首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reliable determination of the mechanical properties of a living cell is one of the most important challenges of the atomic force microscopic measurements. In the present study the spatial and temporal dependency of the force measurements on cerebral endothelial cells was investigated. Besides imaging the cells, two different sequences of force measurements were applied: Acquisition of force curves in short time at several points across the cell surface investigating spatial dependence of the elasticity. Acquisition of force curves for long time at a previously determined place, over the cell nucleus, which provides the temporal stability/variation of the measured forces/values. Three different stages of endothelial cell cultures of the hCMEC/D3 cells were used: sub-confluent living, confluent living, and confluent fixed cells. The Young's modulus was calculated from the force curves using the Hertz model and the results were plotted against time or location correspondingly. The rational of using the three stage of culture was to clarify whether the observed effect belongs to the individual cell, to the ensemble of cells or just to some, not living cell component. In case of sub-confluent cells the results revealed a softer nuclear region compared to the periphery, while an attenuated oscillation like fluctuation in time, with a period of about 10-30 min, was observed. Confluent living cells showed similar tendencies to the sub-confluent cells, but the changes were larger and the temporal oscillations had longer period. The spatial dependency of the elasticity on confluent cells was confirmed by force-volume measurement too. In case of fixed cells neither spatial nor temporal differences were observed between the nuclear and peripheral region, however the Young's modulus and the error of the measurement was larger, compared to the sub-confluent living cells.  相似文献   

2.
Cerebral endothelial cells accomplish the barrier functions between blood and brain interstitium. Structural features are the tight junctions between adjacent endothelial cells and the formation of marginal folds at the cell-cell contacts. The glucocorticoid hydrocortisone (HC) has been reported to enforce the blood-brain-barrier in vitro measurable by an increase of the transendothelial electrical resistance. This study shows the impact of HC on the mechanical and morphological properties of confluent cell layers of brain microvascular endothelial cells. HC induces an increase in height of these marginal folds and a reduction of the intercellular contact surface. These morphological changes are accompanied by changes in cell elasticity. Staining of fibrous actin indicates that HC induces a reorganization of the actin cortex. The quantitative determination of the local elastic properties of cells reveals for the first time an HC-induced increase of the representative Young's modulus according to cytoskeletal rearrangements. For this study, cells of two different species, porcine brain capillary endothelial cells and murine brain capillary endothelial cells, were used yielding similar results, which clearly demonstrates that the HC effect on the cell elasticity is species independent.  相似文献   

3.
The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione modulators or by inhibitors of neutral sphingomyelinase, p38 MAPK, JNK, and Rho kinase. Amelioration of endothelial permeability may alleviate lung and systemic vascular dysfunction associated with smoking-related chronic obstructive lung diseases.  相似文献   

4.
Disruption of pulmonary endothelial cell (EC) barrier function is a critical pathophysiologic event in highly morbid inflammatory conditions such as sepsis and acute respiratory disease stress syndrome. Actin cytoskeleton, an essential regulator of endothelial permeability, is a dynamic structure whose stimuli-induced rearrangement is linked to barrier modulation. Here, we used atomic force microscopy to characterize structural and mechanical changes in the F-actin cytoskeleton of cultured human pulmonary artery EC in response to both barrier-enhancing (induced by sphingosine 1-phosphate (S1P)) and barrier-disrupting (induced by thrombin) conditions. Atomic force microscopy elasticity measurements show differential effects: for the barrier protecting molecule S1P, the elastic modulus was elevated significantly on the periphery; for the barrier-disrupting molecule thrombin, on the other hand, it was elevated significantly in the central region of the cell. The force and elasticity maps correlate with F-actin rearrangements as identified by immunofluorescence analysis. Significantly, reduced expression (via siRNA) of cortactin, an actin-binding protein essential to EC barrier regulation, resulted in a shift in the S1P-mediated elasticity pattern to more closely resemble control, unstimulated endothelium.  相似文献   

