首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
AimsAlthough capsaicin not only activates transient receptor potential vanilloid-1 (TRPV1) channels but also inhibits nerve conduction, the latter action has not yet been fully examined. The purpose of the present study was to know whether various vanilloids have an inhibitory action similar to that of capsaicin and further to compare their actions with that of local anesthetic procaine.Main methodsFast-conducting compound action potentials (CAPs) were recorded from frog sciatic nerve fibers by using the air-gap method.Key findingsCapsaicin reversibly and concentration-dependently reduced the peak amplitude of the CAP. TRPV1 antagonist capsazepine did not affect the capsaicin activity, and powerful TRPV1 agonist resiniferatoxin had no effect on CAPs, indicating no involvement of TRPV1 channels. Capsaicin analogs and other various vanilloids also inhibited CAPs in a concentration-dependent manner. An efficacy sequence of these inhibitions was capsaicin = dihydrocapsaicin > capsiate > eugenol > guaiacol  zingerone  vanillin > vanillylamine. Vanillic acid had almost no effect on CAPs; olvanil and curcumin appeared to be effective less than capsaicin. Capsaicin and eugenol were, respectively, ten- and two-fold effective more than procaine in CAP inhibition, while each of guaiacol, zingerone and vanillin was five-fold effective less than procaine.SignificanceVarious vanilloids exhibit CAP inhibition, the extent of which is determined by the property of the side chain bound to the vanillyl group, and some of them are more effective than procaine. These results may serve to unveil molecular mechanisms for capsaicin-induced conduction block and to develop antinociceptive drugs related to capsaicin.  相似文献   

2.
AimsTransient receptor potential (TRP) vanilloid-1 (TRPV1) and melastatin-8 (TRPM8) channels play a role in transmitting sensory information in primary-afferent neurons. TRPV1 agonists at high concentrations inhibit action potential conduction in the neurons and thus have a local anesthetic effect. The purpose of the present study was to know whether TRPM8 agonist menthol at high concentrations has a similar action and if so whether there is a structure–activity relationship among menthol-related chemicals.Main methodsCompound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method.Key findings(?)-Menthol and (+)-menthol concentration-dependently reduced CAP peak amplitude with the IC50 values of 1.1 and 0.93 mM, respectively. This (?)-menthol activity was resistant to non-selective TRP antagonist ruthenium red; TRPM8 agonist icilin did not affect CAPs, indicating no involvements of TRPM8 channels. p-Menthane, (+)-limonene and menthyl chloride at 7–10 mM minimally affected CAPs. On the other hand, (?)-menthone, (+)-menthone, (?)-carvone, (+)-carvone and (?)-carveol (in each of which chemicals OH or O group was added to p-menthane and limonene) and (+)-pulegone inhibited CAPs with extents similar to that of menthol. 1,8-Cineole and 1,4-cineole were less effective while thymol and carvacrol were more effective than menthol in inhibiting CAPs.SignificanceMenthol-related chemicals inhibited CAPs and were thus suggested to exhibit local anesthetic effects comparable to those of lidocaine and cocaine as reported previously for frog CAPs. This result may provide information to develop local anesthetics on the basis of the chemical structure of menthol.  相似文献   

3.
An opioid tramadol more effectively inhibits compound action potentials (CAPs) than its metabolite mono-O-demethyl-tramadol (M1). To address further this issue, we examined the effects of opioids (morphine, codeine, ethylmorphine and dihydrocodeine) and cocaine on CAPs by applying the air-gap method to the frog sciatic nerve. All of the opioids at concentrations less than 10 mM reduced the peak amplitude of the CAP in a reversible and dose-dependent manner. The sequence of the CAP peak amplitude reductions was ethylmorphine>codeine>dihydrocodeine> or = morphine; the effective concentration for half-maximal inhibition (IC(50)) of ethylmorphine was 4.6 mM. All of the CAP inhibitions by opioids were resistant to a non-specific opioid-receptor antagonist naloxone. The CAP peak amplitude reductions produced by morphine, codeine and ethylmorphine were related to their chemical structures in such that this extent enhanced with an increase in the number of -CH(2) in a benzene ring, as seen in the inhibitory actions of tramadol and M1. Cocaine reduced CAP peak amplitudes with an IC(50) value of 0.80 mM. It is concluded that opioids reduce CAP peak amplitudes in a manner being independent of opioid-receptor activation and with an efficacy being much less than that of cocaine. It is suggested that the substituted groups of -OH bound to the benzene ring of morphine, codeine and ethylmorphine as well as of tramadol and M1, the structures of which are quite different from those of the opioids, may play an important role in producing nerve conduction block.  相似文献   

