首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt proteins are secreted proteins involved in a number of developmental processes including neural development and synaptogenesis. We sought to determine the role of the Drosophila Wnt7b ortholog, Wnt2, using the neuromuscular junction (NMJ). Mutations in wnt2 produce an increase in the number of presynaptic branches and a reduction in immunolabeling of the active zone proteins, Bruchpilot and synaptobrevin, at the NMJ. There was no change, however, in immunolabeling for the presynaptic proteins cysteine-string protein (CSP) and synaptotagmin, nor the postsynaptic proteins GluRIIA and DLG at the NMJ. Consistent with the presynaptic defects, wnt2 mutants exhibit approximately a 50% reduction in evoked excitatory junctional currents. Rescue, RNAi, and tissue-specific qRT-PCR experiments indicate that Wnt2 is expressed by the postsynaptic cell where it may serve as a retrograde signal that regulates presynaptic morphology and the localization of presynaptic proteins.  相似文献   

2.
Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterologous protein secretion is poorly understood. Here, using Aspergillus oryzae as a model filamentous fungus, we studied the involvement of two putative lectin-like cargo receptors, A. oryzae Vip36 (AoVip36) and AoEmp47, in the secretion of heterologous proteins expressed in fusion with the endogenous enzyme α-amylase as the carrier. Fluorescence microscopy revealed that mDsRed-tagged AoVip36 localized in the Golgi compartment, whereas AoEmp47 showed localization in both the ER and the Golgi compartment. Deletion of AoVip36 and AoEmp47 improved heterologous protein secretion, but only AoVip36 deletion had a negative effect on the secretion of α-amylase. Analysis of ER-enriched cell fractions revealed that AoVip36 and AoEmp47 were involved in the retention of heterologous proteins in the ER. However, the overexpression of each cargo receptor had a different effect on heterologous protein secretion: AoVip36 enhanced the secretion, whereas AoEmp47 promoted the intracellular retention. Taken together, our data suggest that AoVip36 and AoEmp47 hinder the secretion of heterologous proteins by promoting their retention in the ER but that AoVip36 also promotes the secretion of heterologous proteins. Moreover, we found that genetic deletion of these putative ER-Golgi cargo receptors significantly improves heterologous protein production. The present study is the first to propose that ER-Golgi transport is a bottleneck for heterologous protein production in filamentous fungi.  相似文献   

3.
Diseases of unstable repeat expansion: mechanisms and common principles   总被引:1,自引:0,他引:1  
The list of developmental and degenerative diseases that are caused by expansion of unstable repeats continues to grow, and is now approaching 20 disorders. The pathogenic mechanisms that underlie these disorders involve either loss of protein function or gain of function at the protein or RNA level. Common themes have emerged within and between these different classes of disease; for example, among disorders that are caused by gain-of-function mechanisms, altered protein conformations are central to pathogenesis, leading to changes in protein activity or abundance. In all these diseases, the context of the expanded repeat and the abundance, subcellular localization and interactions of the proteins and RNAs that are affected have key roles in disease-specific phenotypes.  相似文献   

4.
Hair cells mediate our senses of hearing and balance by synaptic release of glutamate from somatic active zones (AZs). They share conserved mechanisms of exocytosis with neurons and other secretory cells of diverse form and function. Concurrently, AZs of these neuro-epithelial hair cells employ several processes that differ remarkably from those of neuronal synaptic terminals of the brain. Their unique molecular anatomy enables them to better respond to small, graded changes in membrane potential and to produce unsurpassed rates of exocytosis. Here, we focus on the AZs of cochlear inner hair cells (IHCs). As in other hair cells, these AZs are occupied by a cytoplasmic extension of the presynaptic density, called the synaptic ribbon: a specialized protein complex required for normal physiological function. Some proteins found at IHC synapses are uniquely expressed or enriched there, where their disruption can beget deafness in humans and in animal models. Other proteins, essential for regulation of conventional neuronal Ca(2+)-triggered fusion, are apparently absent from IHCs. Certain common synaptic proteins appear to have extra significance at ribbon-type AZs because of their interactions with unique molecules, their unusual concentrations, or their atypical localization and regulation. We summarize the molecular-anatomical specializations that underlie the unique synaptic physiology of hair cells.  相似文献   

