共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomohiro Torii Yuki Miyamoto Shuji Takada Hideki Tsumura Miyuki Arai Kazuaki Nakamura Katsuya Ohbuchi Masahiro Yamamoto Akito Tanoue Junji Yamauchi 《Biochemical and biophysical research communications》2014
The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration. 相似文献
2.
Cell migration is essential for normal development and many pathological processes including tumor metastasis. Rho family GTPases play important roles in this event. In particular, Rac is required for lamellipodia formation at the leading edge during migration. Dock4 is a member of the Dock180 family proteins, and Dock4 mutations are present in a subset of human cancer cell lines. However, the function and the regulatory mechanism of Dock4 remain unclear. Here we show that Dock4 is regulated by the small GTPase RhoG and its effector ELMO and promotes cell migration by activating Rac1. Dock4 formed a complex with ELMO, and expression of active RhoG induced translocation of the Dock4-ELMO complex from the cytoplasm to the plasma membrane and enhanced the Dock4- and ELMO-dependent Rac1 activation and cell migration. On the other hand, RNA interference-mediated knockdown of Dock4 in NIH3T3 cells reduced cell migration. Taken together, these results suggest that Dock4 plays an important role in the regulation of cell migration through activation of Rac1, and that RhoG is a key upstream regulator for Dock4. 相似文献
3.
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration. 相似文献
4.
《Cell Adhesion & Migration》2013,7(6):441-451
Directed cell migration is a crucial orchestrated process in embryonic development, wound healing, and immune response. The underlying substrate can provide physical and/or chemical cues that promote directed cell migration. Here, using electrospinning we developed substrates of aligned poly(lactic-co-glycolic acid) nanofibres to study the influence of glial cells on endothelial cells (ECs) in a 3-dimensional (3D) co-culture model. ECs build blood vessels and regulate their plasticity in coordination with neurons. Likewise, neurons construct nerves and regulate their circuits in coordination with ECs. In our model, the neuro-vascular cross-talk was assessed using a direct co-culture model of human umbilical vein endothelial cells (HUVECs) and rat Schwann cells (rSCs). The effect of rSCs on ECs behavior was demonstrated by earlier and higher velocity values and genetic expression profiles different of those of HUVECs when seeded alone. We observed 2 different gene expression trends in the co-culture models: (i) a later gene expression of angiogenic factors, such as interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), and (ii) an higher gene expression of genes involved in actin filaments rearrangement, such as focal adhesion kinase (FAK), Mitogen-activated protein kinase-activated protein kinase 13 (MAPKAPK13), Vinculin (VCL), and Profilin (PROF). These results suggested that the higher ECs migration is mainly due to proteins involved in the actin filaments rearrangement and in the directed cell migration rather than the effect of angiogenic factors. This co-culture model provides an approach to enlighten the neurovascular interactions, with particular focus on endothelial cell migration. 相似文献
5.
Maria Eleni Kastriti Louis Faure Dorothea Von Ahsen Thibault Gerald Bouderlique Johan Bostrm Tatiana Solovieva Cameron Jackson Marianne Bronner Dies Meijer Saida Hadjab Francois Lallemend Alek Erickson Marketa Kaucka Viacheslav Dyachuk Thomas Perlmann Laura Lahti Jan Krivanek JeanFrancois Brunet Kaj Fried Igor Adameyko 《The EMBO journal》2022,41(17)
6.
Hepatocyte growth factor triggers signaling cascades mediating vascular smooth muscle cell migration 总被引:5,自引:0,他引:5
Taher TE Derksen PW de Boer OJ Spaargaren M Teeling P van der Wal AC Pals ST 《Biochemical and biophysical research communications》2002,298(1):80-86
A key event in neointima formation and atherogenesis is the migration of vascular smooth muscle cells (VSMCs) into the intima. This is controlled by cytokines and extracellular matix (ECM) components within the microenvironment of the diseased vessel wall. At present, these signals have only been partially identified. In this study, we demonstrate that Met, the receptor tyrosine kinase for hepatocyte growth factor (HGF), is expressed on VSMCs isolated from the intima of atherosclerotic plaques of carotid arteries. Stimulation with HGF led to activation of Met as well as to activation of PI3-K, PKB/Akt, MEK, and the MAP kinases Erk1 and -2. Moreover, HGF induced lamellipodia formation, a characteristic feature of motile cells, and promoted VSMC migration across fibronectin-coated filters. The HGF-induced cell migration was mediated by beta1 integrins and required PI3-K activation. Our results suggest a role for the HGF-Met signaling pathway in the pathogenesis of atherosclerosis and restenosis. 相似文献
7.