4.
Small-molecule inhibitors of urea transporter (UT) proteins in kidney have potential application as novel salt-sparing diuretics. The urea analog dimethylthiourea (DMTU) was recently found to inhibit the UT isoforms UT-A1 (expressed in kidney tubule epithelium) and UT-B (expressed in kidney vasa recta endothelium) with IC50 of 2-3 mM, and was shown to have diuretic action when administered to rats. Here, we measured UT-A1 and UT-B inhibition activity of 36 thiourea analogs, with the goal of identifying more potent and isoform-selective inhibitors, and establishing structure-activity relationships. The analog set systematically explored modifications of substituents on the thiourea including alkyl, heterocycles and phenyl rings, with different steric and electronic features. The analogs had a wide range of inhibition activities and selectivities. The most potent inhibitor, 3-nitrophenyl-thiourea, had an IC50 of ~ 0.2 mM for inhibition of both UT-A1 and UT-B. Some analogs such as 4-nitrophenyl-thiourea were relatively UT-A1 selective (IC50 1.3 vs. 10 mM), and others such as thioisonicotinamide were UT-B selective (IC50 > 15 vs. 2.8 mM).  相似文献   

5.
CTP synthase (CTPS) catalyzes the conversion of UTP to CTP and is a recognized target for the development of anticancer, antiviral, and antiprotozoal agents. Xanthine and related compounds inhibit CTPS activity (IC50 = 0.16–0.58 mM). The presence of an 8-oxo function (i.e., uric acids) enhances inhibition (IC50 = 0.060–0.121 mM). An intact purine ring with anionic character favors inhibition. In general, methylation of the purine does not significantly affect inhibition.  相似文献   

6.
Effects of a short-term exposure to millimeter waves (CW, 40–52 GHz, 0.24–3.0 mW/cm2) on the compound action potential (CAP) conduction were studied in an isolated frog sciatic nerve preparation. CAPs were evoked by either a low-rate or a high-rate electrical stimulation of the nerve (4 and 20 paired pulses/s, respectively). The low-rate stimulation did not alter the functional state of the nerve, and the amplitude, latency, and peak latency of CAPs could stay virtually stable for hours. Microwave irradiation for 10–60 min at 0.24–1.5 mW/cm2, either at various constant frequencies or with a stepwise frequency change (0.1 or 0.01 GHz/min), did not cause any detectable changes in CAP conduction or nerve refractoriness. The effect observed under irradiation at a higher field intensity of 2–3 mW/cm2 was a subtle and transient reduction of CAP latency and peak latency along with a rise of the test CAP amplitude. These changes could be evoked by any tested frequency of the radiation; they reversed shortly after cessation of exposure and were both qualitatively and quantitatively similar to the effect of conventional heating of 0.3–0.4°C. The high-rate electrical stimulation caused gradual and reversible decrease of the amplitude of conditioning and test CAPs and increased their latencies and peak latencies. These changes were essentially the same with and without irradiation (2.0–2.7 or 0.24–0.28 mW/cm2), except for attenuation of the decrease of the test CAP amplitude. This effect was observed at both field intensities, but was statistically significant only for certain frequencies of the radiation. Within the studied limits, this effect appeared to be dependent on the frequency rather than on the intensity of the radiation, but this observation requires additional experimental confirmation. Bioelectromagnetics 18:324–334, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Two new series of biphenyls, analogs of aglycone of natural product fortuneanoside E, were prepared using Suzuki–Miyaura cross-coupling and selective magnesium iodide demethylation/debenzylation, and their mushroom tyrosinase inhibitory activity was evaluated. Most of the 4-hydroxy-3,5-dimethoxyphenyl biphenyl compounds (series II, 20–36) were in general more active than 3,4,5-trimethoxyphenyl biphenyl compounds (series I, 1–19). Structure–activity relationships study showed that monosaccharide substituents, such as glucose, were not necessary and the presence of 4-hydroxy-3,5-dimethoxyphenyl moiety was crucial for inhibitory activity. Among the compounds synthesised, compound 21 (IC50 = 0.02 mM) was found to be the most active one, which exhibited an activity that was 7 times higher than that of fortuneanoside E (IC50 = 0.14 mM) and 10 times higher than that of arbutin (IC50 = 0.21 mM), known as potent tyrosinase inhibitors. The inhibition kinetics analyzed by Lineweaver–Burk plots revealed that compound 21 was a competitive inhibitor (Ki = 0.015 mM).  相似文献   