5.
The lungs of four adult specimens of the vervet monkey (Cercopithecus aethiops) have been examined by transmission and scanning electron microscopy. A morphometric evaluation of the structural components directly involved in gas exchange has been carried out and the data have been modelled to estimate the anatomical diffusing capacity of the lung. The upper air-conducting airways of the lung were lined by an epithelium characterized by ciliated cells among which were dispersed goblet cells. The alveolar surface was lined by squamous type I pneumocytes and cuboidal type II granular pneumocytes. The blood-gas (tissue) barrier consisted of an epithelial cell, a common basal lamina, and an endothelial cell in the thin parts of the interalveolar septum. In the thicker parts of the septum, an interstitial space interposed between the basal laminae of the epithelial and endothelial cells contained supportive elements such as collagen, elastic tissue, and fibrocytes. The alveoli, the blood capillaries, and septal tissue composed 73%, 16%, and 11%, respectively, of the parenchyma. The harmonic and arithmetic mean thicknesses of the blood-gas (tissue) barrier were 0.311 micron and 1.048 microns; the surface area of the blood-gas (tissue) barrier per unit body weight was 50 cm2g-1, and the surface density was 117 mm2.mm3-1. The weight-specific total morphometric diffusing capacity was 0.11 mlO2 (sec.mbar.kg)-1. In comparison, the pulmonary morphometric characteristics of vervet monkey lung were superior to those of the other primates (Macaca irus, M. mulatta, and Homo sapiens) for which equivalent data are available. The gas-exchange potential of the lungs of the nonhuman primates as revealed by morphometric studies surpasses that of man, a feature that can be attributed to the relatively less energetic human lifestyle.  相似文献   

6.
To study the regulation of the endothelial barrier, we examined the relationship between the paracellular barrier function and the expression of 7H6 antigen localized at tight junctions of endothelial cells by using transendothelial electrical resistance (TER), fluxes of albumin and dextran, transmigration of rat mammary cancer (SST-2) cells across rat lung endothelial (RLE) cells, and immunocytochemical expression of 7H6 antigen as parameters. RLE cells cultured at a confluent cell density did not express immunohistochemically demonstrable 7H6 antigen and had low paracellular barrier functions. However, treatment of the endothelial cells with 0.5 mMdibutyryl–cAMP or 10−6Mall-trans-retinoic acid for 4 days induced 7H6 antigen preferentially at the cell border and simultaneously enhanced the barrier function twofold, in terms of TER and fluxes of albumin and dextran. Furthermore, RA-treated RLE cell monolayers with the enhanced barrier function significantly inhibited the transmigration of SST-2 cells. These results together with those of our previous study indicate that 7H6 antigen has a crucial role in the regulation of paracellular barrier function not only in epithelial cells but also in vascular endothelial cells. The present study also suggests that tight junctions of vascular endotheliumin vivofunction as a barrier between blood and tissues against metastatic cancer cells.  相似文献   

7.
An original homogenization method was used to analyze the nonlinear elastic properties of epithelial cells probed by magnetic twisting cytometry. In this approach, the apparent rigidity of a cell with nonlinear mechanical properties is deduced from the mechanical response of the entire population of adherent cells. The proposed hyperelastic cell model successfully accounts for the variability in probe-cell geometrical features, and the influence of the cell-substrate adhesion. Spatially distributed local secant elastic moduli had amplitudes ranging from 10 to 400 Pa. The nonlinear elastic behavior of cells may contribute to the wide differences in published results regarding cell elasticity moduli.  相似文献   

8.
Tight junctions and the modulation of barrier function in disease   总被引:10,自引:1,他引:9  
Tight junctions create a paracellular barrier in epithelial and endothelial cells protecting them from the external environment. Two different classes of integral membrane proteins constitute the tight junction strands in epithelial cells and endothelial cells, occludin and members of the claudin protein family. In addition, cytoplasmic scaffolding molecules associated with these junctions regulate diverse physiological processes like proliferation, cell polarity and regulated diffusion. In many diseases, disruption of this regulated barrier occurs. This review will briefly describe the molecular composition of the tight junctions and then present evidence of the link between tight junction dysfunction and disease.  相似文献   

