首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Background

There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C).

Methodology/Principal Findings

A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates).

Conclusions/Significance

This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome.  相似文献   

2.

Background

The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay.

Methodology/Principal Findings

A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illumina''s Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274.

Conclusions/Significance

Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.  相似文献   

3.

Background

Despite the dramatic reduction in the cost of high-density genotyping that has occurred over the last decade, it remains one of the limiting factors for obtaining the large datasets required for genomic studies of disease in the horse. In this study, we investigated the potential for low-density genotyping and subsequent imputation to address this problem.

Results

Using the haplotype phasing and imputation program, BEAGLE, it is possible to impute genotypes from low- to high-density (50K) in the Thoroughbred horse with reasonable to high accuracy. Analysis of the sources of variation in imputation accuracy revealed dependence both on the minor allele frequency of the single nucleotide polymorphisms (SNPs) being imputed and on the underlying linkage disequilibrium structure. Whereas equidistant spacing of the SNPs on the low-density panel worked well, optimising SNP selection to increase their minor allele frequency was advantageous, even when the panel was subsequently used in a population of different geographical origin. Replacing base pair position with linkage disequilibrium map distance reduced the variation in imputation accuracy across SNPs. Whereas a 1K SNP panel was generally sufficient to ensure that more than 80% of genotypes were correctly imputed, other studies suggest that a 2K to 3K panel is more efficient to minimize the subsequent loss of accuracy in genomic prediction analyses. The relationship between accuracy and genotyping costs for the different low-density panels, suggests that a 2K SNP panel would represent good value for money.

Conclusions

Low-density genotyping with a 2K SNP panel followed by imputation provides a compromise between cost and accuracy that could promote more widespread genotyping, and hence the use of genomic information in horses. In addition to offering a low cost alternative to high-density genotyping, imputation provides a means to combine datasets from different genotyping platforms, which is becoming necessary since researchers are starting to use the recently developed equine 70K SNP chip. However, more work is needed to evaluate the impact of between-breed differences on imputation accuracy.  相似文献   

4.

Background

Runs of homozygosity are long, uninterrupted stretches of homozygous genotypes that enable reliable estimation of levels of inbreeding (i.e., autozygosity) based on high-throughput, chip-based single nucleotide polymorphism (SNP) genotypes. While the theoretical definition of runs of homozygosity is straightforward, their empirical identification depends on the type of SNP chip used to obtain the data and on a number of factors, including the number of heterozygous calls allowed to account for genotyping errors. We analyzed how SNP chip density and genotyping errors affect estimates of autozygosity based on runs of homozygosity in three cattle populations, using genotype data from an SNP chip with 777 972 SNPs and a 50 k chip.

Results

Data from the 50 k chip led to overestimation of the number of runs of homozygosity that are shorter than 4 Mb, since the analysis could not identify heterozygous SNPs that were present on the denser chip. Conversely, data from the denser chip led to underestimation of the number of runs of homozygosity that were longer than 8 Mb, unless the presence of a small number of heterozygous SNP genotypes was allowed within a run of homozygosity.

Conclusions

We have shown that SNP chip density and genotyping errors introduce patterns of bias in the estimation of autozygosity based on runs of homozygosity. SNP chips with 50 000 to 60 000 markers are frequently available for livestock species and their information leads to a conservative prediction of autozygosity from runs of homozygosity longer than 4 Mb. Not allowing heterozygous SNP genotypes to be present in a homozygosity run, as has been advocated for human populations, is not adequate for livestock populations because they have much higher levels of autozygosity and therefore longer runs of homozygosity. When allowing a small number of heterozygous calls, current software does not differentiate between situations where these calls are adjacent and therefore indicative of an actual break of the run versus those where they are scattered across the length of the homozygous segment. Simple graphical tests that are used in this paper are a current, yet tedious solution.  相似文献   

5.

Background

Last generations of Single Nucleotide Polymorphism (SNP) arrays allow to study copy-number variations in addition to genotyping measures.

Results

MPAgenomics, standing for multi-patient analysis (MPA) of genomic markers, is an R-package devoted to: (i) efficient segmentation and (ii) selection of genomic markers from multi-patient copy number and SNP data profiles. It provides wrappers from commonly used packages to streamline their repeated (sometimes difficult) manipulation, offering an easy-to-use pipeline for beginners in R.The segmentation of successive multiple profiles (finding losses and gains) is performed with an automatic choice of parameters involved in the wrapped packages. Considering multiple profiles in the same time, MPAgenomics wraps efficient penalized regression methods to select relevant markers associated with a given outcome.

