matrix, it is not surprising that the defects in fibulin-1 have a wide-ranging impact. Genetic evidence suggests that fibulin-1 is involved in tissue organization, the maturation and maintenance of blood vessels, and multiple embryonic pathways (16, 2022).Although it has been established that many of the other components of the extracellular matrix can interact with bacteria, there has been no previous report on the binding of fibulins to bacteria. Our findings indicate that fibulin-1 does bind to streptococci and that SOF is a major streptococcal receptor for fibulin-1.  相似文献   

5.
Scavenger receptors are innate immune molecules recognizing and inducing the clearance of non-host as well as modified host molecules. To recognize a wide pattern of invading microbes, many scavenger receptors bind to common pathogen-associated molecular patterns, such as lipopolysaccharides and lipoteichoic acids. Similarly, the gp340/DMBT1 protein, a member of the human scavenger receptor cysteine-rich protein family, displays a wide ligand repertoire. The peptide motif VEVLXXXXW derived from its scavenger receptor cysteine-rich domains is involved in some of these interactions, but most of the recognition mechanisms are unknown. In this study, we used mass spectrometry sequencing, gene inactivation, and recombinant proteins to identify Streptococcus pyogenes protein Spy0843 as a recognition receptor of gp340. Antibodies against Spy0843 are shown to protect against S. pyogenes infection, but no function or host receptor have been identified for the protein. Spy0843 belongs to the leucine-rich repeat (Lrr) family of eukaryotic and prokaryotic proteins. Experiments with truncated forms of the recombinant proteins confirmed that the Lrr region is needed in the binding of Spy0843 to gp340. The same motif of two other Lrr proteins, LrrG from the Gram-positive S. agalactiae and BspA from the Gram-negative Tannerella forsythia, also mediated binding to gp340. Moreover, inhibition of Spy0843 binding occurred with peptides containing the VEVLXXXXW motif, but also peptides devoid of the XXXXW motif inhibited binding of Lrr proteins. These results thus suggest that the conserved Lrr motif in bacterial proteins serves as a novel pattern recognition motif for unique core peptides of human scavenger receptor gp340.Human gp340, also known as DMBT1 (deleted in malignant brain tumors 1), belongs to the innate immune protein family of scavenger receptor cysteine-rich (SRCR)2 proteins, all of which contain one or more evolutionarily conserved SRCR domain linked to other conserved protein domains (1, 2). Many of these proteins serve as pattern recognition receptors for innate immunity. gp340 is expressed by epithelial cells and cells of the immune system, and its expression is up-regulated after inflammatory stimuli (3, 4). It inhibits bacterial invasion to epithelial cells and the secretion of proinflammatory cytokines (57). Thus, it appears to be an important mediator of host immune responses to various microbes and was recently linked to Crohn disease, a human inflammatory bowel disease (8). gp340 is also found in human secretions like tears and saliva, and the salivary form has long been known as salivary agglutinin, which is an important molecule in oral biofilm formation and is suggested to have a role in dental caries development (912). The mechanisms of gp340 action in these different biological contexts are not known.Common to all scavenger receptors, the ligand repertoire of gp340 is wide; it binds many different types of bacteria as well as viruses (10, 13, 14). The wide ligand recognition pattern of scavenger receptors is thought to be based on the recognition of common microbial structures, such as lipopolysaccharides and lipoteichoic acids, but in the case of gp340, specific bacterial surface proteins are reported to be involved in the interactions characterized (1518). Because the importance of gp340/salivary agglutinin in the oral environment has been evident for a long time, most of our knowledge of gp340-microbial interactions is from studies with oral bacteria. For example, viridans streptococci, such as Streptococcus mutans and Streptococcus gordonii, interact with saliva gp340 via their surface proteins AgI/II and the sialic acid-binding Hsa or GspB adhesin. In these interactions, gp340 shows a peculiar fluid phase versus surface-adsorbed behavior, as evidenced by AgI/II polypeptides primarily mediating aggregation of bacteria by fluid phase gp340, whereas the Hsa adhesin primarily mediates adhesion of S. gordonii to surface-bound gp340 (18).gp340 binds also to many non-oral human Gram-negative and Gram-positive pathogens, such as Helicobacter pylori and S. pyogenes (10), but these interactions are less characterized. There are few studies suggesting that both carbohydrates and the protein core of the gp340 can be involved in these interactions. For example, a VEVLXXXXW peptide derived from the SRCR domain of gp340 is shown to bind different types of bacteria (19), whereas sialic acid residues may mediate binding to, for example, influenza virus (20). However, the molecular basis of the ability of gp340 or peptides derived thereof to bind a large ligand repertoire is not understood.The aim of the present study was to use the common human pathogen S. pyogenes as a model bacterium to identify novel bacterial proteins binding to gp340 and in this way shed light on the ligand recognition capability of gp340. We report a novel S. pyogenes-host interaction mediated by bacterial surface protein Spy0843 and gp340. gp340 binds to conserved leucine-rich repeat (Lrr) motifs in the Spy0843 and recognizes the same motif also in other bacterial proteins, from both Gram-negative and Gram-positive bacteria. Moreover, the inhibition of Lrr binding with SRCR-derived peptides differed from that previously reported, which suggests a novel mode for ligand recognition of human scavenger receptor gp340.  相似文献   

