首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Meiosis halves the chromosome number because its two divisions follow a single round of DNA replication. This process involves two cell transitions, the transition from prophase to the first meiotic division (meiosis I) and the unique meiosis I to meiosis II transition. We show here that the A-type cyclin CYCA1;2/TAM plays a major role in both transitions in Arabidopsis. A series of tam mutants failed to enter meiosis II and thus produced diploid spores and functional diploid gametes. These diploid gametes had a recombined genotype produced through the single meiosis I division. In addition, by combining the tam-2 mutation with AtSpo11-1 and Atrec8, we obtained plants producing diploid gametes through a mitotic-like division that were genetically identical to their parents. Thus tam alleles displayed phenotypes very similar to that of the previously described osd1 mutant. Combining tam and osd1 mutations leads to a failure in the prophase to meiosis I transition during male meiosis and to the production of tetraploid spores and gametes. This suggests that TAM and OSD1 are involved in the control of both meiotic transitions.  相似文献   

3.

Background  

Polyploidy has long been recognized as playing an important role in plant evolution. In flowering plants, the major route of polyploidization is suggested to be sexual through gametes with somatic chromosome number (2n). Parallel Spindle1 gene in Arabidopsis thaliana (AtPS1) was recently demonstrated to control spindle orientation in the 2nd division of meiosis and, when mutated, to induce 2n pollen. Interestingly, AtPS1 encodes a protein with a FHA domain and PINc domain putatively involved in RNA decay (i.e. Nonsense Mediated mRNA Decay). In potato, 2n pollen depending on parallel spindles was described long time ago but the responsible gene has never been isolated. The knowledge derived from AtPS1 as well as the availability of genome sequences makes it possible to isolate potato PSLike (PSL) and to highlight the evolution of PSL family in plants.  相似文献   

4.
Meiosis is essential for eukaryotic sexual reproduction and plant fertility, and crossovers (COs) are essential for meiosis and the formation of new allelic combinations in gametes. In this study, we report the isolation of a meiotic gene, OsSHOC1, and the identification of its partner, OsPTD1. Osshoc1 was sterile both in male and female gametophytes, and it showed a striking reduction in the number of meiotic COs, indicating that OsSHOC1 was required for normal CO formation. Further investigations showed that OsSHOC1 physically interacted with OsPTD1 and that the latter was also required for normal CO formation and plant fertility. Additionally, the expression profiles of both genes were consistent with their functions. Our results suggest that OsSHOC1 and OsPTD1 are essential for rice fertility and CO formation, possibly by stabilizing the recombinant intermediates during meiosis.  相似文献   

5.
In contrast to animals, the plant male germline is established after meiosis in distinctive haploid structures, termed pollen grains. The germline arises by a distinct asymmetric division of the meiotic products . The fates of the resulting vegetative and generative cells are distinct. In contrast to the larger vegetative cell, arrested in the G1 phase of the cell cycle, the smaller generative cell divides once to produce the two male gametes or sperm cells. Sperm cells are delivered to the female gametes by the pollen tube, which develops from the vegetative cell. In spite of recent efforts to understand pollen development , the molecular pathway controlling sperm-cell ontogenesis is unknown. Here, we present the isolation of DUO1, a novel R2R3 MYB gene of Arabidopsis, as the first gene shown to control male gamete formation in plants. DUO1 is specifically expressed in the male germline, and DUO1 protein accumulates in sperm-cell nuclei. Mutations in DUO1 produce a single larger diploid sperm cell unable to perform fertilization. DUO1 appears to be evolutionarily conserved in several plant species and defines a new subfamily of pollen-specific MYB genes.  相似文献   

