首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Q fever is a worldwide zoonotic disease caused by Coxiella burnetii. Epidemiologically, animals are considered reservoirs and humans incidental hosts.

Methodology/Principal Findings

We investigated Q fever in rural Senegal. Human samples (e.g., sera, saliva, breast milk, feces) were screened in the generally healthy population of two villages of the Sine-Saloum region. Ticks were collected in four regions. Seroprevalence was studied by immunofluorescence, and all other samples were tested by two qPCR systems for detection of C. burnetii. Positive samples were genotyped (multispacer typing) by amplification and sequencing of three spacers. Strains were isolated by cell culture. We found that the seroprevalence may be as high as 24.5% (59 of 238 studied) in Dielmo village. We identified spontaneous excretion of C. burnetii by humans through faeces and milk. Hard and soft ticks (8 species) were infected in 0–37.6%. We identified three genotypes of C. burnetii. The previously identified genotype 6 was the most common in ticks in all studied regions and the only one found in human samples. Three strains of genotype 6 of C. burnetii were also recovered from soft tick Ornithodoros sonrai. Two other genotypes found in ticks, 35 and 36, were identified for the first time.

Conclusions/Significance

Q fever should be considered a significant public health threat in Senegal. Humans, similar to other mammals, may continuously excrete C. burnetii.  相似文献   

3.
Normal aging is associated with cognitive decline. Evidence indicates that large-scale brain networks are affected by aging; however, it has not been established whether aging has equivalent effects on specific large-scale networks. In the present study, 40 healthy subjects including 22 older (aged 60–80 years) and 18 younger (aged 22–33 years) adults underwent resting-state functional MRI scanning. Four canonical resting-state networks, including the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN) and salience network, were extracted, and the functional connectivities in these canonical networks were compared between the younger and older groups. We found distinct, disruptive alterations present in the large-scale aging-related resting brain networks: the ECN was affected the most, followed by the DAN. However, the DMN and salience networks showed limited functional connectivity disruption. The visual network served as a control and was similarly preserved in both groups. Our findings suggest that the aged brain is characterized by selective vulnerability in large-scale brain networks. These results could help improve our understanding of the mechanism of degeneration in the aging brain. Additional work is warranted to determine whether selective alterations in the intrinsic networks are related to impairments in behavioral performance.  相似文献   

4.
5.
Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum), and two C4 grasses, Japanese stilt grass (Microstegium vimineum) and bahia grass (Paspalum notatum). Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.  相似文献   

6.
7.
8.
In this study we describe the reproductive phenotypes of a novel mouse model in which Cre-mediated deletion of ERα is regulated by the aP2 (fatty acid binding protein 4) promoter. ERα-floxed mice were crossed with transgenic mice expressing Cre-recombinase under the control of the aP2 promoter to generate aP2-Cre/ERαflox/flox mice. As expected, ERα mRNA levels were reduced in adipose tissue, but in addition we also detected an 80% reduction of ERα levels in the hypothalamus of aP2-Cre/ERαflox/flox mice. Phenotypic analysis revealed that aP2-Cre/ERαflox/flox female mice were infertile. In line with this, aP2-Cre/ERαflox/flox female mice did not cycle and presented 3.8-fold elevated estrogen levels. That elevated estrogen levels were associated with increased estrogen signaling was evidenced by increased mRNA levels of the estrogen-regulated genes lactoferrin and aquaporin 5 in the uterus. Furthermore, aP2-Cre/ERαflox/flox female mice showed an accumulation of intra-uterine fluid, hydrometra, without overt indications for causative anatomical anomalies. However, the vagina and cervix displayed advanced keratosis with abnormal quantities of accumulating squamous epithelial cells suggesting functional obstruction by keratin plugs. Importantly, treatment of aP2-Cre/ERαflox/flox mice with the aromatase inhibitor Letrozole caused regression of the hydrometra phenotype linking increased estrogen levels to the observed phenotype. We propose that in aP2-Cre/ERαflox/flox mice, increased serum estrogen levels cause over-stimulation in the uterus and genital tracts resulting in hydrometra and vaginal obstruction.  相似文献   