6.
Streptococcus pyogenes interacts with host fibronectin via distinct surface components. One of these components is the Sfbl protein (streptococcal fibronectin-binding protein, now specified as class I), an adhesin that represents a protein family with characteristic features. Here we present the complete structure of a novel fibronectin-binding protein of S. pyogenes , designated SfbII, which is distinct from the previously described Sfbl proteins. The sfbII gene originated from a λ EMBL3 library of chromosomal DNA from group A streptococcal strain A75 and coded for a 113kDa protein exhibiting features of membrane-anchored surface proteins of Gram-positive cocci. The expression of biologically active fusion proteins allowed the determination of the location of the fibronectin-binding domain within the C-terminal part of the protein. It consisted of two and a half repeats which share common motifs with fibronectin-binding repeats of other streptococcal and staphylococcal proteins. Purified recombinant fusion protein containing this domain competitively inhibited the binding of fibronectin to the parental S. pyogenes strain. Furthermore, polyclonal antibodies against the binding domain specifically blocked the Sfbll receptor site on the streptococcal surface. No cross-reactivity could be detected between anti-Sfbll antibodies and the sfbl gene product, and vice versa, indicating that the two proteins do not share common immunogenic epitopes. Southern hybridization experiments performed with specific sfbll gene probes revealed the presence of the sfbll gene in more than 55% of 93 streptococcal isolates tested. The majority of the strains also harboured the sfbl gene, and 86% carried at least one of the two sfb genes.  相似文献   

7.
Genome replication is a fundamental requirement for the proliferation of all cells. Throughout the domains of life, conserved DNA replication initiation proteins assemble at specific chromosomal loci termed replication origins and direct loading of replicative helicases (1). Despite decades of study on bacterial replication, the diversity of bacterial chromosome origin architecture has confounded the search for molecular mechanisms directing the initiation process. Recently a basal system for opening a bacterial chromosome origin (oriC) was proposed (2). In the model organism Bacillus subtilis, a pair of double-stranded DNA (dsDNA) binding sites (DnaA‐boxes) guide the replication initiator DnaA onto adjacent single-stranded DNA (ssDNA) binding motifs (DnaA‐trios) where the protein assembles into an oligomer that stretches DNA to promote origin unwinding. We report here that these core elements are predicted to be present in the majority of bacterial chromosome origins. Moreover, we find that the principle activities of the origin unwinding system are conserved in vitro and in vivo. The results suggest that this basal mechanism for oriC unwinding is broadly functionally conserved and therefore may represent an ancestral system to open bacterial chromosome origins.  相似文献   

