共查询到20条相似文献,搜索用时 11 毫秒
1.
Helen Skilling Liane Fairfull Bret H. Goodpaster Eric S. Goetzman 《Biochemical and biophysical research communications》2010,400(3):318-322
Brown adipose tissue is a highly specialized organ that uses mitochondrial fatty acid oxidation to fuel non-shivering thermogenesis. In mice, mutations in the acyl-CoA dehydrogenase family of fatty acid oxidation genes are associated with sensitivity to cold. Brown adipose tissue function has not previously been characterized in these knockout strains. Short-chain acyl-CoA dehydrogenase (SCAD) deficient mice were found to have increased brown adipose tissue mass as well as modest cardiac hypertrophy. Uncoupling protein-1 was reduced by 70% in brown adipose tissue and this was not due to a change in mitochondrial number, nor was it due to decreased signal transduction through protein kinase A which is known to be a major regulator of uncoupling protein-1 expression. PKA activity and in vitro lipolysis were normal in brown adipose tissue, although in white adipose tissue a modest increase in basal lipolysis was seen in SCAD−/− mice. Finally, an in vivo norepinephrine challenge of brown adipose tissue thermogenesis revealed normal heat production in SCAD−/− mice. These results suggest that reduced brown adipose tissue function is not the major factor causing cold sensitivity in acyl-CoA dehydrogenase knockout strains. We speculate that other mechanisms such as shivering capacity, cardiac function, and reduced hepatic glycogen stores are involved. 相似文献
2.
Yamashita H Wang Z Wang Y Segawa M Kusudo T Kontani Y 《Biochemical and biophysical research communications》2008,377(2):632-635
We investigated the contribution of fatty acid-binding protein 3 (FABP3) to adaptive thermogenesis in brown adipose tissue (BAT) in rodents. The expression of FABP3 mRNA in BAT was regulated discriminatively in response to alteration of the ambient temperature, which regulation was similar and reciprocal to the regulation of uncoupling protein 1 (UCP1) and leptin, respectively. FABP3 expression in the BAT was significantly higher in the UCP1-knockout (KO) mice than in the wild-type ones, and these KO mice showed a higher clearance rate of free fatty acid from the plasma. In addition, FABP3 expression in the BAT was increased greatly with the development of diet-induced obesity in mice. These results indicate that the induction of FABP3 in BAT correlates with an increased demand for adaptive thermogenesis in rodents. FABP3 appears to be essential for accelerating fatty acid flux and its oxidation through UCP1 activity for non-shivering thermogenesis in BAT. 相似文献
3.
Decreased rate of fatty acid synthesis in brown adipose tissue of hypothalamic obese rats 总被引:2,自引:0,他引:2
Intranuclear coinjection of the late SV40 KpnI/BclI DNA fragment and the early promotor/enhancer HpaII/BglI DNA segment into permissive monkey and non-permissive mouse cells allows late SV40 gene expression without T-antigen synthesis and DNA replication. These conditions were chosen to analyse the effect of DNA methylation on V-antigen synthesis detached from the process of DNA replication. We found that in vitro methylation of a single cytosine nucleotide proximal to the major late mRNA cap site by the HpaII methylase does not block capsid protein synthesis. This result is in contrast to reported data obtained in Xenopus laevis oocyte injection experiments [(1982) Proc. Natl. Acad. Sci. USA 79, 5142-5146]. 相似文献
4.
It has been demonstrated that thermogenic activity of brown adipose tissue (BAT) is higher during the early postnatal period, decreasing towards a low adult level. The present study examined postnatal changes in the lipid composition of BAT. BAT from pre-weaning rats at 4 and 14 days old showed the following differences in lipid composition compared to that from adults of 12 weeks old. (i) Relative weight of interscapular BAT to body weight was markedly greater. (ii) BAT-triglyceride (TG) level was lower, while BAT-phospholipid (PL)level was higher. (iii) In TG fatty acids (FA) polyunsaturated fatty acids (PU; mol %), arachidonate index (AI), unsaturation index (UI) and PU/saturated FA (SA) were higher; rare FA such as eicosadienoate, bishomo--linolenic acid and lignoceric acid in mol % were also higher. (iv) In PL-FA monounsaturated FA (MU) in mol % was lower; PU mol %, AI and UI were higher. These features in BAT of pre-weaning rats resembled those in the cold-acclimated adults, suggesting a close relationship of the PL-FA profile to high activity of BAT. 相似文献
5.