Conclusions

MPAgenomics provides an easy tool to analyze data from SNP arrays in R. The R-package MPAgenomics is available on CRAN.  相似文献   

6.

Background

Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Although cigarette smoking is the primary risk factor for lung cancer, only 7% of female lung cancer patients in Taiwan have a history of smoking. Since cancer results from progressive accumulation of genetic aberrations, genomic rearrangements may be early events in carcinogenesis.

Results

In order to identify biomarkers of early-stage adenocarcinoma, the genome-wide DNA aberrations of 60 pairs of lung adenocarcinoma and adjacent normal lung tissue in non-smoking women were examined using Affymetrix Genome-Wide Human SNP 6.0 arrays. Common copy number variation (CNV) regions were identified by ≥30% of patients with copy number beyond 2 ± 0.5 of copy numbers for each single nucleotide polymorphism (SNP) and at least 100 continuous SNP variant loci. SNPs associated with lung adenocarcinoma were identified by McNemar’s test. Loss of heterozygosity (LOH) SNPs were identified in ≥18% of patients with LOH in the locus. Aberration of SNP rs10248565 at HDAC9 in chromosome 7p21.1 was identified from concurrent analyses of CNVs, SNPs, and LOH.

Conclusion

The results elucidate the genetic etiology of lung adenocarcinoma by demonstrating that SNP rs10248565 may be a potential biomarker of cancer susceptibility.  相似文献   

7.

Purpose

To determine how a single nucleotide polymorphism (SNP)- and informatics-based non-invasive prenatal aneuploidy test performs in detecting trisomy 13.

Methods

Seventeen trisomy 13 and 51 age-matched euploid samples, randomly selected from a larger cohort, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex polymerase chain reaction assay that interrogated 19,488 SNPs covering chromosomes 13, 18, 21, X, and Y, and sequenced. Analysis and copy number identification involved a Bayesian-based maximum likelihood statistical method that generated chromosome- and sample-specific calculated accuracies.

Results

Of the samples that passed a stringent DNA quality threshold (94.1%), the algorithm correctly identified 15/15 trisomy 13 and 49/49 euploid samples, for 320/320 correct copy number calls.

Conclusions

This informatics- and SNP-based method accurately detects trisomy 13-affected fetuses non-invasively and with high calculated accuracy.  相似文献   

8.

Background

Given the unique role of the corticotrophin-releasing hormone (CRH) system in human fetal development, the aim of our study was to estimate the association of birth weight with DNA sequence variation in three maternal genes involved in regulating CRH production, bioavailability and action: CRH, CRH-Binding Protein (CRH-BP), and CRH type 1 receptor (CRH-R1), respectively, in three racial groups (African-Americans, Hispanics, and non-Hispanic Whites).

Methods

Our study was carried out on a population-based sample of 575 mother–child dyads. We resequenced the three genes in mouse–human hybrid somatic cell lines and selected SNPs for genotyping.

Results

A significant association was observed in each race between birth weight and maternal CRH-BP SNP genotypes. Estimates of linkage disequilibrium and haplotypes established three common haplotypes marked by the rs1053989 SNP in all three races. This SNP predicted significant birth weight variation after adjustment for gestational age, maternal BMI, parity, and smoking. African American and Hispanic mothers carrying the A allele had infants whose birth weight was on average 254 and 302 grams, respectively, less than infants having C/C mothers. Non-Hispanic White mothers homozygous for the A allele had infants who were on average 148 grams less than those infants having A/C and C/C mothers.

Conclusions

The magnitudes of the estimates of the birth weight effects are comparable to the combined effects of multiple SNPs reported in a recent meta-analysis of 6 GWAS studies and is quantitatively larger than that associated with maternal cigarette smoking. This effect was persistent across subpopulations that vary with respect to ancestry and environment.  相似文献   

9.

Objectives

The role of heparanase (HPSE) gene in cancers including hepatocellular carcinoma (HCC) is currently controversial. This study was aimed at investigating the impact of genetic alteration and expression change of HPSE on the progression and prognosis of HCC.

Methods

The HPSE gene was studied in three different aspects: (1) loss of heterozygosity (LOH) by a custom SNP microarray and DNA copy number by real-time PCR; (2) mRNA level by qRT-PCR; and (3) protein expression by immunohistochemistry. The clinical significances of allele loss and expression change of HPSE were analyzed.