8.
Ku is a heterodimeric protein involved in nonhomologous end-joining of the DNA double-stranded break repair pathway. It binds to the double-stranded DNA ends and then activates a series of repair enzymes that join the broken DNA. In addition to its function in DNA repair, the yeast Saccharomyces cerevisiae Ku (Yku) is also a component of telomere protein-DNA complexes that affect telomere function. The yeast telomeres are composed of duplex C1–3(A/T)G1–3 telomeric DNA repeats plus single-stranded TG1–3 telomeric DNA tails. Here we show that Yku is capable of binding to a tailed-duplex DNA formed by telomeric DNA that mimics the structure of telomeres. Addition of Cdc13p, a single-stranded telomeric DNA-binding protein, to the Yku-DNA complex enables the formation of a ternary complex with Cdc13p binding to the single-stranded tail of the DNA substrate. Because pre-loading of Cdc13p to the single-stranded telomeric tail inhibits the binding of Yku, the results suggested that loading of Yku and Cdc13p to telomeres is sequential. Through generating a double-stranded break near telomeric DNA sequences, we found that Ku protein appears to bind to the de novo synthesized telomeres earlier than that of Cdc13p in vivo. Thus, our results indicated that Yku interacts directly with telomeres and that sequential loading of Yku followed by Cdc13p to telomeres is required for both proteins to form a ternary complex on telomeres. Our results also offer a mechanism that the binding of Cdc13p to telomeres might prevent Yku from initiating DNA double-stranded break repair pathway on telomeres.DNA damages in the form of double-stranded breaks (DSBs)4 compromise the integrity of genomes. Failure in repairing or mis-repairing double-stranded breaks can lead to chromosome instability and eventually cell death or cancer (1). Double-stranded breaks are repaired by two main pathways, the homologous recombination and nonhomologous DNA end-joining. In nonhomologous DNA end-joining, Ku is the first protein to bind to the DNA ends to initiate the repair pathway (2). Upon binding, Ku then recruits a series of repair enzymes to join the broken ends (2). Ku is a heterodimeric protein composed of 70- and ∼80-kDa subunits. In Saccharomyces cerevisiae, Ku includes Yku70 and Yku80 subunits. Because the biochemical configuration of the broken ends could be very diverse on DSBs, Ku binds to double-stranded ends in a sequence- and energy-independent manner. It is capable of binding to DNA ends with blunt 3′-overhangs or 5′-overhangs as well as double-stranded DNA with nicks, gaps, or internal loops (37). However, Ku does not have high affinity to single-stranded DNA. The crystal structure of human Ku heterodimer indicates that it forms a ring structure that encircles duplex DNA (7). This unique structure feature enables Ku to recognize DNA ends and achieves its high affinity binding.In additional to the role in double-stranded break repair, Ku was shown to be a component of telomeric protein-DNA complex in yeast and mammals (810). Telomeres are terminal structures of chromosomes composed of short tandem repeated sequences (11, 12). Mutation of YKU70 or YKU80 causes defects in telomere structure (1315), telomere silencing (1619), and replication timing of telomeres (20). The function of yeast Ku (Yku) on telomeres could mediate through protein-protein interaction with Sir4p or protein-RNA interaction with Tlc1 RNA (21, 22). For example, through the interaction with Sir4p, Yku selectively affects telomeres silencing but not the silent mating type loci (17). Yku could also bind to telomerase Tlc1 RNA for telomere length maintenance (22). Judged by the DNA binding activity of Yku, it is reasonable to suggest that it may bind directly to telomeric DNA. Indeed, it was shown that human Ku is capable of binding directly to telomeric DNA in vitro (15). Moreover, because the deletion of SIR4 in budding yeast (23) or Taz1 in fission yeast (24) does not abolish the association of Ku with chromosomal ends, this suggests that Ku might bind directly to telomeric DNA in cells. However, because yeast telomeres have a short 12–14-mer single-stranded tail (25), it is uncertain whether Yku could pass the single-stranded region to reach its binding site. The direct binding of Yku to telomeric DNA has not been experimentally determined.In contrast to double-stranded breaks, the ends of linear chromosomes are not recognized by repair enzymes as DNA damage. In S. cerevisiae, Cdc13p is the single-stranded TG1–3 DNA-binding protein that enables cells to differentiate whether the ends of a linear DNA are telomeres or broken ends (2629). Thus, although the mechanism of how cells prevent the activation of DSB repair pathway in telomere is unclear, it is likely that binding of Cdc13p to telomeres might inhibit the initiation of DNA damage response by the Ku protein. Here, using a tailed-duplex DNA synthesized by telomeric DNA sequences to mimic telomere structure, we showed that Yku binds directly to this tailed-duplex DNA substrate and forms a ternary complex with Cdc13p. Our results also showed that Yku loaded to a de novo synthesized telomere earlier than Cdc13p in vivo. These results support the direct binding of Yku to telomeric DNA and that the spatial orientation of Cdc13p might block the activation of DSB repair pathway on telomeres.  相似文献   