9.
10.
Abstract: A radioimmunoassay (RIA) using 125I-labeled antigen was developed for the quantitative determination of two goldfish brain proteins (ependymins β and γ). The proteins were isolated from the cerebrospinal fluid (CSF) and cells of the ependymal zone surrounding goldfish brain ventricles. The turnover rates of β and γ were previously shown to be specifically enhanced after the animals successfully acquired a new pattern of swimming behavior. Femtomole quantities of ependymin β were measurable by the RIA. In applications of the assay, β and γ ependymins were found to have common immunological properties, since 125I-β-antigen bound to antibody could be displaced by unlabeled ependymin γ as well as ependymin β but not by a variety of other proteins including several purified glycoproteins isolated from goldfish brain. The ependymins were shown to constitute 14% of the total protein content of the brain extracellular fluid and also to be present as a minor component of the serum proteins (0.3%). Ependymins β and γ have an immunological reactivity in these fractions that can be increased by a factor of 30 on heating. The data suggest that the antigenicity of the molecules is highly masked, and that it may require some unraveling of the quaternary structure of the proteins before maximal interaction with the antisera becomes possible.  相似文献   

11.
Dictyostelium discoideum amoebae have been used extensively to study the structure and dynamics of the endocytic pathway. Here, we show that while the general structure of the endocytic pathway is maintained in starved cells, its dynamics rapidly slow down. In addition, analysis of apm3 and lvsB mutants reveals that the functional organization of the endocytic pathway is profoundly modified upon starvation. Indeed, in these mutant cells, some of the defects observed in rich medium persist in starved cells, notably an abnormally slow transfer of endocytosed material between endocytic compartments. Other parameters, such as endocytosis of the fluid phase or the rate of fusion of postlysosomes to the cell surface, vary dramatically upon starvation. Studying the endocytic pathway in starved cells can provide a different perspective, allowing the primary (invariant) defects resulting from specific mutations to be distinguished from their secondary (conditional) consequences.Dictyostelium discoideum is a widely used model organism for studying the organization and function of the endocytic pathway. In Dictyostelium, the organization of the endocytic pathway is similar to that in higher eukaryotes. The pathway in Dictyostelium can be divided into four steps (see Fig. S1 in the supplemental material): uptake at the plasma membrane of particles and medium, transfer through early acidic endocytic compartments (lysosomes), passage into less acidic postlysosomes (PLs), and finally, exocytosis of undigested materials (17, 20). Thus, Dictyostelium recapitulates many of the functions of the endocytic pathway in mammalian cells, including some features observed in most cell types (lysosome biogenesis) and some observed only in specialized cells (phagocytosis, macropinocytosis, and lysosome secretion).Dictyostelium amoebae live in the soil, where they feed by ingesting and digesting other microorganisms. In addition, axenic laboratory strains can macropinocytose medium to ensure their growth. Accordingly, both in natural situations and in laboratory settings, the endocytic pathway plays a key role in the acquisition of nutrients by Dictyostelium cells. In agreement with this notion, several observations suggest that the physiology of the endocytic pathway is sensitive to nutrient availability. In particular, starvation induces secretion of lysosomal enzymes by an unknown mechanism (11). The morphology of the endocytic pathway is also sensitive to nutritional cues, as shown for example by the observation that formation of multilamellar endosomes is enhanced in cells fed with bacteria (18).Here, we analyzed the effect of starvation on the organization as well as the dynamics of the endocytic pathway. We found that, while the overall organization was not extensively modified in starved cells, the dynamics of endocytic compartments were altered. Moreover, analysis of two specific knockout mutants, the apm3 (6) and lvsB (8) strains, revealed that their phenotype was profoundly altered upon starvation, providing further insight about the role of Apm3 and LvsB in the endocytic pathway.  相似文献   