《Tissue & cell》2016,48(5):452-460
Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT. 相似文献
6.
Usami K Matsuno K Igarashi M Denda-Nagai K Takada A Irimura T 《Biochemical and biophysical research communications》2011,(1):74-78
Acyl-CoA thioesterases (ACOTs) are enzymes that catalyze the hydrolysis of fatty acyl-CoAs to free fatty acids and CoA-SH. In this study, we show that the expression profile of the ACOT isoforms changes remarkably during the differentiation of cultured rat brown adipocytes. Immunocytochemistry suggested that cytosolic ACOT1 was present in the preadipocytes, while mitochondrial ACOT2 was additionally expressed as the cells differentiated, concurrent with the accumulation of lipid droplets in the cytoplasm. Western blotting confirmed that, in contrast to ACOT1, the ACOT2 expression level was very low in the preadipocytes. However, after differentiation, the ACOT1 level fell to one-half of the baseline level and ACOT2 increased 18-fold. ACOT2 expression in the differentiated adipocytes was further enhanced by treatment with lipids or troglitazone. These changes in the ACOT2 expression level correlated well with changes in the expression of carnitine palmitoyltransferase 2, a mitochondrial β-oxidation enzyme. These results indicate that, in differentiating brown adipocytes, cytosolic ACOT1 becomes downregulated as the cellular use of acyl-CoA increases, while mitochondrial ACOT2 is upregulated as the β-oxidation capacity increases. ACOT isoform expression may be regulated during brown adipocyte differentiation to support the fat storage and combustion characteristics of this cell type. 相似文献
7.
One of the major questions in the field of obesity is why some humans become obese (obesity prone, OP) and others resist the development of obesity (obesity resistant, OR) when exposed to a high-calorie diet, which has not been completely studied. Therefore, in the present study, in order to gain insight into the molecular mechanisms underlying this propensity, we have performed a comparative analysis of protein expression profiles in white adipose tissue (WAT) and brown adipose tissue (BAT) of rats fed a high-fat diet by 2-DE and MALDI-TOF-MS. Protein mapping of homogenates revealed significant alterations to a number of proteins; 60 and 70 proteins were differentially regulated in BAT and WAT, respectively. For careful interpretation of proteomic results, we categorized the identified proteins into two groups by analysis of both average spot density of pooled six rat adipose tissues and individual spot density of each adipose tissue of six rats as a function of body weight. One of the most striking findings of this study was that significant changes of Ehd1 and laminin receptor in BAT as well as antiquitin, DJ-1 protein, and paraoxonase 2 in WAT were found for the first time in obese rats. In addition, we confirmed the increased expression of some thermogenic enzymes and decreased lipogenic enzymes in adipose tissues of OR rats by immunoblot analysis. To our knowledge, this is the first proteomic study of profiling of protein modulation in OP and OR rats, thereby providing the first global evidence for different propensities to obesity between OP and OR rats. 相似文献
8.
H. Ohno H. Yamashita N. Sato Y. Habara S. Gasa J. Nagasawa Y. Sato M. Ishikawa M. Segawa M. Yamamoto 《International journal of biometeorology》1992,36(3):155-158
Seventy-one male Wistar strain rats (7 weeks old) were kept at 5, 25, or 34° C, respectively, for 2 weeks with or without insulin administration. Insulin (Novo Lente MC) was given subcutaneously in a dose of 3.62 nmol/125 µl saline per 100 g body weight. An apparent effect of insulin treatment was noted only in heat-exposed rats, resulting in a remarkable gain in inter-scapular brown adipose tissue (BAT) mass of heat-acclimated, insulin-treated rats in terms of weight or weight per unit body weight. The BAT from heat-acclimated, insulin-treated rats had significantly higher levels of protein, DNA, RNA, and triglyceride than BAT from heat-acclimated, saline-treated rats. Therefore, it seems likely that the growth of BAT in heat-acclimated, insulin-treated rats was mostly due to the anabolic effects of insulin. The uncoupling protein mRNA was, however, present in BAT of heat-acclimated, insulin-treated rats at rather a depressed level, explaining a corresponding decrease in cold tolerance. On the other hand, the expression of insulin receptor mRNA was attenuated in BAT of rats from all the insulin-treated groups, possibly due to the down-regulation of insulin. Thus, there appeared to be some linkage among BAT, heat acclimation, and insulin. 相似文献
9.