Characterization of glial cell line-derived neurotrophic factor family receptor alpha-1 in peripheral nerve Schwann cells 总被引:1,自引:0,他引:1
Glial cell line-derived neurotrophic factor (GDNF) family receptor alpha-1 (GFRalpha-1) is a receptor component of GDNF that associates with and activates the tyrosine kinase receptor Ret. To further understand GDNF and its receptor system in the PNS, we first characterized the expression of GFRalpha-1 in bovine peripheral nerve in vivo. GFRalpha-1 immunoreactivity was localized adjacent to the outermost layer of myelin sheath, as well as in the endoneurium and axoplasm. In a fractionation study, GFRalpha-1 was recovered mostly in the soluble fraction, although a small amount was recovered in the membrane fraction. A substantial amount of GFRalpha-1 in the membrane fraction was extractable by detergent and alkaline conditions. To further clarify the expression of GFRalpha-1 in Schwann cells, we examined cultured rat Schwann cells and the Schwannoma cell line RT4. Schwann cells expressed GFRalpha-1 in both the soluble/cytosolic and membrane fractions, and the membrane form of GFRalpha-1 was expressed at the outer surface of the Schwann cell plasma membrane. We also confirmed the secretion of the soluble form of GFRalpha-1 from Schwannoma cells in a metabolic labeling experiment. These data contribute to our knowledge of the production, expression and functions of GFRalpha-1 in the PNS. 相似文献
8.
Vascular smooth muscle cell (VSMC) migration is implicated in atherosclerosis and restenosis. Nuclear receptor subfamily 6, group A, member 1 (NR6A1) is involved in regulating embryonic stem cell differentiation, reproduction, neuronal differentiation. Functional cooperation between cAMP response element modulator tau (CREMtau) and NR6A1 can direct gene expression in cells. cAMP response element binding protein (CREB) plays a key role in VSMC migration. In this study, we sought to determine whether CREB involved in NR6A1-modulated VSMC migration. VSMCs treated with platelet-derived growth factor-BB (PDGF-BB) displayed reduced mRNA and protein levels of NR6A1. Adenovirus-mediated expression of NR6A1 (Ad-NR6A1) could inhibit PDGF-BB- and serum-induced VSMC migration. The mRNA and protein expressions of secreted phosphoprotein 1 (SPP1) were down-regulated by NR6A1 overexpression. SPP1 promoter reporter activity was repressed by NR6A1. NR6A1 was found to physically couple with nuclear actin and the large subunit of RNA polymerase II. Furthermore, we showed that CREB interacted with NR6A1 in VSMCs. NR6A1 overexpression repressed cAMP response element (CRE) activity. ChIP assay revealed that NR6A1 bind to SPP1 promoter. Luciferase reporter assay showed that NR6A1 regulated SPP1 promoter activity via a putative CRE site. Adenovirus mediated local NR6A1 gene transfer attenuated stenosis after balloon-induced arterial injury in Sprague–Dawley rats. Taken together, this study provided experimental evidence that NR6A1 modulated SPP1 expression via its binding with CREB protein in VSMCs. We also revealed a NR6A1-CREB-SPP1 axis that serves as a regulatory mechanism for atherosclerosis and restenosis. 相似文献
9.
Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH2-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity. 相似文献
10.
Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac1/RhoA pathway 总被引:1,自引:0,他引:1
Lai Y Shen Y Liu XH Zhang Y Zeng Y Liu YF 《International journal of biological sciences》2011,7(6):782-791
Endothelial cell migration is essential for tumor angiogenesis, and interleukin-8 (IL-8) has been shown to play an important role in tumor growth, angiogenesis, and metastasis. This study aimed to investigate the molecular mechanism of IL-8 induced endothelial cell migration. Our results indicated that IL-8 induced a rapid rearrangement of the actin cytoskeleton in EA.Hy926 cells, generating extensions resembling membrane ruffling and stress fibers. These processes required parallel upregulation of the small GTPases Rac1 and RhoA. Moreover, we demonstrated that IL-8 activated PI3K following the same kinetics observed from IL-8 induction of cytoskeletal rearrangement, suggesting the participation of PI3K in these processes. Taken together, our study demonstrates that PI3K-Rac1/RhoA signaling pathway plays a vital role in IL-8 induced endothelial cell migration, and provides new insight into the molecular mechanisms by which IL-8 contributes to tumor angiogenesis and metastasis. 相似文献
11.