8.
Chemical modifications were performed on hydroxyl groups at C-11,23,24,25 positions and C-13(17) double bond of alisol A for structure–activity relationship study. Forty-one derivatives of alisol A were synthesized and assayed for their in vitro anti-hepatitis B virus (HBV) activities and cytotoxicities. Of them, 14 compounds were active against HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) secretion in HepG 2.2.15 cells, and the most promising compound 25 exhibited high activities against secretion of HBsAg (IC50 = 0.028 mM), HBeAg (IC50 = 0.027 mM) and remarkable selective indices (SIHBsAg >90, SIHBeAg >93).  相似文献   

9.
A new diantheramide, 4,4′-dihydroxy-2′-methoxydianthramide (1), and a new cyclic peptide, named segelin I (2) were isolated from the seeds of Vaccaria hispanica. Their structures were elucidated by detailed spectroscopic analysis and chemical methods. Compounds 1 and 2 were revealed to show significantly in vitro α-glucosidase inhibitory activity with IC50 values of 0.080 ± 0.002 mM and 0.28 ± 0.002 mM, respectively, which were more potent than the reference compound acarbose (IC50 0.410 ± 0.001 mM).  相似文献   

10.
《Process Biochemistry》2014,49(10):1691-1698
Hydrolysates and peptide fractions obtained from Mucuna pruriens protein concentrate were studied for their angiotensin converting enzyme (ACE) inhibitory, hypotensive and antioxidant activities. The hydrolysate obtained by pepsin–pancreatin (HPP) was the most active with an ACE IC50 value of 19.5 μg/mL, a Trolox equivalent antioxidant capacity (TEAC) value of 102.8 mM/mg and a ferric reducing power (FRP) IC50 of 67.2 μg/mL. At a dose of 5 mg/kg HPP decrease systolic (32.2%) and diastolic (37%) blood pressure in rats more pronounced than Captopril. The peptide fraction <1 kDa from HPP was the most active with an ACE inhibitory of 10.2 μg/mL (IC50), a TEAC value of 709.8 mM/mg and a FRP IC50 of 54.9 μg/mL. These results indicate that the hydrolysates and peptide fractions of M. pruriens would be used as nutraceuticals ingredients for preventing and providing therapy against hypertension and diseases related to oxidative damage.  相似文献   