J. Houštěk M. Holub 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1994,164(6):459-463
Mild cold acclimation (22°C, 3 weeks) of hairless mice was shown to increase 5-fold the brown adipose tissue uncoupling protein content in immunodeficient BALB/c nu/nu mice, but by only 2.3-fold in immunocompetent BFU mice. The difference in activation of brown adipose tissue thermogenic capacity was due to a 2-fold increase in the content of brown adipose tissue in nu/nu mice only, which was paralleled by an increase in brown adipose tissue protein but not DNA content. Likewise, only in nu/nu mice the cold acclimation increased the reaction of natural killer cells in blood and peritoneal exudate with a shift from spleen to lymph nodes and increased the phagocytic index. The results indicate that the immune system may influence the defence against cold at the level of brown adipose tissue thermogenesis.Abbreviations AU
arbitrary unit(s)
- bw
body weight
- HEMA
2-hydromethyl-metacrylate copolymer
- BAT
brown adipose tissue
- UCP
uncoupling protein
- ATPase
mitochondrial FoF1-ATPsynthase
- IL-1
interleukin 1
- TNF
tumour necrosis factor
- NK cells
natural killer cells
-
T
a
ambient temperature 相似文献
10.
The phospholipid fatty acid composition of brown adipose tissue (BAT) was examined in inbred heat-tolerant FOK rats and compared
with that in conventional Wistar rats not previously exposed to heat. The FOK rats showed higher unsaturation states, as indicated
by higher levels of polyunsaturated fatty acids and a higher unsaturation index and polyunsaturated fatty acids/saturated
fatty acids ratio. This higher level of unsaturation was characterized by the higher amount of polyunsaturated fatty acids
such as linoleic acid, arachidonic acid and docosahexaenoic acid. It may be concluded that the increased docosahexaenoic acid
level in BAT phospholipids brings about the hyperplasia of BAT, causing an enhancement of its in vivo thermogernic activity
as well as the systemic non-shivering thermogenesis observed in heat-tolerant FOK rats.
Received: 17 May 2000 / Revised: 21 August 2000 / Accepted: 21 September 2000 相似文献
11.
Andrea Dlasková 《BBA》2010,1797(8):1470-1476
We provide evidence that ablation or inhibition of, uncoupling protein 1 increases the rate of reactive oxygen containing species production by mitochondria from brown adipose tissue, no matter what electron transport chain substrate is used (succinate, glycerol-3-phosphate or pyruvate/malate). Consistent with these data are our observations that (a) the mitochondrial membrane potential is maximal when uncoupling protein 1 is ablated or inhibited and (b) oxygen consumption rates in mitochondria from uncoupling protein 1 knock-out mice, are significantly lower than those from wild-type mice, but equivalent to those from wild-type mice in the presence of GDP. In summary, we show that uncoupling protein 1 can affect reactive oxygen containing species production by isolated mitochondria from brown adipose tissue. 相似文献
12.
Yuki Onishi Kazuya Fukasawa Kakeru Ozaki Takashi Iezaki Yukio Yoneda Eiichi Hinoi 《Biochemistry and Biophysics Reports》2016
We previously demonstrated a marked upregulation in the bone morphogenic protein (BMP)/growth differentiation factor (GDF) family member, GDF5, which is capable of promoting brown adipogenesis, in brown adipose tissue (BAT) of obese mice. In this study, we identified other GDF family members, besides GDF5 that are responsive to different obesogenic signals in BAT using inborn and acquired obesity animal models. In BAT from leptin-deficient ob/ob mice, GDF1 expression was preferentially downregulated, whereas the expression of several other genes in the BMP/GDF family, including GDF5, was upregulated. Moreover, in cultured brown adipocytes exposed to tunicamycin and hydrogen peroxide, at concentrations not affecting cellular viability, GDF1 expression was significantly downregulated. Recombinant GDF1 failed to significantly alter brown adipogenesis, despite the promoted phosphorylation of Smad1/5/8 in cultured brown adipocytes, but accelerated Smad1/5/8 phosphorylation with a concomitant increase in the number of migrating cells during exposure in a manner sensitive to activin-like kinase inhibitors in macrophagic RAW264.7 cells. Similarly, accelerated migration was observed in murine peritoneal macrophages exposed to GDF1. These results indicate that obesity could lead to predominant downregulation of GDF1 expression in BAT, which can modulate cellular migration through a mechanism relevant to activation of the downstream Smad signaling pathway in adjacent macrophages. 相似文献
13.