ERK1/2 mediates PDGF-BB stimulated vascular smooth muscle cell proliferation and migration on laminin-5 总被引:12,自引:0,他引:12
Kingsley K Huff JL Rust WL Carroll K Martinez AM Fitchmun M Plopper GE 《Biochemical and biophysical research communications》2002,293(3):1000-1006
During restenosis following arterial injury, vascular smooth muscle cells (VSMCs) form a neointimal layer in arteries by changing from a differentiated, contractile phenotype to a dedifferentiated, migratory, and proliferative phenotype. Several growth factors, cytokines, and extracellular matrix components released following injury have been implicated in these phenotypic changes. We have recently detected the expression of laminin-5, an ECM protein found predominantly in epithelial tissues, in the arterial vasculature. Here we report that ln-5 expression by VSMC is upregulated by platelet-derived growth factor (PDGF-BB), epidermal growth factor, basic fibroblast growth factor, and transforming growth factor-beta1. Adhesion to ln-5 specifically enhances PDGF-BB-stimulated VSMC proliferation and migration. PD98059, a specific inhibitor of the ERK1/2 members of the Mitogen Activated Protein kinase family, increases both VSMC adhesion to ln-5 and blocks PDGF-BB-stimulated VSMC migration on ln-5. These results suggest that adhesion to ln-5 mediates a PDGF-BB-stimulated VSMC response to vascular injury via an ERK1/2 signaling pathway. 相似文献
12.
Orai1 and STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma
Ji-Hee Kim Sayamaa Lkhagvadorj Mi-Ra Lee Kyu-Hee Hwang Hyun Chul Chung Jae Hung Jung Seung-Kuy Cha Minseob Eom 《Biochemical and biophysical research communications》2014
The intracellular Ca2+ regulation has been implicated in tumorigenesis and tumor progression. Notably, store-operated Ca2+ entry (SOCE) is a major Ca2+ entry mechanism in non-excitable cells, being involved in cell proliferation and migration in several types of cancer. However, the expression and biological role of SOCE have not been investigated in clear cell renal cell carcinoma (ccRCC). Here, we demonstrate that Orai1 and STIM1, not Orai3, are crucial components of SOCE in the progression of ccRCC. The expression levels of Orai1 in tumor tissues were significantly higher than those in the adjacent normal parenchymal tissues. In addition, native SOCE was blunted by inhibiting SOCE or by silencing Orai1 and STIM1. Pharmacological blockade or knockdown of Orai1 or STIM1 also significantly inhibited RCC cell migration and proliferative capability. Taken together, Orai1 is highly expressed in ccRCC tissues illuminating that Orai1-mediated SOCE may play an important role in ccRCC development. Indeed, Orai1 and STIM1 constitute a native SOCE pathway in ccRCC by promoting cell proliferation and migration. 相似文献
13.
Chongchong Wang Li Cheng Shasha Song Shan Wu Guoping Sun 《Journal of cellular physiology》2020,235(11):8224-8235
Esophageal squamous cell carcinoma (ESCC) is the predominant esophageal cancer type in China. The aberrant activation of glioma-associated oncogene homolog1 (Gli1), a key factor in Hedgehog (Hh) signaling pathway, has been found in esophageal carcinoma. Moreover, Yes-associated protein 1 (YAP1), the major mediator of Hippo signaling pathway, has been linked to esophageal carcinoma progression. However, the precise roles and the underlying mechanism of both Gli1 and YAP1 in ESCC are unclear. Here, we found that Gli1 and YAP1 are overexpressed in ESCC and are associated with poor prognosis. In addition, we confirmed that knockdown of Gli1 or YAP1 suppresses ESCC cell growth, migration, and invasion in ESCC TE1 and EC109 cells. Significantly, Gli1 interacts with YAP1 in ESCC cells. Both Gli1 and YAP1 proteins are closely correlated with each other in human ESCC samples. Mechanistically, Gli1 upregulates YAP1 in a LATS1-independent manner. Conversely, YAP1 induces Gli1 by regulating phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Most importantly, we demonstrated that the interaction between Gli1 and YAP1 promotes ESCC tumor growth in vitro and in vivo. Our findings established a novel signaling mechanism by which the interaction between Gli1 and YAP1 promotes ESCC cell growth. This signaling regulation of the tumorigenesis provides a new therapeutic strategy for highly lethal ESCC. 相似文献
14.
15.
16.