11.
The glutathione reductase (GR) and thioredoxin reductase (TrxR) are important enzymes of the redox system that aid parasites to maintain an adequate intracellular redox environment. In the present study, the enzyme activity of GR and TrxR was investigated in Setaria cervi (S. cervi). Significant activity of both enzymes was detected in the somatic extract of adult and microfilariae stages of S. cervi. Both GR and TrxR were separated by partial purification using ammonium sulfate fractionation and DEAE ion exchange chromatography suggesting the presence of both glutathione and thioredoxin systems in S. cervi. The enzyme glutathione reductase (ScGR) was purified to homogeneity using affinity and ion exchange chromatography that resulted in 90 fold purification with a yield of 11.54%. The specific activity of the ScGR was 643 U/mg that migrated as a single band on SDS-PAGE. The subunit molecular mass was determined to be ~ 50 kDa while the optimum pH and temperature were found to be 7.0 and 35 °C respectively. The activation energy (Ea) was calculated from the slope of Arrhenius plot as 16.29 ± 1.40 kcal/mol. The Km and Vmax were determined to be 0.27 ± 0.045 mM; 30.30 ± 1.30 U/ml with NADPH and 0.59 ± 0.060 mM; 4.16 ± 0.095 U/ml with GSSG respectively. DHBA, a specific inhibitor for GR has completely inhibited the enzyme activity at 1 μM concentration. The inhibition of ScGR activity with NAI (IC50 0.71 mM), NEM (IC50 0.50 mM) and DEPC (IC50 0.27 mM) suggested the presence of tyrosine, cysteine and histidine residues at its active site. Further studies on characterization and understanding of these antioxidant enzymes may lead to designing of an effective drug against lymphatic filariasis.  相似文献   

12.
A series of N-substituted 1-aminomethyl-β-d-glucopyranoside derivatives was prepared. These novel synthetic compounds were assessed in vitro for inhibitory activity against yeast α-glucosidase and both rat intestinal α-glucosidases maltase and sucrase. Most of the compounds displayed α-glucosidase inhibitory activity, with IC50 values covering the wide range from 2.3 μM to 2.0 mM. Compounds 19a (IC50 = 2.3 μM) and 19b (IC50 = 5.6 μM) were identified as the most potent inhibitors for yeast α-glucosidase, while compounds 16 (IC50 = 7.7 and 15.6 μM) and 19e (IC50 = 5.1 and 10.4 μM) were the strongest inhibitors of rat intestinal maltase and sucrase. Analysis of the kinetics of enzyme inhibition indicated that 19e inhibited maltase and sucrase in a competitive manner. The results suggest that the aminomethyl-β-d-glucopyranoside moiety can mimic the substrates of α-glucosidase in the enzyme catalytic site, leading to competitive enzyme inhibition. Moreover, the nature of the N-substituent has considerable influence on inhibitory potency.  相似文献   

13.
A series of COX-2 selective inhibitor nimesulide derivatives were synthesized. Their anti-cell proliferation activities were evaluated with a long-term estrogen deprived MCF-7aro (LTEDaro) breast cancer cell line, which is the biological model of aromatase inhibitor resistance for hormone-dependent breast cancer. Compared to nimesulide which inhibited LTEDaro cell proliferation with an IC50 at 170.30 μM, several new compounds showed IC50 close to 1.0 μM.  相似文献   

14.
A small library of 2H-benzo[b][1,4] oxazine derivative was synthesized and their biological activity was tested on HepG2 cells under normoxic and hypoxic conditions. From preliminary screening, we found compound 10 and 11 specifically inhibit hypoxic cancer cell growth IC50 87 ± 1.8 μM and IC50 10 ± 3.7 μM while sparing ‘normoxic’ cells IC50 >600 M and >1 mM (not applicable), respectively. We tested the effect of 10 on MTT, clonogenic and hypoxia induced genes. The MTT correlates with clonogenic assays and most importantly compound 10 down regulates hypoxia induces genes (HIF-1α, P21 and VEGF) appropriately. We are in the process to explore the molecular mechanism of action of oxazine derivative compounds on hypoxia tumor cells.  相似文献   

