首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics.  相似文献   

3.
The early systemic production of interferon (IFN)-αβ is an essential component of the antiviral host defense mechanisms, but is also thought to contribute to the toxic side effects accompanying gene therapy with adenoviral vectors. Here we investigated the IFN-αβ response to human adenoviruses (Ads) in mice. By comparing the responses of normal, myeloid (m)DC- and plasmacytoid (p)DC-depleted mice and by measuring IFN-αβ mRNA expression in different organs and cells types, we show that in vivo, Ads elicit strong and rapid IFN-αβ production, almost exclusively in splenic mDCs. Using knockout mice, various strains of Ads (wild type, mutant and UV-inactivated) and MAP kinase inhibitors, we demonstrate that the Ad-induced IFN-αβ response does not require Toll-like receptors (TLR), known cytosolic sensors of RNA (RIG-I/MDA-5) and DNA (DAI) recognition and interferon regulatory factor (IRF)-3, but is dependent on viral endosomal escape, signaling via the MAP kinase SAPK/JNK and IRF-7. Furthermore, we show that Ads induce IFN-αβ and IL-6 in vivo by distinct pathways and confirm that IFN-αβ positively regulates the IL-6 response. Finally, by measuring TNF-α responses to LPS in Ad-infected wild type and IFN-αβR−/− mice, we show that IFN-αβ is the key mediator of Ad-induced hypersensitivity to LPS. These findings indicate that, like endosomal TLR signaling in pDCs, TLR-independent virus recognition in splenic mDCs can also produce a robust early IFN-αβ response, which is responsible for the bulk of IFN-αβ production induced by adenovirus in vivo. The signaling requirements are different from known TLR-dependent or cytosolic IFN-αβ induction mechanisms and suggest a novel cytosolic viral induction pathway. The hypersensitivity to components of the microbial flora and invading pathogens may in part explain the toxic side effects of adenoviral gene therapy and contribute to the pathogenesis of adenoviral disease.  相似文献   

4.

Background

Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined.

Methodology/Principal Findings

In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into muscle cells potently inhibited synaptic AChR aggregation in response to innervation.

Conclusion

Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream from agrin/MuSK in facilitating AChR clustering at the developing NMJ.  相似文献   

5.
Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems.  相似文献   

6.
Clathrin and clathrin-dependent events are evolutionary conserved although it is believed that there are differences in the requirement for clathrin in yeast and higher vertebrates. Clathrin is a long-lived protein and thus, with clathrin knockdowns only long-term consequences of clathrin depletion can be studied. Here, we characterize the first vertebrate temperature-sensitive clathrin heavy chain mutant as a tool to investigate responses to rapid clathrin inactivation in higher eukaryotes. Although we created this mutant using a clathrin cryo-electron microscopy model and a yeast temperature-sensitive mutant as a guide, the resulting temperature-sensitive clathrin showed an altered phenotype compared to the corresponding yeast temperature-sensitive clathrin. First, it seemed to form stable triskelions at the non-permissive temperature although endocytosis was impaired under these conditions. Secondly, as a likely consequence of the stable triskelions at the non-permissive temperature, clathrin also localized correctly to its target membranes. Thirdly, we did not observe missorting of the lysosomal enzyme beta-glucuronidase which could indicate that the temperature-sensitive clathrin is still operating at the non-permissive temperature at the Golgi or, that, like in yeast, more than one TGN trafficking pathway exists. Fourthly, in contrast to yeast, actin does not appear to actively compensate in general endocytosis. Thus, there seem to be differences between vertebrates and yeast which can be studied in further detail with this newly created tool.  相似文献   

7.
8.
Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47–57, transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat 47–57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min), 5.63 μl/(g × min) and 6.02 μl/(g × min), respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx.  相似文献   

9.
Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons.  相似文献   

10.

Background

Crescentin, the recently discovered bacterial intermediate filament protein, organizes into an extended filamentous structure that spans the length of the bacterium Caulobacter crescentus and plays a critical role in defining its curvature. The mechanism by which crescentin mediates cell curvature and whether crescentin filamentous structures are dynamic and/or polar are not fully understood.

Methodology/Principal Findings

Using light microscopy, electron microscopy and quantitative rheology, we investigated the mechanics and dynamics of crescentin structures. Live-cell microscopy reveals that crescentin forms structures in vivo that undergo slow remodeling. The exchange of subunits between these structures and a pool of unassembled subunits is slow during the life cycle of the cell however; in vitro assembly and gelation of C. crescentus crescentin structures are rapid. Moreover, crescentin forms filamentous structures that are elastic, solid-like, and, like other intermediate filaments, can recover a significant portion of their network elasticity after shear. The assembly efficiency of crescentin is largely unaffected by monovalent cations (K+, Na+), but is enhanced by divalent cations (Mg2+, Ca2+), suggesting that the assembly kinetics and micromechanics of crescentin depend on the valence of the ions present in solution.

