首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices.  相似文献   

2.
3.
A major challenge in biomedical studies in recent years has been the classification of gene expression profiles into categories, such as cases and controls. This is done by first training a classifier by using a labeled training set containing labeled samples from the two populations, and then using that classifier to predict the labels of new samples. Such predictions have recently been shown to improve the diagnosis and treatment selection practices for several diseases. This procedure is complicated, however, by the high dimensionality if the data. While microarrays can measure the levels of thousands of genes per sample, case-control microarray studies usually involve no more than several dozen samples. Standard classifiers do not work well in these situations where the number of features (gene expression levels measured in these microarrays) far exceeds the number of samples. Selecting only the features that are most relevant for discriminating between the two categories can help construct better classifiers, in terms of both accuracy and efficiency. In this work we developed a novel method for multivariate feature selection based on the Partial Least Squares algorithm. We compared the method''s variants with common feature selection techniques across a large number of real case-control datasets, using several classifiers. We demonstrate the advantages of the method and the preferable combinations of classifier and feature selection technique.  相似文献   

4.
提出了一种蛋白质相互作用的相似性度量,将其与基因表达数据的相似性度量相结合,定义了一种融合的距离度量,并且将这种融合的距离度量用于改进现有的K—means聚类方法。经过实际数据的检验,改进后的K—means方法比常用的其它几种聚类方法具有更好的效果,说明结合蛋白质相互作用数据可以使得基因表达聚类的结果更有生物意义。  相似文献   

5.
Until recently, numerous feature selection techniques have been proposed and found wide applications in genomics and proteomics. For instance, feature/gene selection has proven to be useful for biomarker discovery from microarray and mass spectrometry data. While supervised feature selection has been explored extensively, there are only a few unsupervised methods that can be applied to exploratory data analysis. In this paper, we address the problem of unsupervised feature selection. First, we extend Laplacian linear discriminant analysis (LLDA) to unsupervised cases. Second, we propose a novel algorithm for computing LLDA, which is efficient in the case of high dimensionality and small sample size as in microarray data. Finally, an unsupervised feature selection method, called LLDA-based Recursive Feature Elimination (LLDA-RFE), is proposed. We apply LLDA-RFE to several public data sets of cancer microarrays and compare its performance with those of Laplacian score and SVD-entropy, two state-of-the-art unsupervised methods, and with that of Fisher score, a supervised filter method. Our results demonstrate that LLDA-RFE outperforms Laplacian score and shows favorable performance against SVD-entropy. It performs even better than Fisher score for some of the data sets, despite the fact that LLDA-RFE is fully unsupervised.  相似文献   

6.
7.
Characterizing interactions between drugs is important to avoid potentially harmful combinations, to reduce off-target effects of treatments and to fight antibiotic resistant pathogens, among others. Here we present a network inference algorithm to predict uncharacterized drug-drug interactions. Our algorithm takes, as its only input, sets of previously reported interactions, and does not require any pharmacological or biochemical information about the drugs, their targets or their mechanisms of action. Because the models we use are abstract, our approach can deal with adverse interactions, synergistic/antagonistic/suppressing interactions, or any other type of drug interaction. We show that our method is able to accurately predict interactions, both in exhaustive pairwise interaction data between small sets of drugs, and in large-scale databases. We also demonstrate that our algorithm can be used efficiently to discover interactions of new drugs as part of the drug discovery process.  相似文献   