9.
Endothelial cells separate the intra- and extravascular space and regulate transport processes between these compartments. Since intercellular junctions are required for these specific cell functions, the cell-cell contacts in the permanent cell line ECV304 were systematically analyzed and compared with human umbilical vein endothelial cells (HUVECs) in primary culture and with the epithelial Madin Darby Canine Kidney (MDCK) cell line. Filter-grown ECV304 cells generate a distinct electrical resistance and a permeability barrier between cell culture compartments. Electron microscopy of ECV304 cells revealed lateral membrane interdigitations, typically found in endothelial cells in vivo, with direct membrane contact sites, which prevented the diffusion of lanthanum. By immunoblot and immunofluorescence analysis, the expression and cellular localization of the tight junction and adherens-type junction proteins occludin, ZO-1, symplekin, beta-catenin, and plakoglobin were analyzed. ECV304 cells display further characteristics of endothelial cells, including the expresssion of thrombomodulin and of the vitronectin receptor CD51, as well as the secretion of plasminogen activator inhibitor 1 (PAI-1) and endothelin. However, ECV304 cells also express proteins characteristically found in epithelial cells, including E-cadherin and the desmosomal proteins desmoplakin, desmocollin, and desmoglein; occasionally desmosomal structures can be identified by electron microscopy. In conclusion, ECV304 cells express many endothelial markers and form specialized intercellular junctions that display some epithelial features. Thus this reportedly endothelial-derived permanent human cell line may be dedifferentiated toward an epithelial phenotype.  相似文献   

10.
The mammary gland is composed of a diverse array of cell types that form intricate interaction networks essential for its normal development and physiologic function. Abnormalities in these interactions play an important role throughout different stages of tumorigenesis. Branching ducts and alveoli are lined by an inner layer of secretory luminal epithelial cells that produce milk during lactation and are surrounded by contractile myoepithelial cells and basement membrane. The surrounding stroma comprised of extracellular matrix and various cell types including fibroblasts, endothelial cells, and infiltrating leukocytes not only provides a scaffold for the organ, but also regulates mammary epithelial cell function via paracrine, physical, and hormonal interactions. With rare exceptions breast tumors initiate in the epithelial compartment and in their initial phases are confined to the ducts but this barrier brakes down with invasive progression because of a combination of signals emitted by tumor epithelial and various stromal cells. In this article, we overview the importance of cellular interactions and microenvironmental signals in mammary gland development and cancer.The mammary gland is composed of a combination of multiple cell types that together form complex interaction networks required for the proper development and functioning of the organ. The branching milk ducts are formed by an outer myoepithelial cell layer producing the basement membrane (BM) and an inner luminal epithelial cell layer producing milk during lactation. The ducts are surrounded by the microenvironment composed of extracellular matrix (ECM) and various stromal cell types (e.g., endothelial cells, fibroblasts, myofibroblasts, and leukocytes). Large amount of data suggest that cell-cell and cell-microenvironment interactions modify the proliferation, survival, polarity, differentiation, and invasive capacity of mammary epithelial cells. However, the molecular mechanisms underlying these effects are poorly understood. The purification and comprehensive characterization of each cell type comprising normal and neoplastic human breast tissue combined with hypothesis testing in cell culture and animal models are likely to improve our understanding of the role these cells play in the normal functioning of the mammary gland and in breast tumorigenesis. In this article, we overview cellular and microenvironmental interactions that play important roles in the normal functioning of the mammary gland and their abnormalities in breast cancer.  相似文献   