9.
Plant cold shock domain proteins (CSDPs) are DNA/RNA-binding proteins. CSDPs contain the conserved cold shock domain (CSD) in the N-terminal part and a varying number of the CCHC-type zinc finger (ZnF) motifs alternating with glycine-rich regions in the C-terminus. CSDPs exhibit RNA chaperone and RNA-melting activities due to their non-specific interaction with RNA. At the same time, there are reasons to believe that CSDPs also interact with specific RNA targets. In the present study, we used three recombinant CSDPs from the saltwater cress plant (Eutrema salsugineum)-EsCSDP1, EsCSDP2, EsCSDP3 with 6, 2, and 7 ZnF motifs, respectively, and showed that their nonspecific interaction with RNA is determined by their C-terminal fragments. All three proteins exhibited high affinity to the single-stranded regions over four nucleotides long within RNA oligonucleotides. The presence of guanine in the single-or double-stranded regions was crucial for the interaction with CSDPs. Complementation test using E. coli BX04 cells lacking four cold shock protein genes (ΔcspA, ΔcspB, ΔcspE, ΔcspG) revealed that the specific binding of plant CSDPs with RNA is determined by CSD.  相似文献   

10.
The human pathogen Campylobacter jejuni is naturally competent for transformation with its own DNA. Genes required for efficient transformation in C. jejuni include those similar to components of type II secretion systems found in many Gram-negative bacteria (R. S. Wiesner, D. R. Hendrixson, and V. J. DiRita, J Bacteriol 185:5408–5418, 2003, http://dx.doi.org/10.1128/JB.185.18.5408-5418.2003). Two of these, ctsE and ctsP, encode proteins annotated as putative nucleotide binding nucleoside triphosphatases (NTPases) or nucleoside triphosphate (NTP) binding proteins. Here we demonstrate that the nucleotide binding motifs of both proteins are essential for their function in transformation of C. jejuni. Localization experiments demonstrated that CtsE is a soluble protein while CtsP is membrane associated in C. jejuni. A bacterial two-hybrid screen identified an interaction between CtsP and CtsX, an integral membrane protein also required for transformation. Topological analysis of CtsX by the use of LacZ and PhoA fusions demonstrated it to be a bitopic, integral membrane protein with a cytoplasmic amino terminus and a periplasmic carboxyl terminus. Notwithstanding its interaction with membrane-localized CtsX, CtsP inherently associates with the membrane, requiring neither CtsX nor several other Cts proteins for this association.  相似文献   

11.
12.
The serum opacity factor (SOF) of Streptococcus pyogenes is a type-specific lipoproteinase of unknown biological significance. We have sequenced the sof gene and characterized the corresponding SOF protein from a strain of type M63. It was found that sof63 is related to sof22 and that, similar to SOF22 [25], SOF63 binds fibronectin. Moreover, we demonstrate opacity factor activity in a Streptococcus dysgalactiae fibronectin-binding protein FnBA that is structurally related to the SOF proteins of S. pyogenes. Sequence analysis of these three SOF proteins showed a unique periodical pattern of conserved and variable regions. The enzymatically active part of SOF63 was localized to the fragment corresponding to the entire set of conserved and variable sequences, while for fibronectin-binding a single repeat in the C terminal part of the protein was sufficient. The results show that streptococcal SOF proteins form a novel family of bifunctional proteins with lipoproteinase and fibronectin-binding activities. Received: 7 June 1999 / Accepted: 5 October 1999  相似文献   