Results

Microarray analysis showed that the average LOH frequency for 10 SNPs located within HPSE gene was 31.6%, three of which were significantly correlated with tumor grade, serum HBV-DNA level, and AFP concentration. In agreement with SNP LOH data, DNA copy number loss of HPSE was observed in 38.74% (43/111) of HCC cases. HPSE mRNA level was notably reduced in 74.1% (83/112) of tumor tissues compared with non-tumor liver tissues, which was significantly associated with DNA copy number loss, increased tumor size, and post-operative metastasis. HPSE protein level was also remarkably reduced in 66.3% (53/80) of tumor tissues, which was correlated with tumor grade. Patients with lower expression level of HPSE mRNA or protein had a significantly lower survival rate than those with higher expression. Cox regression analysis suggested that HPSE protein was an independent predictor of overall survival in HCC patients.

Conclusions

The results in this study demonstrate that genetic alteration and reduction of HPSE expression are associated with tumor progression and poor prognosis of HCCs, suggesting that HPSE behaves like a tumor suppressor gene and is a potential prognostic marker for HCC patients.  相似文献   

10.

Background

Single nucleotide polymorphism (SNP) arrays are important tools widely used for genotyping and copy number estimation. This technology utilizes the specific affinity of fragmented DNA for binding to surface-attached oligonucleotide DNA probes. We analyze the variability of the probe signals of Affymetrix GeneChip SNP arrays as a function of the probe sequence to identify relevant sequence motifs which potentially cause systematic biases of genotyping and copy number estimates.

Methodology/Principal Findings

The probe design of GeneChip SNP arrays enables us to disentangle different sources of intensity modulations such as the number of mismatches per duplex, matched and mismatched base pairings including nearest and next-nearest neighbors and their position along the probe sequence. The effect of probe sequence was estimated in terms of triple-motifs with central matches and mismatches which include all 256 combinations of possible base pairings. The probe/target interactions on the chip can be decomposed into nearest neighbor contributions which correlate well with free energy terms of DNA/DNA-interactions in solution. The effect of mismatches is about twice as large as that of canonical pairings. Runs of guanines (G) and the particular type of mismatched pairings formed in cross-allelic probe/target duplexes constitute sources of systematic biases of the probe signals with consequences for genotyping and copy number estimates. The poly-G effect seems to be related to the crowded arrangement of probes which facilitates complex formation of neighboring probes with at minimum three adjacent G''s in their sequence.

Conclusions

The applied method of “triple-averaging” represents a model-free approach to estimate the mean intensity contributions of different sequence motifs which can be applied in calibration algorithms to correct signal values for sequence effects. Rules for appropriate sequence corrections are suggested.  相似文献   

11.

Background

Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC.

Methods

We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses.

Results

Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6, KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p = 0.032) and time to first recurrence (p = 0.010) compared to those with intermediate CNA counts. These associations persisted when controlling for other prognostic variables.

Significance

SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count). The non-monotonic association of segmental aneuploidy with survival has been described in other tumors. The degree of aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC.  相似文献   

12.

Background

The use of whole-genome sequence data can lead to higher accuracy in genome-wide association studies and genomic predictions. However, to benefit from whole-genome sequence data, a large dataset of sequenced individuals is needed. Imputation from SNP panels, such as the Illumina BovineSNP50 BeadChip and Illumina BovineHD BeadChip, to whole-genome sequence data is an attractive and less expensive approach to obtain whole-genome sequence genotypes for a large number of individuals than sequencing all individuals. Our objective was to investigate accuracy of imputation from lower density SNP panels to whole-genome sequence data in a typical dataset for cattle.

Methods

Whole-genome sequence data of chromosome 1 (1737 471 SNPs) for 114 Holstein Friesian bulls were used. Beagle software was used for imputation from the BovineSNP50 (3132 SNPs) and BovineHD (40 492 SNPs) beadchips. Accuracy was calculated as the correlation between observed and imputed genotypes and assessed by five-fold cross-validation. Three scenarios S40, S60 and S80 with respectively 40%, 60%, and 80% of the individuals as reference individuals were investigated.

Results

Mean accuracies of imputation per SNP from the BovineHD panel to sequence data and from the BovineSNP50 panel to sequence data for scenarios S40 and S80 ranged from 0.77 to 0.83 and from 0.37 to 0.46, respectively. Stepwise imputation from the BovineSNP50 to BovineHD panel and then to sequence data for scenario S40 improved accuracy per SNP to 0.65 but it varied considerably between SNPs.