5.
Signals from retinal photoreceptors are processed in two parallel channels—the ON channel responds to light increments, while the OFF channel responds to light decrements. The ON pathway is mediated by ON type bipolar cells (BCs), which receive glutamatergic synaptic input from photoreceptors via a G-protein-coupled receptor signaling cascade. The metabotropic glutamate receptor mGluR6 is located at the dendritic tips of all ON-BCs and is required for synaptic transmission. Thus, it is critically important for delivery of information from photoreceptors into the ON pathway. In addition to detecting glutamate, mGluR6 participates in interactions with other postsynaptic proteins, as well as trans-synaptic interactions with presynaptic ELFN proteins. Mechanisms of mGluR6 synaptic targeting and functional interaction with other synaptic proteins are unknown. Here, we show that multiple regions in the mGluR6 ligand-binding domain are necessary for both synaptic localization in BCs and ELFN1 binding in vitro. However, these regions were not required for plasma membrane localization in heterologous cells, indicating that secretory trafficking and synaptic localization are controlled by different mechanisms. In contrast, the mGluR6 C-terminus was dispensable for synaptic localization. In mGluR6 null mice, localization of the postsynaptic channel protein TRPM1 was compromised. Introducing WT mGluR6 rescued TRPM1 localization, while a C-terminal deletion mutant had significantly reduced rescue ability. We propose a model in which trans-synaptic ELFN1 binding is necessary for mGluR6 postsynaptic localization, whereas the C-terminus has a role in mediating TRPM1 trafficking. These findings reveal different sequence determinants of the multifunctional roles of mGluR6 in ON-BCs.  相似文献   

6.
Many genes are expressed in mammalian liver in a sexually dimorphic manner. DNA microarray analysis has shown that growth hormone (GH) and its sex-dependent pattern of pituitary secretion play a major role in establishing the sexually dimorphic patterns of liver gene expression. However, GH may exert effects on protein post-translational modification and nuclear localization that are not reflected at the mRNA level. To investigate these potential effects of GH, we used two-dimensional gel electrophoresis followed by LC-MS/MS to: 1) identify rat liver nuclear proteins whose abundance or state of post-translational modification displays sex-dependent differences; and 2) determine the role of the plasma GH profile in establishing these differences. Nuclear extracts prepared from livers of individual male (n=9) and female (n=5) adult rats, and from males given GH by continuous infusion for 7 days to feminize liver gene expression (n=5 rats), were resolved by two-dimensional electrophoresis. Image analysis of SYPRO Ruby-stained gels revealed 165 sexually dimorphic protein spots that differ in normalized volume between male and female groups by >1.5-fold at p<0.05. Sixty of these proteins exhibited female-like changes in spot abundance following continuous GH treatment. Comparison of male and GH-treated male groups revealed 130 proteins that displayed >1.5-fold differences in abundance, with 60 of these GH-responsive spots being sexually dimorphic. Thus, GH plays an important role in establishing the sex-dependent differences in liver nuclear protein content. Twenty-eight of the sexually dimorphic and/or GH-regulated protein spots were identified by LC-MS/MS. Proteins identified include regucalcin, nuclear factor 45, and heterogeneous nuclear ribonucleoproteins A3, D-like, and K, in addition to proteins such as GST, normally associated with cytosolic extracts but also reported to be localized in the nucleus.  相似文献   

7.
8.
BACKGROUND: The ubiquitin proteasome system (UPS) mediates regulated protein degradation and provides a mechanism for closely controlling protein abundance in spatially restricted domains within cells. We hypothesized that the UPS may acutely determine the local concentration of key regulatory proteins at neuronal synapses as a means for locally modulating synaptic efficacy and the strength of neurotransmission communication. RESULTS: We investigated this hypothesis at the Drosophila neuromuscular synapse by using an array of genetic and pharmacological tools. This study demonstrates that UPS components are present in presynaptic boutons and that the UPS functions locally in the presynaptic compartment to rapidly eliminate a conditional transgenic reporter of proteasome activity. We assayed a panel of synaptic proteins to determine whether the UPS acutely regulates the local abundance of native synaptic targets. Both acute pharmacological inhibition of the proteasome (<1 hr) and targeted genetic perturbation of proteasome function in the presynaptic neuron cause the specific accumulation of the essential synaptic vesicle-priming protein DUNC-13. Most importantly, acute pharmacological inhibition of the proteasome (<1 hr) causes a rapid strengthening of neurotransmission (an approximately 50% increase in evoked amplitude) because of increased presynaptic efficacy. The proteasome-dependent regulation of presynaptic protein abundance, both of the exogenous reporter and native DUNC-13, and the modulation of presynaptic neurotransmitter release occur on an intermediate, rapid (tens of minutes) timescale. CONCLUSIONS: Taken together, these studies demonstrate that the UPS functions locally within synaptic boutons to acutely control levels of presynaptic protein and that the rate of UPS-dependent protein degradation is a primary determinant of neurotransmission strength.  相似文献   