Conclusions/Significance

These results indicate that crescentin forms filamentous structures that are elastic, labile, and stiff, and that their low dissociation rate from established structures controls the slow remodeling of crescentin in C. crescentus.  相似文献   

11.
The Fis protein is a nucleoid associated protein that has previously been reported to act negatively in initiation of replication in Escherichia coli. In this work we have examined the influence of this protein on the initiation of replication under different growth conditions using flow cytometry. The Fis protein was found to be increasingly important with increasing growth rate. During multi-fork replication severe under-initiation occurred in cells lacking the Fis protein; the cells initiated at an elevated mass, had fewer origins per cell and the origins were not initiated in synchrony. These results suggest a positive role for the Fis protein in the initiation of replication.  相似文献   

12.
Wnt/β-catenin signaling induced by the Norrin/Frizzled-4 pathway has been shown to improve capillary repair following oxygen induced retinopathy (OIR) in the mouse, a model for retinopathy of prematurity. Here we investigated if treatment with the monovalent cation lithium that has been shown to augment Wnt/β-catenin signaling in vitro and in vivo has similar effects. In cultured human microvascular endothelial cells, LiCl as well as SB 216763, another small molecule that activates Wnt/β-catenin signaling, induced proliferation, survival and migration, which are all common parameters for angiogenic properties in vitro. Moreover, treatment with both agents caused an increase in the levels of β-catenin and their translocation to nuclei while quercetin, an inhibitor of Wnt/β-catenin signaling, completely blocked the effects of LiCl on proliferation. In mice with OIR, intraperitonal or intravitreal treatment with LiCl markedly increased the retinal levels of β-catenin, but did not improve capillary repair. In contrast, repair was significantly improved following intravitreal treatment with Norrin. The effects of LiCl on HDMEC in vitro have minor relevance for OIR in vivo, and the influence of the Norrin/Frizzled-4 pathway on capillary repair in OIR is not reproducible upon enhancing Wnt/β-catenin signaling by LiCl treatment strongly indicating the presence of additional and essential mechanisms.  相似文献   

13.
The prion consists essentially of PrPSc, a misfolded and aggregated conformer of the cellular protein PrPC. Whereas PrPC deficient mice are clinically healthy, expression of PrPC variants lacking its central domain (PrPΔCD), or of the PrP-related protein Dpl, induces lethal neurodegenerative syndromes which are repressed by full-length PrP. Here we tested the structural basis of these syndromes by grafting the amino terminus of PrPC (residues 1–134), or its central domain (residues 90–134), onto Dpl. Further, we constructed a soluble variant of the neurotoxic PrPΔCD mutant that lacks its glycosyl phosphatidyl inositol (GPI) membrane anchor. Each of these modifications abrogated the pathogenicity of Dpl and PrPΔCD in transgenic mice. The PrP-Dpl chimeric molecules, but not anchorless PrPΔCD, ameliorated the disease of mice expressing truncated PrP variants. We conclude that the amino proximal domain of PrP exerts a neurotrophic effect even when grafted onto a distantly related protein, and that GPI-linked membrane anchoring is necessary for both beneficial and deleterious effects of PrP and its variants.  相似文献   

14.
Members of the PRDM protein family have been shown to play important roles during embryonic development. Previous in vitro and in situ analyses indicated a function of Prdm6 in cells of the vascular system. To reveal physiological functions of Prdm6, we generated conditional Prdm6-deficient mice. Complete deletion of Prdm6 results in embryonic lethality due to cardiovascular defects associated with aberrations in vascular patterning. However, smooth muscle cells could be regularly differentiated from Prdm6-deficient embryonic stem cells and vascular smooth muscle cells were present and proliferated normally in Prdm6-deficient embryos. Conditional deletion of Prdm6 in the smooth muscle cell lineage using a SM22-Cre driver line resulted in perinatal lethality due to hemorrhage in the lungs. We thus identified Prdm6 as a factor that is essential for the physiological control of cardiovascular development.  相似文献   

15.
Influenza virus is the cause of significant morbidity and mortality, posing a serious health threat worldwide. Here, we evaluated the antiviral activities of Cryptoporus volvatus extract on influenza virus infection. Our results demonstrated that the Cryptoporus volvatus extract inhibited different influenza virus strain replication in MDCK cells. Time course analysis indicated that the extract exerted its inhibition at earlier and late stages in the replication cycle of influenza virus. Subsequently, we confirmed that the extract suppressed virus internalization into and released from cells. Moreover, the extract significantly reduced H1N1/09 influenza virus load in lungs and dramatically decreased lung lesions in mice. And most importantly, the extract protected mice from lethal challenge with H1N1/09 influenza virus. Our results suggest that the Cryptoporus volvatus extract could be a potential candidate for the development of a new anti-influenza virus therapy.  相似文献   