15.
Dihydropyrimidones 137 were synthesized via a ‘one-pot’ three component reaction according to well-known Biginelli reaction by utilizing Cu(NO3)2·3H2O as catalyst, and screened for their in vitro β-glucuronidase inhibitory activity. It is worth mentioning that amongst the active molecules, compounds 8 (IC50 = 28.16 ± .056 μM), 9 (IC50 = 18.16 ± 0.41 μM), 10 (IC50 = 22.14 ± 0.43 μM), 13 (IC50 = 34.16 ± 0.65 μM), 14 (IC50 = 17.60 ± 0.35 μM), 15 (IC50 = 15.19 ± 0.30 μM), 16 (IC50 = 27.16 ± 0.48 μM), 17 (IC50 = 48.16 ± 1.06 μM), 22 (IC50 = 40.16 ± 0.85 μM), 23 (IC50 = 44.16 ± 0.86 μM), 24 (IC50 = 47.16 ± 0.92 μM), 25 (IC50 = 18.19 ± 0.34 μM), 26 (IC50 = 33.14 ± 0.68 μM), 27 (IC50 = 44.16 ± 0.94 μM), 28 (IC50 = 24.16 ± 0.50 μM), 29 (IC50 = 34.24 ± 0.47 μM), 31 (IC50 = 14.11 ± 0.21 μM) and 32 (IC50 = 9.38 ± 0.15 μM) found to be more potent than the standard d-saccharic acid 1,4-lactone (IC50 = 48.4 ± 1.25 μM). Molecular docking study was conducted to establish the structure–activity relationship (SAR) which demonstrated that a number of structural features of dihydropyrimidone derivatives were involved to exhibit the inhibitory potential. All compounds were characterized by spectroscopic techniques such as 1H, 13C NMR, EIMS and HREI-MS.  相似文献   

16.
Cholinergic changes of electric activity were studied in isolated atrium preparations from fishes (cod and carp), amphibians (frog) and reptilians (lizard) using the microelectrode technique and high-resolution optical mapping. Perfusion of isolated atrium with acetylcholine (10? 6–5 · 10? 5 M) caused gradual suppression of action potential generation and, eventually, completely blocked the excitation in a part of the preparation. Other regions of atrium, situated close to the sinoatrial and atrioventricular junctions, remained excitable. Such cholinergic suppression of electric activity was observed in the atrial myocardium of frog and in both fish species, but not in reptilians. Ba2+ (10? 4 M), which blocks the acetylcholine-dependent potassium current (IKACh), prevented cholinergic reduction of action potential amplitude. In several preparations of frog atrium, cholinergic suppression of excitation coincided with episodes of atrial fibrillation. We conclude that the phenomenon of cholinergic suppression of electric activity is typical for atria of fishes and amphibians. It is likely to be caused by IKACh activation and may be important for initiation of atrial arrhythmias.  相似文献   

17.
Bisindole analogs 117 were synthesized and evaluated for their in vitro β-glucuronidase inhibitory potential. Out of seventeen compounds, the analog 1 (IC50 = 1.62 ± 0.04 μM), 6 (IC50 = 1.86 ± 0.05 μM), 10 (IC50 = 2.80 ± 0.29 μM), 9 (IC50 = 3.10 ± 0.28 μM), 14 (IC50 = 4.30 ± 0.08 μM), 2 (IC50 = 18.40 ± 0.09 μM), 19 (IC50 = 19.90 ± 1.05 μM), 4 (IC50 = 20.90 ± 0.62 μM), 7 (IC50 = 21.50 ± 0.77 μM), and 3 (IC50 = 22.30 ± 0.02 μM) showed superior β-glucuronidase inhibitory activity than the standard (d-saccharic acid 1,4-lactone, IC50 = 48.40 ± 1.25 μM). In addition, molecular docking studies were performed to investigate the binding interactions of bisindole derivatives with the enzyme. This study has identified a new class of potent β-glucouronidase inhibitors.  相似文献   