12.
Hepatic fibrosis induced by egg deposition is the most serious pathology associated with chronic schistosomiasis, in which the hepatic stellate cell (HSC) plays a central role. While the effect of Schistosoma mansoni eggs on the fibrogenic phenotype of HSCs has been investigated, studies determining the effect of eggs of S . japonicum on HSCs are lacking. Disease caused by S . japonicum is much more severe than that resulting from S. mansoni infection so it is important to compare the pathologies caused by these two parasites, to determine whether this phenotype is due to the species interacting differently with the mammalian host. Accordingly, we investigated the effect of S japonicum eggs on the human HSC cell line, LX-2, with and without TGF-β (Transforming Growth Factor beta) co-treatment, so as to determine the impact on genes associated with fibrogenesis, inflammation and matrix re-organisation. Activation status of HSCs was assessed by αSMA (Alpha Smooth Muscle Actin) immunofluorescence, accumulation of Oil Red O-stained lipid droplets and the relative expression of selected genes associated with activation. The fibrogenic phenotype of HSCs was inhibited by the presence of eggs both with or without TGF-β treatment, as evidenced by a lack of αSMA staining and reduced gene expression of αSMA and Col1A1 (Collagen 1A1). Unlike S. mansoni-treated cells, however, expression of the quiescent HSC marker PPAR-γ (Peroxisome Proliferator-Activated Receptor gamma) was not increased, nor was there accumulation of lipid droplets. In contrast, S . japonicum eggs induced the mRNA expression of MMP-9 (Matrix Metalloproteinase 9), CCL2 (Chemokine (C-C motif) Ligand 2) and IL-6 (Interleukin 6) in HSCs indicating that rather than inducing complete HSC quiescence, the eggs induced a proinflammatory phenotype. These results suggest HSCs in close proximity to S . japonicum eggs in the liver may play a role in the proinflammatory regulation of hepatic granuloma formation.  相似文献   

13.
Myopia is the most common vision disorder and the leading cause of visual impairment worldwide. However, gene variants identified to date explain less than 10% of the variance in refractive error, leaving the majority of heritability unexplained (“missing heritability”). Previously, we reported that expression of APLP2 was strongly associated with myopia in a primate model. Here, we found that low-frequency variants near the 5’-end of APLP2 were associated with refractive error in a prospective UK birth cohort (n = 3,819 children; top SNP rs188663068, p = 5.0 × 10−4) and a CREAM consortium panel (n = 45,756 adults; top SNP rs7127037, p = 6.6 × 10−3). These variants showed evidence of differential effect on childhood longitudinal refractive error trajectories depending on time spent reading (gene x time spent reading x age interaction, p = 4.0 × 10−3). Furthermore, Aplp2 knockout mice developed high degrees of hyperopia (+11.5 ± 2.2 D, p < 1.0 × 10−4) compared to both heterozygous (-0.8 ± 2.0 D, p < 1.0 × 10−4) and wild-type (+0.3 ± 2.2 D, p < 1.0 × 10−4) littermates and exhibited a dose-dependent reduction in susceptibility to environmentally induced myopia (F(2, 33) = 191.0, p < 1.0 × 10−4). This phenotype was associated with reduced contrast sensitivity (F(12, 120) = 3.6, p = 1.5 × 10−4) and changes in the electrophysiological properties of retinal amacrine cells, which expressed Aplp2. This work identifies APLP2 as one of the “missing” myopia genes, demonstrating the importance of a low-frequency gene variant in the development of human myopia. It also demonstrates an important role for APLP2 in refractive development in mice and humans, suggesting a high level of evolutionary conservation of the signaling pathways underlying refractive eye development.  相似文献   