11.
We investigated the role of cadherins in the solute barrier maintained by endothelial cells in vitro. Cell-column chromatographic measurement of endothelial barrier showed that reducing normal extracellular calcium from 1.2 to 0.12 mM increased endothelial permeability to 250% of baseline after 20 min. Restoring normal calcium restored the barrier within 15 min which remained stable for at least 60 min. We used sulfo-NHS-biotin and anti-cadherin antibodies to characterize endothelial proteins with possible roles in the maintenance of endothelial barrier. The non-specific probe sulfo-NHS-biotin identified at least ten endothelial cell surface proteins, with greatest labelling occurring at molecular weights of 125 and 145 kD. Six proteins, including the 125 and 145 kD proteins, associated with the cytoskeleton. Western blotting for the presence of classical cadherins containing the conserved cytoplasmic sequence CDPTAPPYDSLLVFDYEG detected two bands at 145 and 125 kD which associated with the cytoskeleton. Western blotting with an antibody, which recognizes FHLRAHAVDINGNQV, an extracellular homotypic binding region of N-cadherin, detects three bands. Of these three, one protein had a molecular weight of 125 kD and was associated with the cytoskeleton. Immunofluorescence with both N-cadherin and anti-peptide 1 antibodies found staining at endothelial cell borders. The utility of a newly developed cell-column calcium switch assay was tested by verifying the functional role of the previously described epithelial cadherin, uvomorulin, in epithelial barrier. We then applied this method to endothelial cell columns and found the N-cadherin antibody interfered with the reforming of interendothelial junctions. These results suggest that, as in epithelial cells, cadherins in bovine endothelial cells have a functional role in forming the calcium sensitive endothelial junction and may play an important role in the formation of normal barrier. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Junctional Adhesion Molecule A (JAM-A) is a member of the Ig superfamily of membrane proteins expressed in platelets, leukocytes, endothelial cells and epithelial cells. We have previously shown that in endothelial cells, JAM-A regulates basic fibroblast growth factor, (FGF-2)-induced angiogenesis via augmenting endothelial cell migration. Recently, we have revealed that in breast cancer cells, down-regulation of JAM-A enhances cancer cell migration and invasion. Further, ectopic expression of JAM-A in highly metastatic MDA-MB-231 cells attenuates cell migration, and down-regulation of JAM-A in low-metastatic T47D cells enhance migration. Interestingly, JAM-A expression is greatly diminished as breast cancer disease progresses. The molecular mechanism of this function of JAM-A is beyond its well-characterized barrier function at the tight junction. Our results point out that JAM-A differentially regulates migration of endothelial and cancer cells.  相似文献   

13.
14.
The blood–air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood–air barrier.  相似文献   

15.
A key step in metastasis is the interaction and penetration of the vascular endothelium by cancer cells. Tight Junctions (TJ) are located between the cancer epithelial cells and between the endothelial cells functioning in an adhesive manner. They represent a critical barrier which the cancer cells must overcome in order to penetrate and initiate metastasis. Claudin-5 is a protein member of the Claudin family, a group of TJ proteins expressed in both endothelial and epithelial cells. This study examined in vitro the effect of altering levels of expression of Claudin-5 in HECV cells. Insertion of Claudin-5 gene in HECV cells resulted in cells that were significantly less motile and less adhesive to matrix (P < 0.001). These cells also exhibited a significant decreased in the angiogenic potential (P < 0.001). Results also revealed a link between Claudin-5 and cell motility. Furthermore, a possible link between Claudin-5 and N-WASP, and Claudin-5 and ROCK was demonstrated when interactions between these proteins were seen in the cell line. Moreover, followed by treatment of N-WASP inhibitor (Wiskostatin) and ROCK inhibitor (Y-27632), cell motility and angiogenic potential were assessed in response to the inhibitors. Results showed that the knockdown of Claudin-5 in HECV cells masked their response to both N-WASP and ROCK inhibitors. In conclusion, this study portrays a new and interesting role for Claudin-5 in cell motility involving the N-WASP and ROCK signalling cascade which is beyond the primarily role of Claudin-5 in keeping the cell barrier tight as it was originally reported.  相似文献   

16.
Rüffer C  Strey A  Janning A  Kim KS  Gerke V 《Biochemistry》2004,43(18):5360-5369
Endothelial cell-cell contacts control the vascular permeability, thereby regulating the flow of solutes, macromolecules, and leukocytes between blood vessels and interstitial space. Because of specific needs, the endothelial permeability differs significantly between the tight blood-brain barrier endothelium and the more permeable endothelial lining of the non-brain microvasculature. Most likely, such differences are due to a differing architecture of the respective interendothelial cell contacts. However, while the molecules and junctional complexes of macrovascular endothelial cells and the blood-brain barrier endothelium are fairly well characterized, much less is known about the organization of intercellular contacts of microvascular endothelium. Toward this end, we developed a combined cross-linking and immunoprecipitation protocol which enabled us to map nearest neighbor interactions of junctional proteins in the human dermal microvascular endothelial cell line HMEC-1. We show that proteins typically located in tight or adherens junctions of epithelial cells are in the proximity in HMEC-1 cells. This contrasts with the separation of the different types of junctions observed in polarized epithelial cells and "tight" endothelial layers of the blood-brain barrier and argues for a need of the specific junctional contacts in microvascular endothelium possibly required to support an efficient transendothelial migration of leukocytes.  相似文献   