Conclusions

Accuracy of imputation to whole-genome sequence data was generally high for imputation from the BovineHD beadchip, but was low from the BovineSNP50 beadchip. Stepwise imputation from the BovineSNP50 to the BovineHD beadchip and then to sequence data substantially improved accuracy of imputation. SNPs with a low minor allele frequency were more difficult to impute correctly and the reliability of imputation varied more. Linkage disequilibrium between an imputed SNP and the SNP on the lower density panel, minor allele frequency of the imputed SNP and size of the reference group affected imputation reliability.  相似文献   

13.

Background

Using whole exome sequencing to predict aberrations in tumours is a cost effective alternative to whole genome sequencing, however is predominantly used for variant detection and infrequently utilised for detection of somatic copy number variation.

Results

We propose a new method to infer copy number and genotypes using whole exome data from paired tumour/normal samples. Our algorithm uses two Hidden Markov Models to predict copy number and genotypes and computationally resolves polyploidy/aneuploidy, normal cell contamination and signal baseline shift. Our method makes explicit detection on chromosome arm level events, which are commonly found in tumour samples. The methods are combined into a package named ADTEx (Aberration Detection in Tumour Exome). We applied our algorithm to a cohort of 17 in-house generated and 18 TCGA paired ovarian cancer/normal exomes and evaluated the performance by comparing against the copy number variations and genotypes predicted using Affymetrix SNP 6.0 data of the same samples. Further, we carried out a comparison study to show that ADTEx outperformed its competitors in terms of precision and F-measure.

Conclusions

Our proposed method, ADTEx, uses both depth of coverage ratios and B allele frequencies calculated from whole exome sequencing data, to predict copy number variations along with their genotypes. ADTEx is implemented as a user friendly software package using Python and R statistical language. Source code and sample data are freely available under GNU license (GPLv3) at http://adtex.sourceforge.net/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-732) contains supplementary material, which is available to authorized users.  相似文献   

14.

Introduction

High-altitude pulmonary edema (HAPE) is a hypoxia-induced, life-threatening, high permeability type of edema attributable to pulmonary capillary stress failure. Genome-wide association analysis is necessary to better understand how genetics influence the outcome of HAPE.

Materials and Methods

DNA samples were collected from 53 subjects susceptible to HAPE (HAPE-s) and 67 elite Alpinists resistant to HAPE (HAPE-r). The genome scan was carried out using 400 polymorphic microsatellite markers throughout the whole genome in all subjects. In addition, six single nucleotide polymorphisms (SNPs) of the gene encoding the tissue inhibitor of metalloproteinase 3 (TIMP3) were genotyped by Taqman® SNP Genotyping Assays.

Results

The results were analyzed using case-control comparisons. Whole genome scanning revealed that allele frequencies in nine markers were statistically different between HAPE-s and HAPE-r subjects. The SNP genotyping of the TIMP3 gene revealed that the derived allele C of rs130293 was associated with resistance to HAPE [odds ratio (OR) = 0.21, P = 0.0012) and recessive inheritance of the phenotype of HAPE-s (P = 0.0012). A haplotype CAC carrying allele C of rs130293 was associated with resistance to HAPE.

Discussion

This genome-wide association study revealed several novel candidate genes associated with susceptibility or resistance to HAPE in a Japanese population. Among those, the minor allele C of rs130293 (C/T) in the TIMP3 gene was linked to resistance to HAPE; while, the ancestral allele T was associated with susceptibility to HAPE.  相似文献   

15.

Background/Aim

Kinesin family member 1B (KIF1B) gene resides in the chromosomal region 1p36.22 and has been reported to have frequent deletions in a variety of human cancers. A recent genome wide association study (GWAS) study conducted on a Chinese population has reported the involvement of a KIF1B genetic variant in Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). This study aims to investigate the significance of KIF1B genetic variations in HBV-associated hepatitis in patients of Saudi Arabian ethnicity.

Methods

TaqMan genotyping assay was used to investigate the association of three SNPs (rs17401966, rs12734551, and rs3748578) in 584 normal healthy controls and 660 HBV-infected patients. The patients were categorized into inactive carriers (Case I), active carriers (Case II), Cirrhosis (Case III) and Cirrhosis-HCC (Case IV) sub-groups.

Results

Since SNPs rs12734551 and rs3748578 are in strong linkage disequilibrium (LD) with rs17401966, only results for the latter SNP are reported. Therefore, the allele frequency of rs17401966 among HBV-infected patients and healthy controls were comparable and therefore, no significant association was observed (P = 0.2811, Odds Ratio (OR) 0.897). A similar analysis was performed among the different sub-groups in order to determine whether KIF1B SNPs were associated with the advancement of the disease. No significant differences were observed in any of the comparisons performed.