6.
The intercellular translocation of chromatin material along with other cytoplasmic contents among the proximate meiocytes lying in close contact with each other commonly referred as cytomixis was reported during microsporogenesis in Phaseolus vulgaris L., a member of the family Fabaceae. The phenomenon of cytomixis was observed at three administered doses of gamma rays viz. 100, 200, and 300 Gy respectively in the diploid plants of Phaseolus vulgaris L. The gamma rays irradiated plants showed the characteristic feature of inter-meiocyte chromatin/chromosomes transmigration through various means such as channel formation, beak formation or by direct adhesion between the PMC’s (Pollen mother cells). The present study also reports the first instance of syncyte formation induced via cytomictic transmigration in Phaseolus vulgaris L. Though the frequency of syncyte formation was rather low yet these could play a significant role in plant evolution. It is speculated that syncyte enhances the ploidy level of plants by forming 2n gametes and may lead to the production of polyploid plants. The phenomenon of cytomixis shows a gradual inclination along with the increasing treatment doses of gamma rays. The preponderance of cytomixis was more frequent during meiosis I as compared to meiosis II. An interesting feature noticed during the present study was the channel formation among the microspores and fusion among the tetrads due to cell wall dissolution. The impact of this phenomenon is also visible on the development of post-meiotic products. The formation of heterosized pollen grains; a deviation from the normal pollen grains has also been reported. The production of gametes with unbalanced chromosomes is of utmost importance and should be given more attention in future studies as they possess the capability of inducing variations at the genomic level and can be further utilized in the improvement of germplasm.  相似文献   

7.
Although polyploids are common among plants and some animals, polyploidization often causes reproductive failure. Triploids, in particular, are characterized by the problems of chromosomal pairing and segregation during meiosis, which may cause aneuploid gametes and results in sterility. Thus, they are generally considered to reproduce only asexually. In the case of the Platyhelminthes Dugesia ryukyuensis, populations with triploid karyotypes are normally found in nature as both fissiparous and oviparous triploids. Fissiparous triploids can also be experimentally sexualized if they are fed sexual planarians, developing both gonads and other reproductive organs. Fully sexualized worms begin reproducing by copulation rather than fission. In this study, we examined the genotypes of the offspring obtained by breeding sexualized triploids and found that the offspring inherited genes from both parents, i.e., they reproduced truly bisexually. Furthermore, meiotic chromosome behavior in triploid sexualized planarians differed significantly between male and female germ lines, in that female germ line cells remained triploid until prophase I, whereas male germ line cells appeared to become diploid before entry into meiosis. Oocytes at the late diplotene stage contained not only paired bivalents but also unpaired univalents that were suggested to produce diploid eggs if they remained in subsequent processes. Triploid planarians may therefore form euploid gametes by different meiotic systems in female and male germ lines and thus are be able to reproduce sexually in contrast to many other triploid organisms.  相似文献   

8.
9.
Cell cycle control must be modified at meiosis to allow two divisions to follow a single round of DNA replication, resulting in ploidy reduction. The mechanisms that ensure meiosis termination at the end of the second and not at the end of first division are poorly understood. We show here that Arabidopsis thaliana TDM1, which has been previously shown to be essential for meiotic termination, interacts directly with the Anaphase-Promoting Complex. Further, mutations in TDM1 in a conserved putative Cyclin-Dependant Kinase (CDK) phosphorylation site (T16-P17) dominantly provoked premature meiosis termination after the first division, and the production of diploid spores and gametes. The CDKA;1-CYCA1.2/TAM complex, which is required to prevent premature meiotic exit, phosphorylated TDM1 at T16 in vitro. Finally, while CYCA1;2/TAM was previously shown to be expressed only at meiosis I, TDM1 is present throughout meiosis. These data, together with epistasis analysis, lead us to propose that TDM1 is an APC/C component whose function is to ensure meiosis termination at the end of meiosis II, and whose activity is inhibited at meiosis I by CDKA;1-TAM-mediated phosphorylation to prevent premature meiotic exit. This provides a molecular mechanism for the differential decision of performing an additional round of division, or not, at the end of meiosis I and II, respectively.  相似文献   

10.
BACKGROUND AND AIMS: Gametophytic apomixis is regularly associated with polyploidy. It has been hypothesized that apomixis is not present in diploid plants because of a pleiotropic lethal effect associated with monoploid gametes. Rare apomictic triploid plants for Paspalum notatum and P. simplex, which usually have sexual diploid and apomictic tetraploid races, were acquired. These triploids normally produce male gametes through meiosis with a range of chromosome numbers from monoploid (n = 10) to diploid (n = 20). The patterns of apomixis transmission in Paspalum were investigated in relation to the ploidy levels of gametes. METHODS: Intraspecific crosses were made between sexual diploid, triploid and tetraploid plants as female parents and apomictic triploid plants as male parents. Apomictic progeny were identified by using molecular markers completely linked to apomixis and the analysis of mature embryo sacs. The chromosome number of the male gamete was inferred from chromosome counts of each progeny. KEY RESULTS: The chromosome numbers of the progeny indicated that the chromosome input of male gametes depended on the chromosome number of the female gamete. The apomictic trait was not transmitted through monoploid gametes, at least when the progeny was diploid. Diploid or near-diploid gametes transmitted apomixis at very low rates. CONCLUSIONS: Since male monoploid gametes usually failed to form polyploid progenies, for example triploids after 4x x 3x crosses, it was not possible to determine whether apomixis could segregate in polyploid progenies by means of monoploid gametes.  相似文献   