Uncoupling protein in human brown adipose tissue mitochondria. Isolation and detection by specific antiserum 总被引:1,自引:0,他引:1
A protein of Mr 32 000 has been isolated from human infant brown adipose tissue mitochondria following the procedure used to purify the uncoupling protein from rat brown adipose tissue mitochondria. A specific antiserum has been raised against the human 32 kDa protein, and used to detect it by probing mitochondrial proteins separated by SDS-PAGE. The protein is present in large amounts in brown adipose tissue but is undetectable in human liver, heart or white adipose tissue. It has strong immunological cross-reactivity with rat brown adipose tissue uncoupling protein. 相似文献
14.
The possible proton translocating activity of the mitochondrial uncoupling protein of brown adipose tissue. Reconstitution studies in liposomes 总被引:1,自引:0,他引:1
Loose coupling of thermogenic mitochondria of brown adipose tissue is related to a high proton (or hydroxyl) conductance of the inner membrane and to the presence of a unique 32 kDa uncoupling protein. Reconstitution experiments of the purified protein in liposomes are reported which suggest that this component could form proton channels in the membrane. 相似文献
15.
Thermogenesis, especially facultative thermogenesis by brown adipose tissue (BAT), is less important in high ambient temperature
and the heat-acclimated animals show a lower metabolic rate. Adaptive changes in the metabolic activity of BAT are generally
found to be associated with a modification of membrane phospholipid fatty acid composition. However, the effect of heat acclimation
on membrane phospholipid fatty acid composition is as yet unknown. In this study, we examined the thermogenic activity and
phospholipid fatty acid composition of interscapular BAT from heat-acclimated rats (control: 25±1°C, 50% relative humidity
and heat acclimation: 32±0.5°C, 50% relative humidity). Basal thermogenesis and the total thermogenic capacity after noradrenaline
stimulation, as estimated by in vitro oxygen consumption of BAT (measured polarographically using about 1-mm3 tissue blocks), were smaller in the heat-acclimated group than in the control group. There was no difference in the tissue
content of phospholipids between the groups when expressed per microgram of DNA. The phospholipid fatty acid composition was
analyzed by a capillary gas chromatograph. The state of phospholipid unsaturation, as estimated by the number of double bonds
per fatty acid molecule, was similar between the groups. The saturated fatty acid level was higher in the heat-acclimated
group. Among the unsaturated fatty acids, heat acclimation decreased docosahexaenoic acid and oleic acid levels, and increased
the arachidonic acid level. The tissue level of docosahexaenoic acid correlated with the basal oxygen consumption of BAT (r=0.6, P<0.01) and noradrenaline-stimulated maximum values of oxygen consumption (r=0.5, P<0.05). Our results show that heat acclimation modifies the BAT phospholipid fatty acids, especially the n-3 polyunsaturated fatty acid docosahexaenoic acid, which is possibly involved in the metabolic thermosuppression.
Received: 9 August 1999 / Revised: 8 November 1999 / Accepted: 24 November 1999 相似文献
16.
Nomura S Ichinose T Jinde M Kawashima Y Tachiyashiki K Imaizumi K 《The Journal of nutritional biochemistry》2008,19(12):840-847
The aim of the present study was to determine whether the antiobesity effects of tea catechins (TCs) are associated with the expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT). Male Sprague–Dawley rats were fed a high-fat (HF; 35% fat) diet for 5 weeks, then divided into four groups and fed an HF, HF with 0.5% TC (HFTC), normal-fat (NF; 5% fat) or NF with 0.5% TC (NFTC) diet for 8 weeks. At the end of the experimental period, perirenal and epididymal white adipose tissues (WATs) and interscapular BAT were isolated. The NFTC group had significantly lower perirenal WAT weights than the NF group (NF: 12.7±0.53 g; NFTC: 10.2±0.43 g; P<.01), but the HF and HFTC groups did not differ significantly. TC intake had no effects on epididymal WAT weights. The NFTC and HFTC groups had significantly lower BAT weights than the NF and HF groups, respectively. The NFTC group had significantly higher UCP1 mRNA levels in BAT than the NF group (NF: 0.35±0.02; NFTC: 0.60±0.11; P<.05), but the HF and HFTC groups did not differ significantly. Thus, TC intake in the context of the NF diet reduced perirenal WAT weight and up-regulated UCP1 mRNA expression in BAT. These results suggest that the suppressive effect of TC on body fat accumulation is associated with UCP1 expression in BAT. 相似文献
17.