Conclusion

Polymorphisms at KIF1B gene locus investigated in this study showed no significant association with HBV infection or with HBV-associated diseases such as liver cirrhosis or HCC.  相似文献   

16.

Background

Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach.

Methodology/Principal Findings

We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models.

Conclusion/Significance

Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population.  相似文献   

17.

Background

Cytochrome P450 2D6 (CYP2D6) gene duplication and multiplication can result in ultrarapid drug metabolism and therapeutic failure or excessive response in patients. Long range polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequencing are usually used for genotyping CYP2D6 duplication/multiplications and identification, but are labor intensive, time consuming, and costly.

Methods

We developed a simple allele quantification-based Pyrosequencing genotyping method that facilitates CYP2D6 copy number variation (CNV) genotyping while also identifying allele-specific CYP2D6 CNV in heterozygous samples. Most routine assays do not identify the allele containing a CNV. A total of 237 clinical and Coriell DNA samples with different known CYP2D6 gene copy numbers were genotyped for CYP2D6 *2, *3, *4, *6, *10, *17, *41 polymorphisms and CNV determination.

Results

The CYP2D6 gene allele quantification/identification were determined simultaneously with CYP2D6*2, *3, *4, *6, *10, *17, *41 genotyping. We determined the exact CYP2D6 gene copy number, identified which allele had the duplication or multiplication, and assigned the correct phenotype and activity score for all samples.

Conclusions

Our method can efficiently identify the duplicated CYP2D6 allele in heterozygous samples, determine its copy number in a fraction of time compared to conventional methods and prevent incorrect ultrarapid phenotype calls. It also greatly reduces the cost, effort and time associated with CYP2D6 CNV genotyping.  相似文献   

18.
19.

Background

In single-cell human genome analysis using whole-genome amplified product, a strong amplification bias involving allele dropout and preferential amplification hampers the quality of results. Using an oligonucleotide single nucleotide polymorphism (SNP) array, we systematically examined the nature of this amplification bias, including frequency, degree, and preference for genomic location, and we assessed the effects of this amplification bias on subsequent genotype and chromosomal copy number analyses.

Methodology/Principal Findings

We found a large variability in amplification bias among the amplified products obtained by multiple displacement amplification (MDA), and this bias had a severe effect on the genotype and chromosomal copy number analyses. We established optimal experimental conditions for pre-screening for high-quality amplified products, processing array data, and analyzing chromosomal structural alterations. Using this optimized protocol, we successfully detected previously unidentified chromosomal structural alterations in single cells from a lymphoblastoid cell line. These alterations were subsequently confirmed by karyotype analysis. In addition, we successfully obtained reproducible chromosomal copy number profiles of single cells from the cell line with a complex karyotype, indicating the applicability and potential of our optimized workflow.

Conclusions/Significance

Our results suggest that the quality of amplification products should be critically assessed before using them for genomic analyses. The method of MDA-based whole-genome amplification followed by SNP array analysis described here will be useful for exploring chromosomal alterations in single cells.  相似文献   

20.

Aims/Hypothesis

Recently, cardiotrophin-1, a member of the interleukin-6 family of cytokines was described to protect beta-cells from apoptosis, to improve glucose-stimulated insulin secretion and insulin resistance, and to prevent streptozotocin-induced diabetes in mice. Here, we studied whether common single nucleotide polymorphisms (SNPs) in the CTF1 locus, encoding cardiotrophin-1, influence insulin secretion and insulin sensitivity in humans.

Methods

We genotyped 1,771 German subjects for three CTF1 tagging SNPs (rs1046276, rs1458201, and rs8046707). The subjects were metabolically characterized by an oral glucose tolerance test. Subgroups underwent magnetic resonance (MR) imaging/spectroscopy and hyperinsulinaemic-euglycaemic clamps.

Results

After appropriate adjustment, the minor allele of CTF1 SNP rs8046707 was significantly associated with decreased in vivo measures of insulin sensitivity. The other tested SNPs were not associated with OGTT-derived sensitivity parameters, nor did the three tested SNPs show any association with OGTT-derived parameters of insulin release. In the MR subgroup, SNP rs8046707 was nominally associated with lower visceral adipose tissue. Furthermore, the SNP rs1458201 showed a nominal association with increased VLDL levels.

Conclusions

In conclusion, this study, even though preliminary and awaiting further confirmation by independent replication, provides first evidence that common genetic variation in CTF1 could contribute to insulin sensitivity in humans. Our SNP data indicate an insulin-desensitizing effect of cardiotrophin-1 and underline that cardiotrophin-1 represents an interesting target to influence insulin sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号