11.
We have analysed the level of accumulation of alpha- and beta-tubulin polypeptides in flowers collected from different meiotic mutants of alfalfa (Medicago sativa L.). The H33 mutant previously identified as a producer of male and female gametes with the somatic chromosome number (2n gametes) as a result of defective spindle orientation or, more rarely, abnormal cytokinesis, showed a higher level of alpha- and beta-tubulin compared to control diploid plants and approximately the same level as control tetraploid plants. A higher level of tubulin was likewise observed in diploid plants displaying abnormalities in spindle orientation and cytokinesis, which had gone through 3-4 cycles of phenotypic recurrent selection to increase 2n gamete production. A similar analysis was performed on another class of Medicago meiotic mutants characterized by production of 4n pollen (jumbo pollen, due to the absence of cytokinesis at the end of meiosis) and 2n eggs. Again, the level of alpha- and beta-tubulin was found to be higher in the mutants than in diploid controls. We conclude that meiotic defects, such as abnormal spindle orientation or cytokinesis leading to the formation of 2n gametes, determine an increased level of tubulin, the main constituent of plant microtubules (MTs).  相似文献   

12.
The DEFECTIVE EMBRYO AND MERISTEMS 1 (DEM1) gene encodes a protein of unknown biochemical function required for meristem formation and seedling development in tomato, but it was unclear whether DEM1’s primary role was in cell division or alternatively, in defining the identity of meristematic cells. Genome sequence analysis indicates that flowering plants possess at least two DEM genes. Arabidopsis has two DEM genes, DEM1 and DEM2, which we show are expressed in developing embryos and meristems in a punctate pattern that is typical of genes involved in cell division. Homozygous dem1 dem2 double mutants were not recovered, and plants carrying a single functional DEM1 allele and no functional copies of DEM2, i.e. DEM1/dem1 dem2/dem2 plants, exhibit normal development through to the time of flowering but during male reproductive development, chromosomes fail to align on the metaphase plate at meiosis II and result in abnormal numbers of daughter cells following meiosis. Additionally, these plants show defects in both pollen and embryo sac development, and produce defective male and female gametes. In contrast, dem1/dem1 DEM2/dem2 plants showed normal levels of fertility, indicating that DEM2 plays a more important role than DEM1 in gamete viability. The increased importance of DEM2 in gamete viability correlated with higher mRNA levels of DEM2 compared to DEM1 in most tissues examined and particularly in the vegetative shoot apex, developing siliques, pollen and sperm. We also demonstrate that gamete viability depends not only on the number of functional DEM alleles inherited following meiosis, but also on the number of functional DEM alleles in the parent plant that undergoes meiosis. Furthermore, DEM1 interacts with RAS-RELATED NUCLEAR PROTEIN 1 (RAN1) in yeast two-hybrid and pull-down binding assays, and we show that fluorescent proteins fused to DEM1 and RAN1 co-localize transiently during male meiosis and pollen development. In eukaryotes, RAN is a highly conserved GTPase that plays key roles in cell cycle progression, spindle assembly during cell division, reformation of the nuclear envelope following cell division, and nucleocytoplasmic transport. Our results demonstrate that DEM proteins play an essential role in cell division in plants, most likely through an interaction with RAN1.  相似文献   

13.
Two hallmark features of meiosis are i) the formation of crossovers (COs) between homologs and ii) the production of genetically-unique haploid spores that will fuse to restore the somatic ploidy level upon fertilization. In this study we analysed meiosis in haploid Arabidopsis thaliana plants and a range of haploid mutants to understand how meiosis progresses without a homolog. Extremely low chiasma frequency and very limited synapsis occurred in wild-type haploids. The resulting univalents segregated in two uneven groups at the first division, and sister chromatids segregated to opposite poles at the second division, leading to the production of unbalanced spores. DNA double-strand breaks that initiate meiotic recombination were formed, but in half the number compared to diploid meiosis. They were repaired in a RAD51- and REC8-dependent manner, but independently of DMC1, presumably using the sister chromatid as a template. Additionally, turning meiosis into mitosis (MiMe genotype) in haploids resulted in the production of balanced haploid gametes and restoration of fertility. The variability of the effect on meiosis of the absence of homologous chromosomes in different organisms is then discussed.  相似文献   

