首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A novel linear tetrasaccharide, Gal1-4GlcNAc1-6Gal1-4GlcNAc, was isolated from partial acid hydrolysates of metabolically labeled poly-N-acetyllactosaminoglycans of murine teratocarcinoma cells. It was characterized by exo-glycosidase sequencing and by mild acid hydrolysis followed by identification of all partial cleavage products. The tetrasaccharide, and likewise labelled GlcNAc1-6Gal1-4GlcNAc, resisted the action of endo--galactosidase (EC 3.2.1.103) fromE. freundii at a concentration of 125 mU/ml, while the isomeric, radioactive teratocarcinoma saccharides Gal1-4GlcNAc1-3Gal1-4GlcNAc and GlcNAc1-3Gal1-4GlcNAc were cleaved in the expected manner.Abbreviations WGA wheat germ agglutinin - BSA bovine serum albumin - [3H]GlcNAc1-4-GlcNAc1-4GlcNAcOL N,N,NN'-triacetylchitotriose reduced with NaB3H4  相似文献   

2.
Incubation of synthetic Man\1-4GlcNAc-OMe, GalNAc1-4GlcNAc-OMe, Glc1-4GlcNAc-OMe, and GlcNAc1-4GlcNac-OMe with CMP-Neu5Ac and rat liver Gal1-4GlcNAc (2-6)-sialyltransferase resulted in the formation of Neu5Ac2-6Man1-4GlcNAc-OMe, Neu5Ac2-6GalNAc1-4GlcNAc-OMe, Neu5Ac2-6Glc1-4GlcNAc-OMe and Neu5Ac2-6GlcNAc1-4GlcNAc-OMe, respectively. Under conditions which led to quantitative conversion of Gal1-4GlcNAc-OEt into Neu5Ac2-6Gal1-4GlcNAc-OEt, the aforementioned products were obtained in yields of 4%, 48%, 16% and 8%, respectively. HPLC on Partisil 10 SAX was used to isolate the various sialyltrisaccharides, and identification was carried out using 1- and 2-dimensional 500-MHz1H-NMR spectroscopy.Abbreviations 2D 2-dimensional - CMP cytidine 5-monophosphate - CMP-Neu5Ac cytidine 5-monophospho--N-acetylneuraminic acid - COSY correlation spectroscopy - DQF double quantum filtered - HOHAHA homonuclear Hartmann-Hahn - MLEV composite pulse devised by M. Levitt - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid  相似文献   

3.
The expression of polymorphic determinants on I-E molecules is largely dependent on allelic variation in the E chain. We have previously analyzed the expression of E k and E b chains in F1 hybrid mice by a combination of techniques, and have shown that functional variation detected by the responsiveness of cloned T-cell lines specific for these molecules correlates well with serological determination of E expression. In the present study, we have extended our analysis to E d expression in F1 hybrid mice. We show that E d is relatively poorly expressed in three F1 combinations: H-2 d× H-2 b, H-2 d× H-2 s, and H-2 d× H-2 u. The former two crosses express E chains from the H-2 dparent only; when recombinant strains carrying E b or E s and an active E gene are used, E d expression is significantly increased. On the other hand, H-2 umice synthesize E chains; the poor expression of E d chains in this F1 hybrid apparently reflects the strong preferential association of E u chains with all E molecules thus far analyzed. These results confirm that E chains compete for binding to E chains and that preferential association of different allelic forms of E chains with E chains is a generalized phenomenon. They also illustrate the importance of the rate of biosynthesis of Ia chains for cell-surface expression.  相似文献   

4.
F1() complexes containing equimolar ratios of the and subunits have been shown to function as active ATPases, whereas individually isolated and subunits show no real ATPase activity. These results indicate that the single-copy subunits are not required for F1-ATPase activity. The minimal F1()-core complexes exhibit, however, lower rates and some different properties from those of their parent whole F1 or 33 complexes. It is therefore concluded that for obtaining a full spectrum of the characteristic functional properties of an F1-ATPase the presence of the F1- subunit is also required. The implications of these findings on the subunit location of both catalytic and noncatalytic nucleotide binding sites is discussed.  相似文献   