8.
9.
10.
High dimensionality and small sample sizes, and their inherent risk of overfitting, pose great challenges for constructing efficient classifiers in microarray data classification. Therefore a feature selection technique should be conducted prior to data classification to enhance prediction performance. In general, filter methods can be considered as principal or auxiliary selection mechanism because of their simplicity, scalability, and low computational complexity. However, a series of trivial examples show that filter methods result in less accurate performance because they ignore the dependencies of features. Although few publications have devoted their attention to reveal the relationship of features by multivariate-based methods, these methods describe relationships among features only by linear methods. While simple linear combination relationship restrict the improvement in performance. In this paper, we used kernel method to discover inherent nonlinear correlations among features as well as between feature and target. Moreover, the number of orthogonal components was determined by kernel Fishers linear discriminant analysis (FLDA) in a self-adaptive manner rather than by manual parameter settings. In order to reveal the effectiveness of our method we performed several experiments and compared the results between our method and other competitive multivariate-based features selectors. In our comparison, we used two classifiers (support vector machine, -nearest neighbor) on two group datasets, namely two-class and multi-class datasets. Experimental results demonstrate that the performance of our method is better than others, especially on three hard-classify datasets, namely Wang''s Breast Cancer, Gordon''s Lung Adenocarcinoma and Pomeroy''s Medulloblastoma.  相似文献   

11.

Background

Schizophrenia (SZ) is a heritable, complex mental disorder. We have seen limited success in finding causal genes for schizophrenia from numerous conventional studies. Protein interaction network and pathway-based analysis may provide us an alternative and effective approach to investigating the molecular mechanisms of schizophrenia.

Methodology/Principal Findings

We selected a list of schizophrenia candidate genes (SZGenes) using a multi-dimensional evidence-based approach. The global network properties of proteins encoded by these SZGenes were explored in the context of the human protein interactome while local network properties were investigated by comparing SZ-specific and cancer-specific networks that were extracted from the human interactome. Relative to cancer genes, we observed that SZGenes tend to have an intermediate degree and an intermediate efficiency on a perturbation spreading throughout the human interactome. This suggested that schizophrenia might have different pathological mechanisms from cancer even though both are complex diseases. We conducted pathway analysis using Ingenuity System and constructed the first schizophrenia molecular network (SMN) based on protein interaction networks, pathways and literature survey. We identified 24 pathways overrepresented in SZGenes and examined their interactions and crosstalk. We observed that these pathways were related to neurodevelopment, immune system, and retinoic X receptor (RXR). Our examination of SMN revealed that schizophrenia is a dynamic process caused by dysregulation of the multiple pathways. Finally, we applied the network/pathway approach to identify novel candidate genes, some of which could be verified by experiments.

Conclusions/Significance

This study provides the first comprehensive review of the network and pathway characteristics of schizophrenia candidate genes. Our preliminary results suggest that this systems biology approach might prove promising for selection of candidate genes for complex diseases. Our findings have important implications for the molecular mechanisms for schizophrenia and, potentially, other psychiatric disorders.  相似文献   

12.
Here we describe a new DNA capture element (DCE) sensing system, based on the quenching and dequenching of a double-stranded aptamer. This system shows very good sensitivity and thermal stability. While quenching, dequenching, and separating the DCE systems made from different aptamers (all selected by SELEX), an alternative method to rapidly select aptamers was developed—the Aptamer Selection Express (ASExp). This process has been used to select aptamers against different types of targets (Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2 bacteriophage, ovalbumin, and botulinum neurotoxin). The DCE systems made from botulinum neurotoxin aptamers selected by ASExp have been investigated. The results of this investigation indicate that ASExp can be used to rapidly select aptamers for the DCE sensing system.  相似文献   

13.
Selecting relevant features is a common task in most OMICs data analysis, where the aim is to identify a small set of key features to be used as biomarkers. To this end, two alternative but equally valid methods are mainly available, namely the univariate (filter) or the multivariate (wrapper) approach. The stability of the selected lists of features is an often neglected but very important requirement. If the same features are selected in multiple independent iterations, they more likely are reliable biomarkers. In this study, we developed and evaluated the performance of a novel method for feature selection and prioritization, aiming at generating robust and stable sets of features with high predictive power. The proposed method uses the fuzzy logic for a first unbiased feature selection and a Random Forest built from conditional inference trees to prioritize the candidate discriminant features. Analyzing several multi-class gene expression microarray data sets, we demonstrate that our technique provides equal or better classification performance and a greater stability as compared to other Random Forest-based feature selection methods.  相似文献   