14.
During sexual reproduction, the zygote must inherit exactly one centrosome (spindle pole body [SPB] in yeasts) from the gametes, which then duplicates and assembles a bipolar spindle that supports the subsequent cell division. Here, we show that in the fission yeast Schizosaccharomyces pombe, the fusion of SPBs from the gametes is blocked in polyploid zygotes. As a result, the polyploid zygotes cannot proliferate mitotically and frequently form supernumerary SPBs during subsequent meiosis, which leads to multipolar nuclear divisions and the generation of extra spores. The blockage of SPB fusion is caused by persistent SPB localization of Pcp1, which, in normal diploid zygotic meiosis, exhibits a dynamic association with the SPB. Artificially induced constitutive localization of Pcp1 on the SPB is sufficient to cause blockage of SPB fusion and formation of extra spores in diploids. Thus, Pcp1-dependent SPB quantity control is crucial for sexual reproduction and ploidy homeostasis in fission yeast.  相似文献   

15.
In sexually reproducing species, fertilization brings together in the zygote the genomes of the female and male gametes. In several animal species, female gametes are able to initiate embryogenesis in the absence of fertilization, a process referred to as parthenogenesis. Parthenogenesis has been engineered in mice by tampering with expression of loci under epigenetic controls [1]. In plants, embryo development in the absence of fertilization has been reported in cases in which meiosis is bypassed leading to apomictic development, and parthenogenetic development from a reduced egg cell has been only reported in rare accidental cases [2]. We report that single mutations in the gene MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) are able to initiate parthenogenetic development of the embryo in Arabidopsis thaliana from eggs cells produced by meiosis. The WD40 repeat protein MSI1 is part of the evolutionarily conserved Polycomb group (PcG) chromatin-remodeling complexes [3] and is homologous to the Retinoblastoma binding proteins P55 in Drosophila and RbAp48 in mammals [4]. Nonviable haploid parthenogenetic msi1 embryos express molecular markers and polarity similar to diploid wild-type (wt) embryos produced by fertilization, indicating a maternal contribution to early patterning of the Arabidopsis embryo.  相似文献   

16.
17.
In flowering plants, male gametes arise via meiosis of diploid pollen mother cells followed by two rounds of mitotic division. Haploid microspores undergo polar nuclear migration and asymmetric division at pollen mitosis I to segregate the male germline, followed by division of the germ cell to generate a pair of sperm cells. We previously reported two gemini pollen (gem) mutants that produced twin‐celled pollen arising from polarity and cytokinesis defects at pollen mitosis I in Arabidopsis. Here, we report an independent mutant, gem3, with a similar division phenotype and severe genetic transmission defects through pollen. Cytological analyses revealed that gem3 disrupts cell division during male meiosis, at pollen mitosis I and during female gametophyte development. We show that gem3 is a hypomorphic allele (aug6‐1) of AUGMIN subunit 6, encoding a conserved component in the augmin complex, which mediates microtubule (MT)‐dependent MT nucleation in acentrosomal cells. We show that MT arrays are disturbed in gem3/aug6‐1 during male meiosis and pollen mitosis I using fluorescent MT‐markers. Our results demonstrate a broad role for the augmin complex in MT organization during sexual reproduction, and highlight gem3/aug6‐1 mutants as a valuable tool for the investigation of augmin‐dependent MT nucleation and dynamics in plant cells.  相似文献   