13.
14.
The nematode Caenorhabditis elegans protein CEH-37 belongs to the paired OTD/OTX family of homeobox-containing homeodomain proteins. CEH-37 shares sequence similarity with homeodomain proteins, although it specifically binds to double-stranded C. elegans telomeric DNA, which is unusual to homeodomain proteins. Here, we report the solution structure of CEH-37 homeodomain and molecular interaction with double-stranded C. elegans telomeric DNA using nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that CEH-37 homeodomain is composed of a flexible N-terminal region and three α-helices with a helix-turn-helix (HTH) DNA binding motif. Data from size-exclusion chromatography and fluorescence spectroscopy reveal that CEH-37 homeodomain interacts strongly with double-stranded C. elegans telomeric DNA. NMR titration experiments identified residues responsible for specific binding to nematode double-stranded telomeric DNA. These results suggest that C. elegans homeodomain protein, CEH-37 could play an important role in telomere function via DNA binding.  相似文献   

15.
DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phenomenon that protects a genome from transposons, silences unwanted genes and has a paramount function in plant or animal development. Methyl CpG binding domain proteins are members of a class of proteins that bind to methylated DNA. The Arabidopsis thaliana genome encodes 13 methyl CpG binding domain (MBD) proteins, but the molecular/biological functions of most of these proteins are still not clear. In the present study, we identified four proteins that interact with AtMBD6. Interestingly, three of them contain RNA binding domains and are co-localized with AtMBD6 in the nucleus. The interacting partners includes AtRPS2C (a 40S ribosomal protein), AtNTF2 (nuclear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that physically interacts with AtMBD6 is a histone-modifying enzyme, histone deacetylase 6 (AtHDA6), which is a known component of the RNA-mediated gene silencing system. Analysis of genomic DNA methylation in the atmbd6, atrps2c and atntf2 mutants, using methylation-sensitive PCR detected decreased DNA methylation at miRNA/siRNA producing loci, pseudogenes and other targets of RNA-directed DNA methylation. Our results indicate that AtMBD6 is involved in RNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTF2. AtMBD6 also interacts with histone deacetylase AtHDA6 that might have a role in chromatin condensation at the targets of RdDM.  相似文献   

16.

Background

Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood.

Methods

We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested.

Results

MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed.

Conclusions

Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins.

General significance

Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.  相似文献   

17.
Yu F  Iyer D  Anaya C  Lewis JP 《Proteomics》2006,6(22):6023-6032
Prevotella intermedia binds and invades a variety of host cells. This binding is most probably mediated through cell surface proteins termed adhesins. To identify proteins binding to the host extracellular matrix (ECM) component, fibronectin, and study the molecular mechanism underlying bacterial colonization, we applied proteomic approaches to perform a global investigation of P. intermedia strain 17 outer membrane proteins. 2-DE followed by Far Western Blot analysis using fibronectin as a probe revealed a 29-kDa fibronectin-binding protein, designated here AdpB. The molecular identity of the protein was determined using PMF followed by a search of the P. intermedia 17 protein database. Database searches revealed the similarity of AdpB to multiple bacterial outer membrane proteins including the fibronectin-binding protein from Campylobacter jejuni. A recombinant AdpB protein bound fibronectin as well as other host ECM components, including fibrinogen and laminin, in a saturable, dose-dependent manner. Binding of AdpB to immobilized fibronectin was also inhibited by soluble fibronectin, laminin, and fibrinogen, indicating the binding was specific. Finally, immunoelectron microscopy with anti-AdpB demonstrated the cell surface location of the protein. This is the first cell surface protein with a broad-spectrum ECM-binding abilities identified and characterized in P. intermedia 17.  相似文献   