5.
Minimal photosynthetic catalytic F1() core complexes, containing equimolar ratios of the and subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-33 hexamer and RrF1-11 dimer, which were purified from the respective F1() complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the 11 dimer is consistant with the view that the dimer contains only a single catalytic site. The 33 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-33 can bind tentoxin and is stimulated by it suggests that the F1 subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.Abbreviations CF0F1 chloroplast F0F1 - CF1 chloroplast F1 - CF1 chloroplast F1 subunit - CF1 chloroplast F1 subunit - CF1() a complex containing equal amounts of the CF1 and subunits - MF1 mitochondrial F1 - RrF0F1 Rhodospirillum rubrum F0F1 - RrF1 R. rubrum F1 - RrF1 R. rubrum F1 subunit - RrF1 R. rubrum F1 subunit - RrF1() a complex containing equal amounts of the RrF1 and subunits - Rubisco Ribulose-1,5-bisphosphate carboxylase - TF1 thermophilic bacterium PS3 F1  相似文献   

6.
UDP-GlcNAc: Man3R 2-N-acetylglucosaminyltransferase I (GlcNAc-T I; EC 2.4.1.101) is the key enzyme in the synthesis of complex and hybrid N-glycans. Rat liver GlcNAc-T I has been purified more than 25,000-fold (M r 42,000). TheV max for the pure enzyme with [Man6(Man3)Man6](Man3)Man4GlcNAc4GlcNAc-Asn as substrate was 4.6 µmol min–1 mg–1. Structural analysis of the enzyme product by proton nuclear magnetic resonance spectroscopy proved that the enzyme adds anN-acetylglucosamine (GlcNAc) residue in 1–2 linkage to the Man3Man-terminus of the substrate. Several derivatives of Man6(Man3)Man-R, a substrate for the enzyme, were synthesized and tested as substrates and inhibitors. An unsubstituted equatorial 4-hydroxyl and an axial 2-hydroxyl on the -linked mannose of Man6(Man3)Man-R are essential for GlcNAc-T I activity. Elimination of the 4-hydroxyl of the 3-linked mannose (Man) of the substrate increases theK M 20-fold. Modifications on the 6-linked mannose or on the core structure affect mainly theK M and to a lesser degree theV max, e.g., substitutions of the Man6 residue at the 2-position by GlcNAc or at the 3- and 6-positions by mannose lower theK M, whereas various other substitutions at the 3-position increase theK M slightly. Man6(Man3)4-O-methyl-Man4GlcNAc was found to be a weak inhibitor of GlcNAc-T I.Abbreviations BSA Bovine serum albumin - Bn benzyl - Fuc, F l-fucose - Gal, G d-galactose - GalNAc, GA N-acetyl-d-galactosamine - Glc d-glucose - GlcNAc, Gn N-acetyl-d-glucosamine - HPLC high performance liquid chromatography - Man, M d-mannose - mco 8-methoxycarbonyl-octyl, (CH2)8 COOOCH3 - Me methyl - MES 2-(N-morpholino)ethanesulfonate - NMR nuclear magnetic resonance - PMSF phenylmethylsulfonylfluoride - pnp p-nitrophenyl - SDS sodium dodecyl sulfate - T transferase - Tal d-talose - Xyl d-xylose; - {0, 2 + F} Man6 (GlcNAc2Man3) Man4GlcNAc4 (Fuc6) GlcNAc - {2, 2} GlcNAc2Man6 (GlcNAc2Man3) Man4GlcNAc4GlcNAc; M5-glycopeptide, Man6 (Man3) Man6 (Man3) Man4 GlcNAc4GlcNAc-Asn Enzymes: GlcNAc-transferase I, EC 2.4.1.101; GlcNAc-transferase II, EC 2.4.1.143; GlcNAc-transferase III, EC 2.4.1.144; GlcNAc-transferase IV, EC 2.4.1.145; GlcNAc-transferase V, UDP-GlcNAc: GlcNAc2 Man6-R (GlcNAc to Man) 6-GlcNAc-transferase; GlcNAc-transferase VI, UDP-GlcNAc: GlcNAc6(GlcNAc2) Man6-R (GlcNAc to Man) 4-GlcNAc-transferase; Core 1 3-Gal-transferase, EC 2.4.1.122; 4-Gal-transferase, EC 2.4.1.38; 3-Gal-transferase, UDP-Gal: GlcNAc-R 3-Gal-transferase; blood group i 3-GlcNAc-transferase, EC 2.4.1.149; blood group I 6-GlcNAc-transferase, UDP-GlcNAc: GlcNAc3Gal-R (GlcNAc to Gal) 6-GlcNAc-transferase.  相似文献   