14.
两种过滤特征基因选择算法的有效性研究   总被引:2,自引:0,他引:2  
李丽  李霞  郭政  汪强虎  王海芸 《生命科学研究》2003,7(4):369-373,376
对基因表达谱进行特征基因选择不仅能改善疾病分类方法的效能,而且为寻找与疾病相关的特征基因提供新的途径.通过比较用调整p值的t检验、非参数评分两种特征基因选择算法后和未进行选择时支持向量机(SVM)分类器的分类性能、支持向量(SV)的吻合度、错分样本ID的吻合度和对样本均匀翻倍后的稳定性.结果发现:特征选择后线性、核函数为二阶多项式和径向基的SVM分类性能明显提高;特征选择前后的SV及错分样本ID的吻合度均较高;SVM的稳定性较好.由此得出结论:这两种特征选择算法具有一定的有效性.  相似文献   

15.
We rapidly produced and isolated novel yeast hybrids by using two-color flow cytometric cell sorting. We labeled one parent strain with a fluorescent green stain and the other parent with a fluorescent orange stain, and hybrids were selected based on their dual orange and green fluorescence. When this technique was applied to the production of hybrids by traditional mating procedures, more than 96% of the isolates were hybrids. When it was applied to rare mating, three hybrids were identified among 50 isolates enriched from a population containing 2 × 106 cells. This technology is not dependent on genetic markers and has applications in the development of improved industrial yeast strains.  相似文献   

16.
一种新的EST聚类方法   总被引:11,自引:0,他引:11  
该研究发展了一种EST(expressed sequence tag)聚类方法(ESTClustering),用于分析大规模EST测序中所产生的大量数据,以获得高质量,非重复表达序列,该方法在聚类过程中采用MEGABLAST工具对一致序列进行序列同源比较,并用phrap程序对每一EST簇进行拼接检验。这一聚类策略能降低测序错误带来的影响,有效识别基因家族成员,并避免选择性剪接的干扰,与NCB(National Center for Biotechnology Information)的UniGene clustering)方法相比,ESTClustering的聚类结果可以更好地反映表达序列的多样性,用ESTClustering对112256条拟南芥EST聚类测试,产生23581个EST簇,其中13597个EST簇有对应拟南芥基因组编码序列,与该基因组中有EST作为依据的预测基因数目接近。应用该方法对收集的147191条水稻EST序列进行聚类,形成33896个EST簇。  相似文献   

17.

Background  

The Gene Ontology (GO) is used to describe genes and gene products from many organisms. When used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms and the statistical power of GO term enrichment analysis.  相似文献   

18.
This is a correction to a typographical error in (11) in [1] which present the calculation of the sum of the multiple significant interdependence redundancy measure. Equation (11) in [1] should be: $$k=argmaxnolimits_{kin{2,ldots,p}}sum_{r=1}^k sum_{A_iin{C_r-eta_r}}R(A_i:eta_r).$$(11)We remark that the experimental results reported in [1] are based on (11) above not (11) in [1].  相似文献   

19.
Through Genome Wide Association Studies (GWAS) many Single Nucleotide Polymorphism (SNP)-complex disease relations can be investigated. The output of GWAS can be high in amount and high dimensional, also relations between SNPs, phenotypes and diseases are most likely to be nonlinear. In order to handle high volume-high dimensional data and to be able to find the nonlinear relations we have utilized data mining approaches and a hybrid feature selection model of support vector machine and decision tree has been designed. The designed model is tested on prostate cancer data and for the first time combined genotype and phenotype information is used to increase the diagnostic performance. We were able to select phenotypic features such as ethnicity and body mass index, and SNPs those map to specific genes such as CRR9, TERT. The performance results of the proposed hybrid model, on prostate cancer dataset, with 90.92% of sensitivity and 0.91 of area under ROC curve, shows the potential of the approach for prediction and early detection of the prostate cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号