14.
The interaction between blood-borne pathogens and fibrinolysis is one of the most important mechanisms that mediate invasion and the establishment of infectious agents in their hosts. However, overproduction of plasmin (final product of the route) has been related in other contexts to proliferation and migration of the arterial wall cells and degradation of the extracellular matrix. We have recently identified fibrinolysis-activating antigens from Dirofilaria immitis, a blood-borne parasite whose key pathological event (proliferative endarteritis) is produced by similar mechanisms to those indicated above. The objective of this work is to study how two of this antigens [actin (ACT) and fructose-bisphosphate aldolase (FBAL)] highly conserved in pathogens, activate fibrinolysis and to establish a relationship between this activation and the development of proliferative endarteritis during cardiopulmonary dirofilariasis. We demonstrate that both proteins bind plasminogen, enhance plasmin generation, stimulate the expression of the fibrinolytic activators tPA and uPA in endothelial cell cultures and are located on the surface of the worm in contact with the host’s blood. ELISA, western blot and immunofluorescence techniques were employed for this purpose. Additionally, the implication of lysine residues in this interaction was analyzed by bioinformatics. The involvement of plasmin generated by the ACT/FBAL and plasminogen binding in cell proliferation and migration, and degradation of the extracellular matrix were shown in an “in vitro” model of endothelial and smooth muscle cells in culture. The obtained results indicate that ACT and FBAL from D. immitis activate fibrinolysis, which could be used by the parasite like a survival mechanism to avoid the clot formation. However, long-term overproduction of plasmin can trigger pathological events similar to those described in the emergence of proliferative endarteritis. Due to the high degree of evolutionary conservation of these antigens, similar processes may occur in other blood-borne pathogens.  相似文献   

15.
16.

Background

A significant fraction of the more than 18 million scientific articles currently indexed in the PubMed database are related to immune responses to various agents, including infectious microbes, autoantigens, allergens, transplants, cancer antigens and others. The Immune Epitope Database (IEDB) is an online repository that catalogs immune epitope reactivity data derived from articles listed in the National Library of Medicine PubMed database. The IEDB is maintained and continually updated by monitoring PubMed for new, potentially relevant references.

Methodology

Herein we detail the classification of all epitope-specific literature in over 100 different immunological domains representing Infectious Diseases and Microbes, Autoimmunity, Allergy, Transplantation and Cancer. The relative number of references in each category reflects past and present areas of research on immune reactivities. In addition to describing the overall landscape of data distribution, this particular characterization of the epitope reference data also allows for the exploration of possible correlations with global disease morbidity and mortality data.

Conclusions/Significance

While in most cases diseases associated with high morbidity and mortality rates were amongst the most studied, a number of high impact diseases such as dengue, Schistosoma, HSV-2, B. pertussis and Chlamydia trachoma, were found to have very little coverage. The data analyzed in this fashion represents the first estimate of how reported immunological data corresponds to disease-related morbidity and mortality, and confirms significant discrepancies in the overall research foci versus disease burden, thus identifying important gaps to be pursued by future research. These findings may also provide a justification for redirecting a portion of research funds into some of the underfunded, critical disease areas.  相似文献   