9.
10.
More than 50 Helicobacter pylori genes are predicted to encode outer membrane proteins (OMPs), but there has been relatively little experimental investigation of the H. pylori cell surface proteome. In this study, we used selective biotinylation to label proteins localized to the surface of H. pylori, along with differential detergent extraction procedures to isolate proteins localized to the outer membrane. Proteins that met multiple criteria for surface-exposed outer membrane localization included known adhesins, as well as Cag proteins required for activity of the cag type IV secretion system, putative lipoproteins, and other proteins not previously recognized as cell surface components. We identified sites of nontryptic cleavage consistent with signal sequence cleavage, as well as C-terminal motifs that may be important for protein localization. A subset of surface-exposed proteins were highly susceptible to proteolysis when intact bacteria were treated with proteinase K. Most Hop and Hom OMPs were susceptible to proteolysis, whereas Hor and Hof proteins were relatively resistant. Most of the protease-susceptible OMPs contain a large protease-susceptible extracellular domain exported beyond the outer membrane and a protease-resistant domain at the C terminus with a predicted β-barrel structure. These features suggest that, similar to the secretion of the VacA passenger domain, the N-terminal domains of protease-susceptible OMPs are exported through an autotransporter pathway. Collectively, these results provide new insights into the repertoire of surface-exposed H. pylori proteins that may mediate bacterium-host interactions, as well as the cell surface topology of these proteins.  相似文献   

11.
Prokaryotic secretion relies on proteins that are widely conserved, including NTPases and secretins, and on proteins that are system specific. The Tad secretion system in Aggregatibacter actinomycetemcomitans is dedicated to the assembly and export of Flp pili, which are needed for tight adherence. Consistent with predictions that RcpA forms the multimeric outer membrane secretion channel (secretin) of the Flp pilus biogenesis apparatus, we observed the RcpA protein in multimers that were stable in the presence of detergent and found that rcpA and its closely related homologs form a novel and distinct subfamily within a well-supported gene phylogeny of the entire secretin gene superfamily. We also found that rcpA-like genes were always linked to Aggregatibacter rcpB- or Caulobacter cpaD-like genes. Using antisera, we determined the localization and gross abundances of conserved (RcpA and TadC) and unique (RcpB, RcpC, and TadD) Tad proteins. The three Rcp proteins (RcpA, RcpB, and RcpC) and TadD, a putative lipoprotein, localized to the bacterial outer membrane. RcpA, RcpC, and TadD were also found in the inner membrane, while TadC localized exclusively to the inner membrane. The RcpA secretin was necessary for wild-type abundances of RcpB and RcpC, and TadC was required for normal levels of all three Rcp proteins. TadC abundance defects were observed in rcpA and rcpC mutants. TadD production was essential for wild-type RcpA and RcpB abundances, and RcpA did not multimerize or localize to the outer membrane without the expression of TadD. These data indicate that membrane proteins TadC and TadD may influence the assembly, transport, and/or function of individual outer membrane Rcp proteins.  相似文献   

12.
13.
Caseinolytic chaperones and proteases (Clp) belong to the AAA+ protein superfamily and are part of the protein quality control machinery in cells. The eukaryotic parasite Plasmodium falciparum, the causative agent of malaria, has evolved an elaborate network of Clp proteins including two distinct ClpB ATPases. ClpB1 and ClpB2 are involved in different aspects of parasitic proteostasis. ClpB1 is present in the apicoplast, a parasite-specific and plastid-like organelle hosting various metabolic pathways necessary for parasite growth. ClpB2 localizes to the parasitophorous vacuole membrane where it drives protein export as core subunit of a parasite-derived protein secretion complex, the Plasmodium Translocon of Exported proteins (PTEX); this process is central to parasite virulence and survival in the human host. The functional associations of these two chaperones with parasite-specific metabolism and protein secretion make them prime drug targets. ClpB proteins function as unfoldases and disaggregases and share a common architecture consisting of four domains—a variable N-terminal domain that binds different protein substrates, followed by two highly conserved catalytic ATPase domains, and a C-terminal domain. Here, we report and compare the first crystal structures of the N terminal domains of ClpB1 and ClpB2 from Plasmodium and analyze their molecular surfaces. Solution scattering analysis of the N domain of ClpB2 shows that the average solution conformation is similar to the crystalline structure. These structures represent the first step towards the characterization of these two malarial chaperones and the reconstitution of the entire PTEX to aid structure-based design of novel anti-malarial drugs.  相似文献   