18.
Formation of polyploid organisms by fertilization of unreduced gametes in meiotic mutants is believed to be a common phenomenon in species evolution. However, not well understood is how species in nature generally exist as haploid and diploid organisms in a long evolutionary time while polyploidization must have repeatedly occurred via meiotic mutations. Here, we show that the ploidy increased for two consecutive generations due to unreduced but viable gametes in the Arabidopsis cyclin a1;2‐2 (also named tardy asynchronous meiosis‐2) mutant, but the resultant octaploid plants produced progeny of either the same or reduced ploidy via genomic reductions during meiosis and pollen mitosis. Ploidy reductions through sexual reproduction were also observed in independently generated artificial octaploid and hexaploid Arabidopsis plants. These results demonstrate that octaploid is likely the maximal ploidy produced through sexual reproduction in Arabidopsis. The polyploidy‐associated genomic instability may be a general phenomenon that constrains ploidy levels in species evolution. genesis 48:254–263, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Whole-genome duplication through the formation of diploid gametes is a major route for polyploidization, speciation, and diversification in plants. The prevalence of polyploids in adverse climates led us to hypothesize that abiotic stress conditions can induce or stimulate diploid gamete production. In this study, we show that short periods of cold stress induce the production of diploid and polyploid pollen in Arabidopsis (Arabidopsis thaliana). Using a combination of cytological and genetic analyses, we demonstrate that cold stress alters the formation of radial microtubule arrays at telophase II and consequently leads to defects in postmeiotic cytokinesis and cell wall formation. As a result, cold-stressed male meiosis generates triads, dyads, and monads that contain binuclear and polynuclear microspores. Fusion of nuclei in binuclear and polynuclear microspores occurs spontaneously before pollen mitosis I and eventually leads to the formation of diploid and polyploid pollen grains. Using segregation analyses, we also found that the majority of cold-induced dyads and triads are genetically equivalent to a second division restitution and produce diploid gametes that are highly homozygous. In a broader perspective, these findings offer insights into the fundamental mechanisms that regulate male gametogenesis in plants and demonstrate that their sensitivity to environmental stress has evolutionary significance and agronomic relevance in terms of polyploidization.The spontaneous formation of polyploid species through whole-genome duplication is a major force driving diversification and speciation in plant evolution (Wang et al., 2004). The redundant genomic material produced by polyploidization provides genotypic plasticity that facilitates adaptation and confers enhanced competitiveness compared with diploid progenitors (Adams and Wendel, 2005a, 2005b; Leitch and Leitch, 2008). Molecular analyses suggest that the genomes of most angiosperms (more than 90%) retain evidence of one or more ancient genome-wide duplication events (Cui et al., 2006). Moreover, recently, Wood et al. (2009) established that up to 15% of angiosperm and 31% of gymnosperm speciation events were accompanied by polyploidization. Polyploidization in plants is also commercially beneficial. Many important crop species including wheat (Triticum aestivum), potato (Solanum tuberosum), tobacco (Nicotiana tabacum), coffee (Coffea arabica), and numerous fruit varieties are polyploid (Bretagnolle and Thompson, 1995). Although several mechanisms can yield polyploids, it is thought that most polyploid plants are formed by the spontaneous production and fusion of diploid (2n) gametes (Bretagnolle and Thompson, 1995; Ramsey and Schemske, 1998). However, despite the evolutionary and agricultural significance of sexual polyploidization in plants (Ramanna and Jacobsen, 2003), the molecular mechanism underlying 2n gamete formation in natural populations is poorly understood.Several cytological defects lead to diploid gamete formation in both male and female reproductive lineages. In some species, premeiotic and postmeiotic genome doubling events are reported, but diploid gametes typically result from a defect in one of the two meiotic divisions, a phenomenon referred to as “restitution” (Bretagnolle and Thompson, 1995; Ramsey and Schemske, 1998). Meiotic restitution mechanisms are categorized into three classes: (1) omission of one of the meiotic cell divisions; (2) alterations in meiosis I (MI) or meiosis II (MII) spindle morphology; or (3) defects in meiotic cytokinesis (Ramanna and Jacobsen, 2003). Additionally, depending on the genetic makeup of the resulting 2n gametes, meiotic restitution mechanisms can be further subdivided into two classes: first division restitution (FDR) and second division restitution (SDR). In FDR, the sister chromatids disjoin and segregate to opposite poles, yielding 2n gametes that largely retain the heterozygosity of the parental plant. In SDR, sister chromatids do not disjoin in MII and segregate to the same pole, generating highly homozygous 2n gametes (Köhler et