7.
UDP-GlcNAc: Man1-6R (1-2)-N-acetylglucosaminyltransferase II (GlcNAc-T II; EC 2.4.1.143) is a key enzyme in the synthesis of complexN-glycans. We have tested a series of synthetic analogues of the substrate Man1-6(GlcNAc1-2Man1-3)Man-O-octyl as substrates and inhibitors for rat liver GlcNAc-T II. The enzyme attachesN-acetylglucosamine in 1-2 linkage to the 2-OH of the Man1-6 residue. The 2-deoxy analogue is a competitive inhibitor (K i=0.13mm). The 2-O-methyl compound does not bind to the enzyme presumably due to steric hindrance. The 3-, 4- and 6-OH groups are not essential for binding or catalysis since the 3-, 4- and 6-deoxy and -O-methyl derivatives are all good substrates. Increasing the size of the substituent at the 3-position to pentyl and substituted pentyl groups causes competitive inhibition (K i=1.0–2.5mm). We have taken advantage of this effect to synthesize two potentially irreversible GlcNAc-T II inhibitors containing a photolabile 3-O-(4,4-azo)pentyl group and a 3-O-(5-iodoacetamido)pentyl group respectively. The data indicate that none of the hydroxyls of the Man1-6 residue are essential for binding although the 2- and 3-OH face the catalytic site of the enzyme. The 4-OH group of the Man-O-octyl residue is not essential for binding or catalysis since the 4-deoxy derivative is a good substrate; the 4-O-methyl derivative does not bind. This contrasts with GlcNAc-T I which cannot bind to the 4-deoxy-Man- substrate analogue. The data are compatible with our previous observations that a bisectingN-acetylglucosamine at the 4-OH position prevents both GlcNAc-T I and GlcNAc-T II catalysis. However, in the case of GlcNAc-T II, the bisectingN-acetylglucosamine prevents binding due to steric hindrance rather than to removal of an essential OH group. The 3-OH of the Man1-3 is an essential group for GlcNAc-T II since the 3-deoxy derivative does not bind to the enzyme. The trisaccharide GlcNAc1-2Man1-3Man-O-octyl is a good inhibitor (K i=0.9mm). The above data together with previous studies indicate that binding of the GlcNAc1-2Man1-3Man- arm of the branched substrate to the enzyme is essential for catalysis. Abbreviations: GlcNAc-T I, UDP-GlcNAc:Man1-3R (1-2)-N-acetylglucosaminyltransferase I (EC 2.4.1.101); GlcNAc-T II, UDP-GlcNAc:Man1-6R (1-2)-N-acetylglucosaminyltransferase II (EC 2.4.1.143); MES, 2-(N-morpholino)ethane sulfonic acid monohydrate.  相似文献   

8.
-Glucuronidase from callus cultures of Scutellaria baicalensis Georgi was purified to apparent homogeneity by fractionated ammonium-sulfate precipitation and chromatography on diethylaminoethyl-cellulose, hydroxylapatite and baicalin-conjugated Sepharose 6B. A 650-fold purification was obtained by this purification system. When subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified protein migrated as a single band with a molecular mass of 55 kDa. We determined that the native enzyme has a molecular mass of 230 kDa using gel-filtration chromatography. These results suggested that the enzyme exists as a homotetramer composed of four identical 55-kDa subunits. The enzyme showed a broad pH optimum between 7.0 and 8.0. The K m values were 9 M, 10 M, 30 M and 40 M for luteolin 3 -O--d-glucuronide, baicalin, wogonin 7-O--d-glucoronide and oroxlin 7-O--d-glucuronide, respectively. The enzyme was most active with flavone 7-O--d-glucuronides.Abbreviations BA N6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - pI isoelectric point - R t retention time  相似文献   