Madalina Duta-Mare Vinay Sachdev Christina Leopold Dagmar Kolb Nemanja Vujic Melanie Korbelius Dina C. Hofer Wenmin Xia Katharina Huber Martina Auer Benjamin Gottschalk Christoph Magnes Wolfgang F. Graier Andreas Prokesch Branislav Radovic Juliane G. Bogner-Strauss Dagmar Kratky 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2018,1863(4):467-478
Lysosomal acid lipase (LAL) is the only known enzyme, which hydrolyzes cholesteryl esters and triacylglycerols in lysosomes of multiple cells and tissues. Here, we explored the role of LAL in brown adipose tissue (BAT). LAL-deficient (Lal?/?) mice exhibit markedly reduced UCP1 expression in BAT, modified BAT morphology with accumulation of lysosomes, and mitochondrial dysfunction, consequently leading to regular hypothermic events in mice kept at room temperature. Cold exposure resulted in reduced lipid uptake into BAT, thereby aggravating dyslipidemia and causing life threatening hypothermia in Lal?/? mice. Linking LAL as a potential regulator of lipoprotein lipase activity, we found Angptl4 mRNA expression upregulated in BAT. Our data demonstrate that LAL is critical for shuttling fatty acids derived from circulating lipoproteins to BAT during cold exposure. We conclude that inhibited lysosomal lipid hydrolysis in BAT leads to impaired thermogenesis in Lal?/? mice. 相似文献
18.
Hitoshi Yamashita Mikio Yamamoto Yuzo Sato Tetsuya Izawa Takao Komabayashi Daizo Saito Hideki Ohno 《International journal of biometeorology》1993,37(1):61-64
The effect was investigated of endurance training on the expression of uncoupling protein (UCP) mRNA in brown adipose tissue (BAT) of rats. The exercised rats were trained on a rodent treadmill for 5 days per week and a total of 9 weeks. After the training programme, a marked decrease in BAT mass was found in terms of weight or weight per unit body weight; there was a corresponding decrease in DNA content and a downward trend in RNA and glycogen levels. The UCP mRNA was present at a markedly decreased level in BAT of trained animals. In consideration of the reduced levels of mRNAs for hormone-sensitive lipase and acylCoA synthetase, the brown adipose tissue investigated appeared to be in a relatively atrophied and thermogenically quiescent state. 相似文献
19.
20.
The research on mitochondrial functions in adipocytes has increasingly evidenced that mitochondria plays an important role in the onset and/or progression of obesity and related pathologies. Mitochondrial function in brown adipose tissue (BAT) has been classically assessed by measuring either the levels/activity of mitochondrial enzymes, or the respiration in isolated mitochondria. Isolation of mitochondria is not advantageous because it demands significant time and amount of tissue and, as tissue homogenates, disrupts biochemical and physical connections of mitochondria within the cell. Here, we described a new and efficient protocol to analyze the mitochondrial respiratory states in BAT biopsies that relies on intracellular triglyceride depletion followed by tissue permeabilization. In addition to minimizing tissue requirements to ∼17 mg wet weight, the proposed protocol enabled analysis of all mitochondrial respiratory states, including phosphorylation (OXPHOS), no-phosphorylation (LEAK), and uncoupled (ETS) states, as well as the use of substrates for complex I, complex II, and cytochrome c; together, these features demonstrated mitochondrial integrity and validated the preparation efficacy. Therefore, the protocol described here increases the possibilities of answering physiological questions related to small BAT regions of human and animal models, which shall help to unravel the mechanisms that regulate mitochondrial function in health and disease. 相似文献