17.
18.
The neuron-specific K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the fast hyperpolarizing actions of inhibitory neurotransmitters. The KCC2 gene codes for two isoforms, KCC2a and KCC2b, which differ in their N termini. The relative expression and cellular distribution of the two KCC2 protein isoforms are unknown. Here, we characterize an antibody against the KCC2a isoform and show that a previously described antibody against KCC2 is specific for the KCC2b isoform (Hubner, C. A., Stein, V., Hermans-Borgmeyer, I., Meyer, T., Ballanyi, K., and Jentsch, T. J. (2001) Neuron 30, 515–524). Immunostaining of dissociated hippocampal cultures confirms that both KCC2 isoforms are neuron-specific. Immunoblot analysis indicates that KCC2b is the major KCC2 isoform in the adult brain, whereas in the neonatal mouse central nervous system, half of total KCC2 protein is KCC2a. At this stage, the two KCC2 isoforms are largely colocalized and show similar patterns of distribution in the brain. When coexpressed in HEK293 cells, KCC2a and KCC2b proteins form heteromeric complexes. Moreover, the two isoforms can be coimmunoprecipitated from the neonatal brain, suggesting the presence of endogenous KCC2a-KCC2b heteromers. Consistent with this, native gel analysis shows that a substantial part of endogenous KCC2 isoforms in the neonatal brain constitute dimers.The neuron-specific K+-Cl- cotransporter KCC2 extrudes potassium and chloride ions from neurons, thus maintaining the low intracellular chloride concentration [Cl]i necessary for the fast hyperpolarizing actions of inhibitory neurotransmitters γ-aminobutyric acid (GABA) and glycine (1). KCC2 is an ∼140-kDa plasma membrane protein that belongs to the cation chloride cotransporter (CCC)4 family (2, 3). CCCs, including KCC2, are thought to exist in the plasma membrane as functional oligomers, although the mechanisms whereby oligomerization affects their transport activity are unclear (48).We have recently shown that the KCC2 gene (alias Slc12a5) generates two mRNAs, KCC2a and KCC2b, by an alternative promoter and first exon usage (9). The difference between the KCC2a and KCC2b proteins lies in the most N-terminal part; the 40 unique amino acids in KCC2a include a putative binding sequence for the Ste20-related proline-alanine-rich kinase (SPAK). KCC2 null mutant mice deficient for both KCC2 isoforms show a disrupted breathing rhythm and die immediately after birth (10, 11), whereas selective KCC2b isoform knock-out mice exhibit spontaneous seizures but can survive up to 3 weeks after birth (9, 12). Thus, KCC2a obviously supports some vital functions of lower brain structures.In general, KCC2 expression in the CNS follows neuronal maturation; it is first detected in the postmitotic neurons of the spinal cord and brainstem and is then gradually increased in higher brain structures (13, 14). Our previous work has shown that during postnatal development, KCC2a mRNA expression remains relatively constant, whereas KCC2b mRNA is strongly up-regulated in the cortex during postnatal development (9). This indicates that KCC2b is responsible for the developmental shift from depolarizing to hyperpolarizing GABAergic responses.Here, we study the relative expression and cellular distribution of KCC2a and KCC2b proteins in the mouse brain. We characterize a new antibody specific for the KCC2a isoform and demonstrate that a previously described antibody against KCC2 (11) is specific for the KCC2b isoform. The relative expression of the KCC2 protein isoforms determined by immunoblot analysis correlates well with their mRNA levels (9). KCC2a and KCC2b proteins have a similar level and pattern of expression in the neonatal mouse brain and are colocalized in most neurons in non-cortical lower brain areas. Coimmunoprecipitation (coIP) experiments and coexpression followed by native gel analysis indicate that KCC2a-KCC2b heteromers can form in vitro and may exist in vivo.  相似文献   

19.
Transformation frequencies of a mariner-based transposon system in Rickettsia rickettsii were determined using a plaque assay system for enumeration and isolation of mutants. Sequence analysis of insertion sites in both R. rickettsii and R. prowazekii indicated that insertions were random. Transposon mutagenesis provides a useful tool for rickettsial research.  相似文献   

20.
We describe a novel spontaneous mouse mutant, laggard (lag), characterized by a flat head, motor impairment and growth retardation. The mutation is inherited as an autosomal recessive trait, and lag/lag mice suffer from cerebellar ataxia and die before weaning. lag/lag mice exhibit a dramatic reduction in brain size and slender optic nerves. By positional cloning, we identify a splice site mutation in Kif14. Transgenic complementation with wild-type Kif14-cDNA alleviates ataxic phenotype in lag/lag mice. To further confirm that the causative gene is Kif14, we generate Kif14 knockout mice and find that all of the phenotypes of Kif14 knockout mice are similar to those of lag/lag mice. The main morphological abnormality of lag/lag mouse is severe hypomyelination in central nervous system. The lag/lag mice express an array of myelin-related genes at significantly reduced levels. The disrupted cytoarchitecture of the cerebellar and cerebral cortices appears to result from apoptotic cell death. Thus, we conclude that Kif14 is essential for the generation and maturation of late-developing structures such as the myelin sheath, cerebellar and cerebral cortices. So far, no Kif14-deficient mice or mutation in Kif14 has ever been reported and we firstly define the biological function of Kif14 in vivo. The discovery of mammalian models, laggard, has opened up horizons for researchers to add more knowledge regarding the etiology and pathology of brain malformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号