14.
Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently‐used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower‐abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox ( http://suba.live ).  相似文献   

15.
In eukaryotic cells, a major proportion of the cellular proteins localize to various subcellular organelles where they are involved in organelle-specific cellular processes. Thus, the localization of a particular protein in the cell is an important part of understanding the physiological role of the protein in the cell. Various approaches such as subcellular fractionation, immunolocalization and live imaging have been used to define the localization of organellar proteins. Of these various approaches, the most powerful one is the live imaging because it can show in vivo dynamics of protein localization depending on cellular and environmental conditions without disturbing cellular structures. However, the live imaging requires the ability to detect the organelles in live cells. In this study, we report generation of a new set of transgenic Arabidopsis plants using various organelle marker proteins fused to a fluorescence protein, monomeric Cherry (mCherry). All these markers representing different subcellular organelles such as chloroplasts, mitochondria, peroxisomes, endoplasmic reticulum (ER) and lytic vacuole showed clear and specific signals regardless of the cell types and tissues. These marker lines can be used to determine localization of organellar proteins by colocalization and also to study the dynamics of organelles under various developmental and environmental conditions.  相似文献   

16.
17.
Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.  相似文献   

18.
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.  相似文献   

19.
Insect diapause is an alternative life-history strategy used to increase longevity and survival in harsh environmental conditions. Even though some aspects of diapause are well investigated, broader scale studies that elucidate the global metabolic adjustments required for this remarkable trait, are rare. In order to better understand the metabolic changes during early insect diapause, we used a shotgun proteomics approach on early diapausing and non-diapausing larvae of the recently sequenced hymenopteran model organism Nasonia vitripennis. Our results deliver insights into the molecular underpinnings of diapause in Nasonia and corroborate previously reported diapause-associated features for invertebrates, such as a diapause-dependent abundance change for heat shock and storage proteins. Furthermore, we observed a diapause-dependent switch in enzymes involved in glycerol synthesis and a vastly changed capacity for protein synthesis and degradation. The abundance of structural proteins and proteins involved in protein synthesis decreased with increasing diapause duration, while the abundance of proteins likely involved in diapause maintenance (e.g. ferritins) increased. Only few potentially diapause-specific proteins were identified suggesting that diapause in Nasonia relies to a large extent on a modulation of pre-existing pathways. Studying a diapause syndrome on a proteomic level rather than isolated pathways or physiological networks, has proven to be an efficient and successful avenue to understand molecular mechanisms involved in diapause.  相似文献   

20.
Yeasts and especially Pichia pastoris (syn Komagataella spp.) are popular microbial expression systems for the production of recombinant proteins. One of the key advantages of yeast host systems is their ability to secrete the recombinant protein into the culture media. However, secretion of some recombinant proteins is less efficient. These proteins include antibody fragments such as Fabs or scFvs. We have recently identified translocation of nascent Fab fragments from the cytosol into the endoplasmic reticulum (ER) as one major bottleneck. Conceptually, this bottleneck requires engineering to increase the flux of recombinant proteins at the translocation step by pushing on the cytosolic side and pulling on the ER side. This engineering strategy is well-known in the field of metabolic engineering. To apply the push-and-pull strategy to recombinant protein secretion, we chose to modulate the cytosolic and ER Hsp70 cycles, which have a key impact on the translocation process. After identifying the relevant candidate factors of the Hsp70 cycles, we combined the push-and-pull factors in a single strain and achieved synergistic effects for antibody fragment secretion. With this concept we were able to successfully engineer strains and improve protein secretion up to 5-fold for different model protein classes. Overall, titers of more than 1.3 g/L Fab and scFv were reached in bioreactor cultivations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号