18.
The fibronectin-binding proteins FnBPA and FnBPB are multifunctional adhesins than can also bind to fibrinogen and elastin. In this study, the N2N3 subdomains of region A of FnBPB were shown to bind fibrinogen with a similar affinity to those of FnBPA (2 μM). The binding site for FnBPB in fibrinogen was localized to the C-terminus of the γ-chain. Like clumping factor A, region A of FnBPB bound to the γ-chain of fibrinogen in a Ca(2+)-inhibitable manner. The deletion of 17 residues from the C-terminus of domain N3 and the substitution of two residues in equivalent positions for crucial residues for fibrinogen binding in clumping factor A and FnBPA eliminated fibrinogen binding by FnBPB. This indicates that FnBPB binds fibrinogen by the dock-lock-latch mechanism. In contrast, the A domain of FnBPB bound fibronectin with K(D) = 2.5 μM despite lacking any of the known fibronectin-binding tandem repeats. A truncate lacking the C-terminal 17 residues (latching peptide) bound fibronectin with the same affinity, suggesting that the FnBPB A domain binds fibronectin by a novel mechanism. The substitution of the two residues required for fibrinogen binding also resulted in a loss of fibronectin binding. This, combined with the observation that purified subdomain N3 bound fibronectin with a measurable, but reduced, K(D) of 20 μM, indicates that the type I modules of fibronectin bind to both the N2 and N3 subdomains. The fibronectin-binding ability of the FnBPB A domain was also functional when the protein was expressed on and anchored to the surface of staphylococcal cells, showing that it is not an artifact of recombinant protein expression.  相似文献   

19.
In our previous work we showed that DNaseI-like protein from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix retained its activity at salt concentrations as high as 4 M NaCl and the key factor allowing this was the C-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs. The further investigations revealed that this domain originated from proteins related to bacterial competence ComEA/ComE proteins. It is likely that in the course of evolution the DNA-binding domain from these proteins was fused to a metallo-β-lactamase superfamily domain. Very likely such domain organization having proteins subsequently “donated” the DNA-binding domain to bacterial DNases. In this study we have mimicked this evolutionary step by fusing bovine DNaseI and DNA-binding domains. We have created two fusions: one harboring the DNA-binding domain of DNaseI-like protein from Thioalkalivibrio sp. K90mix and the second one harboring the DNA-binding domain of bacterial competence protein ComEA from Bacillus subtilis. Both domains enhanced salt tolerance of DNaseI, albeit to different extent. Molecular modeling revealed the essential differences between their interaction with DNA shedding some light on the differences in salt tolerance. In this study we have enhanced salt tolerance of bovine DNaseI; thus, we successfully mimicked the Nature’s evolutionary engineering that created the extremely halotolerant bacterial DNase. We have demonstrated that the newly engineered DNaseI variants can be successfully used in applications where activity of the wild type bovine DNaseI is impeded by buffers used.  相似文献   

20.

Background

Indole-3-acetic acid (IAA) extraction and purification are of great importance in auxin research, which is a hot topic in the plant growth and development field. Solid-phase extraction (SPE) is frequently used for IAA extraction and purification. However, no IAA-specific SPE columns are commercially available at the moment. Therefore, the development of IAA-specific recognition materials and IAA extraction and purification methods will help researchers meet the need for more precise analytical methods for research on phytohormones.

Results

Since the AUXIN RESISTANT/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) proteins show higher specific binding capability with auxin, recombinant IAA1, IAA7 and IAA28 proteins were used as sorbents to develop an IAA extraction and purification method. A GST tag was used to solidify the recombinant protein in a column. Aux/IAA proteins solidified in a column have successfully trapped trace IAA in aqueous solutions. The IAA7 protein showed higher IAA binding capability than the other proteins tested. In addition, expression of the IAA7 protein in Drosophila Schneider 2 (S2) cells produced better levels of binding than IAA7 expressed in E. coli.

Conclusion

This work validated the potential of Aux/IAA proteins to extract and purify IAA from crude plant extracts once we refined the techniques for these processes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号