9.
The conformational properties of the oligosaccharide chain of GM1 ganglioside containingN-glycolyl-neuraminic acid, -Gal-(1-3)--GalNAc-(1-4)-[-Neu5Gc-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer, were studied through NMR nuclear Overhauser effect investigations on the monomeric ganglioside in dimethylsulfoxide, and on mixed micelles of ganglioside and dodecylphosphocholine in water. Several interresidual contacts for the trisaccharide core--GalNAc-(1-4)-[-Neu5Gc-(2-3)]--Gal-were found to fix the relative orientitation of the three saccharides, while the glycosidic linkage of the terminal -Gal-was found to be quite mobile as the -Gal-(1-3)--GalNAc-disaccharide exists in different conformations. These results are similar to those found for two GM1 gangliosides containingN-acetyl-neuraminic acid and neuraminic acid [1].Abbreviations Ganglioside nomenclature is in accordance with Svennerholm [23] and the IUPAC-IUB Recommendations [24] GM3(Neu5Ac) II3Neu5AcLacCer, -Neu5Ac-(2-3)--Gal-(1-4)--Glc-(1-1)-Cer - GM3(Neu5Gc) II3Neu5GcLacCer, -Neu5Gc-(2-3)--Gal-(1-4)--Glc-(1-1)-Cer - GM1(Neu5Ac) II3Neu5AcGgOse4Cer, -Gal-(1-3)--GalNAc-(1-4)-[-Neu5Ac-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer - GM1(Neu5Gc) II3Neu5GcGgOse4Cer, -Gal-(1-3)--GalNAc-(1-4)-[-Neu5Gc-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer - GM1(Neu) II3NeuGgOse4Cer, -Gal-(1-3)--GalNAc-(1-4)-[-Neu-(2-3)]--Glc-(1-1)-Cer - GD1a IV3Neu5AcII3Neu5AcGgOse4Cer, -Neu5Ac-(2-3)--Gal-(1-3)--GalNAc-(1-4)-[-Neu5Ac-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer - GalNAc-GD1a IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer, -GalNAc-(1-4)-[-Neu5Ac-(2-3)]--Gal-(1-3)--GalNAc-(1-4)-[-Neu5Ac-(2-3)]--Gal-(1-4)--Glc-(1-1)-Cer - Neu neuraminic acid - Neu5Ac N-acetyl-neuraminic acid - Neu5Gc N-glycolyl-neuraminic acid - Cer ceramide  相似文献   

10.
A rapid procedure is described for the separation of CMP-sialic acid:lactosylceramide sialyltransferase reaction components using Sep Pak C18 cartridges. The quantitative separation of the more polar nucleotide sugar, CMP-sialic acid, and its free acid from the less polar GM3-ganglioside is simple and rapid relative to previously described methods. Recovery of GM3 is optimized by the addition of phosphatidylcholine to the reaction mixture prior to the chromatographic step. Using rat liver Golgi membranes as a source of CMP-sialic acid: lactosylceramide sialyltransferase activity (GM3 synthase; ST-1), the transfer of [14C] sialic acid from CMP-[14C] sialic acid to lactosylceramide can be quantified by this assay. The procedure is reliable and may be applicable to the isolation of ganglioside products in otherin vitro glycosyltransferase assays.Abbreviations GM3 GM3-ganglioside - II3NeuAc-LacCer NeuAc2-3Gal1-4Glc1-1Cer - GD1a GD1a-ganglioside, IV3NeuAc, II3NeuAc-GgOse4Cer, NeuAc2-3Gal1-3GalNac1-4(NeuAc2-3)Gal1-4Glc1-1Cer - GD3 GD3-ganglioside, II3(NeuAc)2LacCer, NeuAc2-8NeuAc2-3Gal1-4Glc1-1Cer - GgOse4Cer asialo-GM1 Gal1-3GalNAc1-4Gal1-4Glc1-1Cer - FucGMI fucosyl-GMI-ganglioside, Fuc1-2Gal1-3GalNAc1-4Gal1-4 Glc1-1Cer - ST-1 GM3 synthase, CMP-sialic acid:lactosylceramide sialyltransferase - LacCer lactosylceramide, Gal1-4Glc1-1Cer - CMP-NeuAc cytidine 5-monophospho-N-acetylneuraminic acid - PC phosphatidylcholine - PMSF phenylmethylsulfonyl fluoride  相似文献   

11.
Summary Transforming growth factor- (TGF-) is a biologically active polypeptide present in normal tissues as well as transformed cells. Two structurally related forms of this peptide are TGF- 1 and TGF- 2. Using freshly isolated cardiomyocytes and non-myocyte heart cells, and a [32P]-labelled cDNA probe to human TGF- 1, we demonstrated that mRNA for TGF- 1 could be detected only in the nonmyocyte fraction of heart cells. In the present study, the distribution of TGF- 1 in the heart was determined by immunofluorescence staining by use of a polyclonal antibody to porcine TGF- 1 in cryostat sections of rat heart. Immunofluorescence staining was intense around the blood vessels and radially diffuse in the surrounding myocardium.  相似文献   