18.
Bisphenol A (BPA) is a ubiquitous industrial chemical used in the production of a wide variety of items. Previous studies suggest BPA exposure may result in neuro-disruptive effects; however, data are inconsistent across animal and human studies. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether female and male rats developmentally exposed to BPA demonstrated later spatial navigational learning and memory deficits. Pregnant NCTR Sprague–Dawley rats were orally dosed from gestational day 6 to parturition, and offspring were directly orally dosed until weaning (postnatal day 21). Treatment groups included a vehicle control, three BPA doses (2.5 μg/kg body weight (bw)/day—[2.5], 25 μg/kg bw/day—[25], and 2500 μg/kg bw/day—[2500]) and a 0.5 μg/kg/day ethinyl estradiol (EE)-reference estrogen dose. At adulthood, 1/sex/litter was tested for seven days in the Barnes maze. The 2500 BPA group sniffed more incorrect holes on day 7 than those in the control, 2.5 BPA, and EE groups. The 2500 BPA females were less likely than control females to locate the escape box in the allotted time (p value = 0.04). Although 2.5 BPA females exhibited a prolonged latency, the effect did not reach significance (p value = 0.06), whereas 2.5 BPA males showed improved latency compared to control males (p value = 0.04), although the significance of this result is uncertain. No differences in serum testosterone concentration were detected in any male or female treatment groups. Current findings suggest developmental exposure of rats to BPA may disrupt aspects of spatial navigational learning and memory.  相似文献   

19.
Phenolic content and antioxidant potential of lentil sprouts may be enhanced by treatment of seedlings in abiotic stress conditions without any negative influence on nutritional quality.The health-relevant and nutritional quality of sprouts was improved by elicitation of 2-day-old sprouts with oxidative, osmotic, ion-osmotic and temperature stresses. Among the sprouts studied, those obtained by elicitation with osmotic (600 mM mannitol) and ion-osmotic (300 mM NaCl) shocks had the highest total phenolic content levels: 6.52 and 6.56 mg/g flour, respectively. Oxidative stress significantly enhanced the levels of (+)-catechin and p-coumaric acid. A marked elevation of the chlorogenic and gallic acid contents was also determined for sprouts induced at 4 °C and 40 °C. The elevated phenolic content was translated into the antioxidant potential of sprouts, especially the ability to reduce lipid oxidation. A marked elevation of this ability was determined for seedlings treated with 20 mM, 200 mM H2O2 (oxidative stress) and 600 mM mannitol (osmotic stress); about a 12-fold, 8-fold and 9.5-fold increase in respect to control sprouts. The highest ability to quench free radicals was observed in sprouts induced by osmotic stress (IC50- 4.91 and 5.12 mg/ml for 200 mM and 600 mM mannitol, respectively). The highest total antioxidant activity indexes were determined for sprouts elicited with 20 mM H2O2 and 600 mM mannitol: 4.0 and 3.4, respectively. All studied growth conditions, except induction at 40 °C, caused a significant elevation of resistant starch levels which was also affected in a subsequent reduction of starch digestibility.Improvement of sprout quality by elicitation with abiotic stresses is a cheap and easy biotechnology and it seems to be an alternative to conventional techniques applied to improve the health promoting phytochemical levels and bioactivity of low-processed food.  相似文献   

20.
A series of unsymmetrically disubstituted urea derivatives 128 has been synthesized and screened for their antiglycation activity in vitro. Compounds 26 (IC50 = 4.26 ± 0.25 μM), 1 (IC50 = 5.8 ± 0.08 μM), 22 (IC50 = 4.26 ± 0.25 μM), 6 (IC50 = 6.4 ± 0.02 μM), 5 (IC50 = 6.6 ± 0.26 μM), 2 (IC50 = 7.02 ± 0.31 μM), 3 (IC50 = 7.14 ± 0.84 μM), 27 (IC50 = 7.27 ± 0.36 μM), 4 (IC50 = 8.16 ± 1.04 μM), 21 (IC50 = 8.4 ± 0.15 μM), 23 (IC50 = 9.0 ± 0.35 μM) and 13 (IC50 = 15.22 ± 6.7 μM) showed an excellent antiglycation activity far better than the standard (rutin, IC50 = 41.9 ± 2.3 μM). This study thus provides a series of potential molecules for further studies of antiglycation agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号