16.
Discriminative touch relies on afferent information carried to the central nervous system by action potentials (spikes) in ensembles of primary afferents bundled in peripheral nerves. These sensory quanta are first processed by the cuneate nucleus before the afferent information is transmitted to brain networks serving specific perceptual and sensorimotor functions. Here we report data on the integration of primary afferent synaptic inputs obtained with in vivo whole cell patch clamp recordings from the neurons of this nucleus. We find that the synaptic integration in individual cuneate neurons is dominated by 4–8 primary afferent inputs with large synaptic weights. In a simulation we show that the arrangement with a low number of primary afferent inputs can maximize transfer over the cuneate nucleus of information encoded in the spatiotemporal patterns of spikes generated when a human fingertip contact objects. Hence, the observed distributions of synaptic weights support high fidelity transfer of signals from ensembles of tactile afferents. Various anatomical estimates suggest that a cuneate neuron may receive hundreds of primary afferents rather than 4–8. Therefore, we discuss the possibility that adaptation of synaptic weight distribution, possibly involving silent synapses, may function to maximize information transfer in somatosensory pathways.  相似文献   

17.
18.

Background

The generation of transgenic mice expressing combinations of fluorescent proteins has greatly aided the reporting of activity and identification of specific neuronal populations. Methods capable of separating multiple overlapping fluorescence emission spectra, deep in the living brain, with high sensitivity and temporal resolution are therefore required. Here, we investigate to what extent spectral unmixing addresses these issues.

Methodology/Principal Findings

Using fluorescence resonance energy transfer (FRET)-based reporters, and two-photon laser scanning microscopy with synchronous multichannel detection, we report that spectral unmixing consistently improved FRET signal amplitude, both in vitro and in vivo. Our approach allows us to detect odor-evoked FRET transients 180–250 µm deep in the brain, the first demonstration of in vivo spectral imaging and unmixing of FRET signals at depths greater than a few tens of micrometer. Furthermore, we determine the reporter efficiency threshold for which FRET detection is improved by spectral unmixing.

Conclusions/Significance

Our method allows the detection of small spectral variations in depth in the living brain, which is essential for imaging efficiently transgenic animals expressing combination of multiple fluorescent proteins.  相似文献   

19.
Epilepsy is a chronic brain disorder involving recurring seizures often precipitated by an earlier neuronal insult. The mechanisms that link the transient neuronal insult to the lasting state of epilepsy are unknown. Here we tested the possible role of DNA methylation in mediating long-term induction of epileptiform activity by transient kainic acid exposure using in vitro and in vivo rodent models. We analyzed changes in the gria2 gene, which encodes for the GluA2 subunit of the ionotropic glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor and is well documented to play a role in epilepsy. We show that kainic acid exposure for two hours to mouse hippocampal slices triggers methylation of a 5’ regulatory region of the gria2 gene. Increase in methylation persists one week after removal of the drug, with concurrent suppression of gria2 mRNA expression levels. The degree of kainic acid-induced hypermethylation of gria2 5’ region varies between individual slices and correlates with the changes in excitability induced by kainic acid. In a rat in vivo model of post kainic acid-induced epilepsy, we show similar hypermethylation of the 5’ region of gria2. Inter-individual variations in gria2 methylation, correlate with the frequency and intensity of seizures among epileptic rats. Luciferase reporter assays support a regulatory role for methylation of gria2 5’ region. Inhibition of DNA methylation by RG108 blocked kainic acid-induced hypermethylation of gria2 5’ region in hippocampal slice cultures and bursting activity. Our results suggest that DNA methylation of such genes as gria2 mediates persistent epileptiform activity and inter-individual differences in the epileptic response to neuronal insult and that pharmacological agents that block DNA methylation inhibit epileptiform activity raising the prospect of DNA methylation inhibitors in epilepsy therapeutics.  相似文献   

20.
Podocytes are injured in several glomerular diseases. To alter gene expression specifically in podocytes in vivo, we took advantage of their active endocytotic machinery and developed a method for the targeted delivery of small interfering ribonucleic acids (siRNA). We generated an anti-mouse podocyte antibody that binds to rat and mouse podocytes in vivo. The polyclonal IgG antibody was cleaved into monovalent fragments, while preserving the antigen recognition sites. One Neutravidin molecule was linked to each monovalent IgG via the available sulfohydryl group. Protamine, a polycationic nuclear protein and universal adaptor for anionic siRNA, was linked to the neutravidin via biotin. The delivery system was named shamporter (s heep anti mouse podocyte transporter). Injection of shamporter coupled with either nephrin siRNA or TRPC6 siRNA via tail vein into normal rats substantially reduced the protein levels of nephrin or TRPC6 respectively, measured by western blot analysis and immunostaining. The effect was target specific because other podocyte-specific genes remained unchanged. Shamporter + nephrin siRNA induced transient proteinuria in rats. Control rats injected with shamporter coupled to control-siRNA showed no changes. These results show for the first time that siRNA can be delivered efficiently and specifically to podocytes in vivo using an antibody-delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号