17.
The effect of various drugs affecting the integrity of different components of the cytoskeleton on the elasticity of two fibroblast cell lines was investigated by elasticity measurements with an atomic force microscope (AFM). Disaggregation of actin filaments always resulted in a distinct decrease in the cell's average elastic modulus indicating the crucial importance of the actin network for the mechanical stability of living cells. Disruption or chemical stabilization of microtubules did not affect cell elasticity. For the f-actin-disrupting drugs different mechanisms of drug action were observed. Cytochalasins B and D and Latrunculin A disassembled stress fibers. For Cytochalasin D this was accompanied by an aggregation of actin within the cytosol. Jasplakinolide disaggregated actin filaments but did not disassemble stress fibers. Fibrous structures found in AFM images and elasticity maps of fibroblasts could be identified as stress fibers by correlation of AFM data and fluorescence images.  相似文献   

18.
Mammary-derived growth inhibitor (MDGI) has previously been localized in the mammary parencyma, dependent on the stage of differentiation of the mammary gland. Here, we have elucidated the distribution of MDGI in the mammary stroma by a combined immunohisto-and cytochemical analysis with antibodies raised against MDGI. Distinct staining of capillary endothelial cells has been revealed. Although its subcellular distribution resembles former observations in secretory epithelial cells, the expression of MDGI in capillary endothelial cells clearly precedes that in secretory epithelial cells. On the other hand, no endothelial MDGI staining has been detected in bovine heart, which contains a fatty acid-binding protein almost identical to MDGI. The localization of MDGI in the mammary capillary endothelium is discussed in terms of its possible involvement in the intracellular transport of hydrophobic ligands or in the regulation of endothelial cell proliferation.  相似文献   

19.
Ebola virus causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Vascular instability and dysregulation are disease-decisive symptoms during severe infection. While the transmembrane glycoprotein GP(1,2) has been shown to cause endothelial cell destruction, the role of the soluble glycoproteins in pathogenesis is largely unknown; however, they are hypothesized to be of biological relevance in terms of target cell activation and/or increase of endothelial permeability. Here we show that virus-like particles (VLPs) consisting of the Ebola virus matrix protein VP40 and GP(1,2) were able to activate endothelial cells and induce a decrease in barrier function as determined by impedance spectroscopy and hydraulic conductivity measurements. In contrast, the soluble glycoproteins sGP and delta-peptide did not activate endothelial cells or change the endothelial barrier function. The VLP-induced decrease in barrier function was further enhanced by the cytokine tumor necrosis factor alpha (TNF-alpha), which is known to induce a long-lasting decrease in endothelial cell barrier function and is hypothesized to play a key role in Ebola virus pathogenesis. Surprisingly, sGP, but not delta-peptide, induced a recovery of endothelial barrier function following treatment with TNF-alpha. Our results demonstrate that Ebola virus GP(1,2) in its particle-associated form mediates endothelial cell activation and a decrease in endothelial cell barrier function. Furthermore, sGP, the major soluble glycoprotein of Ebola virus, seems to possess an anti-inflammatory role by protecting the endothelial cell barrier function.  相似文献   

20.
Metastasis formation is a complex and not entirely understood process. The poorest prognosis and the most feared complications are associated to brain metastases. Melanoma derived brain metastases show the highest prevalence. Due to the lack of classical lymphatic drainage, in the process of brain metastases formation the haematogenous route is of primordial importance. The first and crucial step in this multistep process is the establishment of firm adhesion between the blood travelling melanoma cells and the tightly connected layer of the endothelium, which is the fundamental structure of the blood-brain barrier. This study compares the de-adhesion properties and dynamics of three melanoma cells types (WM35, A2058 and A375) to a confluent layer of brain micro-capillary endothelial cells. Cell type dependent adhesion characteristics are presented, pointing towards the existence of metastatic potential related nanomechanical aspects. Apparent mechanical properties such as elasticity, maximal adhesion force, number, size and distance of individual rupture events showed altered values pointing towards cell type dependent aspects. Our results underline the importance of mechanical details in case of intercellular interactions. Nevertheless, it suggests that in adequate circumstances elastic and adhesive characterizations might be used as biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号