12.
Calcium channel subunits have profound effects on how 1 subunits perform. In this article we summarize our present knowledge of the primary structures of subunits as deduced from cDNAs and illustrate their different properties. Upon co-expression with 1 subunits, the effects of subunits vary somewhat between L-type and non-L-type channels mostly because the two types of channels have different responses to voltage which are affected by subunits, such as long-lasting prepulse facilitation of 1C (absent in 1E) and inhibition by G protein dimer of 1E, absent in 1C. One subunit, a brain 2a splice variant that is palmitoylated, has several effects not seen with any of the others, and these are due to palmitoylation. We also illustrate the finding that functional expression of 1 in oocytes requires a subunit even if the final channel shows no evidence for its presence. We propose two structural models for Ca2+ channels to account for 1 alone channels seen in cells with limited subunit expression. In one model, dissociates from the mature 1 after proper folding and membrane insertion. Regulated channels seen upon co-expression of high levels of would then have subunit composition 1. In the other model, the chaperoning remains associated with the mature channel and 1 alone channels would in fact be 1 channels. Upon co-expression of high levels of the regulated channels would have composition [1].  相似文献   

13.
Limbs of flower buds from Petunia hybrida were investigated for -glucosidase activity with dihydroflavonol-glucosides and 4-methyl-umbelliferyl--D-glucoside as substrates. Dihydroflavonol-glucoside -glucosidase is localized in the cell wall. This activity has an acid pH optimum and is also active toward 4-methyl-umbelliferyl--glucoside. Besides this activity a neutral -glucosidase is present. This activity is soluble and is not active toward dihydroflavonol-glucosides. Using starch gel electrophoresis it was shown that no difference in -glucosidase activity is present between mutants able to convert dihydroflavonols into anthocyanins and mutants accumulating dihydroflavonol-glucosides. It is concluded that -glucosidase activity is not involved in anthocyanin synthesis.Abbreviations 4MU--glc 4-methylumbelliferyl--D-glucopyranoside - dHQ-7-g dihydroquercetin-7-glucoside - dHQ-4-g dihydroquercetin-4-glucoside - dHM-4-g dihydromyricetin-4-glucoside Deceased  相似文献   

14.
    
An 1,3-fucosyltransferase was purified 3000-fold from mung bean seedlings by chromatography on DE 52 cellulose and Affigel Blue, by chromatofocusing, gelfiltration and affinity chromatography resulting in an apparently homogenous protein of about 65 kDa on SDS-PAGE. The enzyme transferred fucose from GDP-fucose to the Asn-linkedN-acetylglucosaminyl residue of an N-glycan, forming an 1,3-linkage. The enzyme acted upon N-glycopeptides and related oligosaccharides with the glycan structure GlcNAc2Man3 GlcNAc2. Fucose in 1,6-linkage to the asparagine-linked GlcNAc had no effect on the activity. No transfer to N-glycans was observed when the terminal GlcNAc residues were either absent or substituted with galactose.N-acetyllactosamine, lacto-N-biose andN-acetylchito-oligosaccharides did not function as acceptors for the 1,3-fucosyltransferase.The transferase exhibited maximal activity at pH 7.0 and a strict requirement for Mn2+ or Zn2+ ions. The enzyme's activity was moderately increased in the presence of Triton X-100. It was not affected byN-ethylmaleimide.Abbreviations 1,3-Fuc-T GDP-fucose:-N-acetylglucosamine(Fuc to Asn-linked GlcNAc)1,3-fucosyltransferase - 1,6-Fuc-T GDP-fucose:-N-acetylglucosamine(Fuc to Asn-linked GlcNAc) 1,6-fucosyltransferase - PA pyridylamino - GnGn GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4GlcNAc - GnGnF3 GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-3)GlcNAc - GnGnF6 GlcNAc1-2-Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-6)GlcNAc - GnGnF3F6 GlcNAc1-2Man1-6(GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(Fuc1-3)[Fuc1-6]GlcNAc - MM Man1-6(Man1-3)Man1-4GlcNAc1-4GlcNAc - MMF3 Man1-6(Man1-3)Man1-4GlcNAc1-4(Fuc1-3)GlcNAc - MMF3F6 Man1-6(Man1-3)Man1-4GlcNAc1-4(Fuc1-3)[Fuc1-6]GlcNAc  相似文献   