al., 2010).Several genes governing 2n gamete formation have been identified and characterized in potato, maize (Zea mays), and Arabidopsis (Arabidopsis thaliana; Consiglio et al., 2004; Brownfield and Köhler, 2011). Mutations in Arabidopsis DYAD/SWITCH1 and maize ARGONAUTE104 (AGO104) and AM1 induce a complete loss of MI and, consequently, convert the meiotic cell cycle into a mitotic one (Ravi et al., 2008; Pawlowski et al., 2009; Singh et al., 2011). Lesions in Arabidopsis OSD1/GIG1 and TAM/CYCA2;1, two proteins involved in progression of the meiotic cell cycle, cause a complete loss of MII, generating highly homozygous 2n gametes in both male and female meiosis (d’Erfurth et al., 2009, 2010). Spindle-based meiotic restitution mechanisms have been reported in both Arabidopsis jason and atps1 mutants and in the potato ps mutant, in which parallel, fused, and tripolar spindles in male MII lead to the formation of FDR 2n spores (Mok and Peloquin, 1975; d’Erfurth et al., 2008; De Storme and Geelen, 2011). Disruption of postmeiotic male cytokinesis, which is regulated by a mitogen-activated protein kinase (MAPK) kinase signaling pathway, also results in polyploid gametes. Mutations in TES/STUD/AtNACK2, MKK6/ANQ1, and MPK4, three main components of the cytokinetic MAPK signaling cascade, induce a complete loss of cytokinesis following male meiosis, generating fully restituted tetraploid pollen grains (Hulskamp et al., 1997; Spielman et al., 1997; Soyano et al., 2003; Zeng et al., 2011).Despite progress on understanding cytological mechanisms and genetic factors governing the formation of 2n gametes in natural populations, less is known about the environmental factors involved. There is evidence that 2n gamete production can be stimulated by both biotic and abiotic stresses, such as nutritional deprivation, wounding, disease, herbivory, and temperature stress (Ramsey and Schemske, 1998). In Lotus tenuis, temperature stresses, and in particular high temperatures, increase the level of parallel spindle-driven 2n gamete production (Negri and Lemmi, 1998). Similarly, in rose (Rosa spp.), short periods of high temperature (48 h at 30°C–36°C) can induce cytomixis and parallel and tripolar spindles at male metaphase II, generating dyads and triads at the end of male sporogenesis (Pécrix et al., 2011). Low-temperature environments can also stimulate 2n gamete formation. For example, Solanum phureja grown in cool field environments produces more restituted spores compared with lines grown under normal conditions (McHale, 1983). Similarly, in Datura spp. and Achillea borealis, unreduced pollen formation is higher at low temperatures (Ramsey and Schemske, 1998; Ramsey, 2007). Recently, Mason et al. (2011) demonstrated that cold stress significantly stimulates 2n pollen production in some interspecific Brassica spp. hybrids. Temperature-induced diploid gamete formation is not restricted to plants. Low temperatures have also been shown to stimulate the formation of 2n spores in some animal species, particularly among fish and amphibians (Bogart et al., 1989; Mable et al., 2011). Moreover, ecological population studies have demonstrated that polyploid plant and animal species occur more frequently at higher altitudes and at latitudes closer to the poles (Beaton and Hebert, 1988; Barata et al., 1996; Dufresne and Hebert, 1998), leading to the suggestion that cold climates stimulate the production of polyploid gametes.In this study, we demonstrate that short periods of cold stress induce a development-specific production of meiotically restituted spores in Arabidopsis, which thereby constitutes an ideal model system to identify potential cytological and molecular factors involved in stress-induced sexual polyploidization. Using a combination of cytological and genetic approaches, we reveal the cytological basis for cold-induced meiotic restitution and additionally demonstrate that restituted binuclear and polynuclear spores spontaneously develop into diploid and polyploid pollen grains. We also use pollen tetrad-based segregation analysis to monitor the genetic makeup of cold-induced 2n gametes and Arabidopsis mutants to examine the potential role of some candidate regulators (e.g. TAM/CYCA1;2 and MKK2) in the sensitivity of male meiosis to low-temperature stress.  相似文献   

20.
The term "chromosome engineering" describes technologies in which chromosomes are manipulated to change their mode of genetic inheritance. This review examines recent innovations in chromosome engineering that promise to greatly increase the efficiency of plant breeding. Haploid Arabidopsis thaliana have been produced by altering the kinetochore protein CENH3, yielding instant homozygous lines. Haploid production will facilitate reverse breeding, a method that downregulates recombination to ensure progeny contain intact parental chromosomes. Another chromosome engineering success is the conversion of meiosis into mitosis, which produces diploid gametes that are clones of the parent plant. This is a key step in apomixis (asexual reproduction through seeds) and could help to preserve hybrid vigor in the future. New homologous recombination methods in plants will potentiate many chromosome engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号