Neural crest cells (NCCs) are essential components of the sympathetic nervous system, skin, craniofacial skeleton, and aortic arch. It has been known for many years that perturbation of migration, proliferation, and/or differentiation of these cells leads to birth defects such as cleft palate and persistent truncus arteriosus (PTA). Previously, we had shown that disruption of the platelet-derived growth factor receptor (PDGFR) alpha in NCCs resulted in defects in craniofacial and aortic arch development, the latter with variable penetrance. Because we observed ventricular septal defects in embryos that are null for the PDGFRbeta, we hypothesized that both PDGF receptors are involved in NCC formation. Here, we show that both receptors are expressed in cardiac NCCs and that the combined loss of the PDGFRalpha and PDGFRbeta in NCCs resulted in NCC-related heart abnormalities, including PTA and a ventricular septal defect (VSD). Using NCC lineage tracing, we observed that loss of PDGF receptor signaling resulted in reduced NCCs in the conotruncus region, leading to defects in aortic arch septation. These results indicate that while PDGFRalpha plays a predominant role in NCC development, the PDGFRbeta is expressed by and functions in cardiac NCCs. Combined PDGF receptor signaling is required for sufficient recruitment of cardiac NCCs into the conotruncal region and for formation of the aortico-pulmonary and ventricular septum. 相似文献
17.
Seki N Bujo H Jiang M Tanaga K Takahashi K Yagui K Hashimoto N Schneider WJ Saito Y 《Biochemical and biophysical research communications》2005,331(4):964-970
The migration of cultured cultured smooth muscle cells (SMCs) is regulated by the time-specific expression of members of the LDL receptor family (LRs). LRP1B, a member of LRs, modulates the catabolism of PDGF beta-receptor, affecting the migration of SMCs. An involvement of PDGF beta-receptor in atherosclerosis is focused because of its abundant expression in intimal SMCs. Here, in order to know a functional significance of LRP1B in the increased migration of intimal SMCs, the functions of three groups of cultured SMCs with different origins in atherosclerotic arteries were studied. Each group of SMCs (central, marginal or medial SMCs) was isolated from explanted pieces of central or marginal area of thickened intima, or media prepared from rabbit aortic plaques. The LRP1B expression levels were significantly decreased in intimal SMCs, particularly in marginal SMCs, compared to medial SMCs. The expression levels of LRP1B in SMCs were negatively correlated with those of PDGF beta-receptor. The level of PDGF beta-receptor-mediated phosphorylation of ERK 1/2 in central SMCs was increased to 5.2-fold with the functional inhibition of LRP1B using anti-LRP1B IgY. The antibody increased the PDGF-BB-stimulated migration and invasion activities in SMCs. The increase in the PDGF beta-receptor-mediated outgrowth activity of SMCs from the explants was also inhibited by the functional inhibition of LRP1B. These results indicate that LRP1B regulated the migration activity of SMCs through the modulation of PDGF beta-receptor-mediated pathway. The regulation of LRP1B expression is possibly involved in the activated migration of intimal SMCs in the course of atherosclerosis. 相似文献
18.
Thomas SL Deadwyler GD Tang J Stubbs EB Muir D Hiatt KK Clapp DW De Vries GH 《Biochemical and biophysical research communications》2006,348(3):971-980
Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes, a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells. 相似文献
19.
Macrophage migration inhibitory factor directly interacts with hepatopoietin and regulates the proliferation of hepatoma cell 总被引:4,自引:0,他引:4
Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine involved in inflammation and immune responses as well as in growth factor-dependent cell proliferation, cell cycle, angiogenesis, and tumorigenesis. Several studies have documented MIF expression in the sera following hepatic resection or in the course of liver cancer progression, but there is a paucity of information regarding the effect of MIF on hepatoma cells and relating mechanisms. In this paper, by [3H] thymidine incorporation, we found that exogenously added MIF could promote the proliferation of HepG2 in a dose-dependent manner. Hepatopoietin (HPO), as a liver-specific regeneration augmenter, could be induced by the expression of MIF in hepatoma cells. The activity of HPO promoter was increased, and its levels were enhanced after MIF was overexpressed in hepatoma cells. The similarities between HPO and MIF in structure and action led us to investigate their interaction and the inducing biological significance. Using yeast two-hybrid identification, we found that HPO interacted with MIF in yeast cells, and their binding ability was higher than that between HPO and JAB1 (Jun activation domain binding protein) or MIF and JAB1 in yeast cells. Their interaction was further verified by His pull-down assay in vitro and coimmunoprecipitation experiment in vivo. They were colocalized in the cytoplasm. Both HPO and MIF could bind to JAB1 and modulate the AP-1 pathway. When HPO and MIF were cotransfected into HepG2 cells, the binding activity of MIF to JAB1 was reduced, and the activity of AP-1 was improved. In contrast, MIF overexpressed in HepG2 was unable to interfere with the binding activity of HPO to JAB1, but its potentiation on AP-1 activity was reduced significantly. Taken together, these results indicate that MIF plays an important role in the proliferation of hepatoma cells, and the effect of MIF is in concert with HPO. 相似文献