15.
The excitation energy transfer from -carotene to chlorophyll-a in several seminatural systems such as liposomes, lipid layers and PSI complex has been studied at room and liquid nitrogen temperature. Only in a case of PSI complex an efficient energy transfer (about 30%) from -carotene to chlorophyll-a has been observed. The results of energy transfer were discussed on the ground of Dexter's mechanism by taking into account the recently discovered energy level (1Ag) of -carotene.Abbreviations chl-a chlorophyll-a - -car -carotene - RDA mean donor-acceptor distance - PSI photosystem I - exe excitation wavelength - e emission wavelength - d optical pathlength  相似文献   

16.
Liver homogenate-supernatants from most Japanese exhibit an atypical pH optimum for ethanol oxidation at pH 8.8 instead of 10.5, the typical pH-activity optimum. It has been proposed that atypical livers contain alcohol dehydrogenase isozymes with 2 subunits while typical livers contain isozymes with 1 subunits, both produced by the ADH 2 gene. Because it is difficult to differentiate the atypical ADH2 2-2 phenotype from the ADH2 2-1 phenotype by starch gel electrophoresis, an agarose isoelectric focusing procedure was developed that clearly separated the atypical Japanese livers into two groups, A1 and A2. The isozymes in A1 and A2 livers were purified. Type A1 livers contained a single isozyme with an atypical pH-rate profile; it was designated 22. Three isozymes were isolated from A2 livers, two of which corresponded to 11 and 22. A third, absent from the typical and the atypical A1 livers, had an intermediate mobility; it was designated 21. Type A1 livers are, therefore, the homozygous ADH2 2-2 phenotype, and type A2 livers, the heterozygous ADH2 2-1 phenotype. The ADH2 2-2 phenotype was found in 53% of 194 Japanese livers, and the ADH2 2-1 phenotype, in 31%. Accordingly, the frequency of ADH 2 2 was 0.68.This study was supported by U.S. Public Health Service Grant AA 02342.  相似文献   

17.
Bimolecular oxygenation of tri-liganded R-state human hemoglobin (HbA) is described by bi-exponential kinetics with association rate constants k = 27.2 ± 1.3 (M·sec)-1 and k = 62.9 ± 1.6 (M·sec)-1. Both the observed processes have been assigned to the bimolecular oxygenation of - and -subunits of the native tetrameric protein by molecular oxygen. The quantum yields of photodissociation within the completely oxygenated R-state HbA are = 0.0120 ± 0.0017 and = 0.044 ± 0.005 for - and -subunits, respectively. The oxygenation reactions of isolated PCMB- and PCMB-hemoglobin chains are described by mono-exponential kinetics with the association rate constants k = 44 ± 2 (M·sec)-1 and k = 51 ± 1 (M·sec)-1, respectively. The quantum yields of photodissociation of isolated PCMB- and PCMB-chains (0.056 ± 0.006 and 0.065 ± 0.006, respectively) are greater than that observed for appropriate subunits within the R-state of oxygenated HbA.  相似文献   

18.
Two extracellular -glucosidases (cellobiase, EC 3.2.1.21), I and II, from Aspergillus nidulans USDB 1183 were purified to homogeneity with molecular weights of 240,000 and 78,000, respectively. Both hydrolysed laminaribiose, -gentiobiose, cellobiose, p-nitrophenyl--L-glucoside, phenyl--L-glucoside, o-nitrophenyl--L-glucoside, salicin and methyl--L-glucoside but not -linked disaccharides. Both were competitively inhibited by glucose and non-competitively (mixed) inhibited by glucono-1,5-lactone. -Glucosidase I was more susceptible to inhibition by Ag+ and less inhibited by Fe2+ and Fe3+ than -glucosidase II.  相似文献   

19.
Endo--galactosidase (EC 3.2.1.103) ofBacteroides fragilis, at 250 mU ml–1, did not cleave the internal galactosidic linkage of the linear radiolabelled trisaccharide GlcNAc1-6Gal1-4GlcNAc, or those of the tetrasaccharides Gal1-4GlcNAc1-6Gal1-4GlcNAc and Gal1-4GlcNAc1-6Gal1-4Glc. The isomeric glycans which contained the GlcNAc1-3Gal1-4GlcNAc/Glc sequence were readily cleaved.Abbreviations GlcNAc 2-acetamido-2-deoxy-d-glucose - Lact lactose - MT maltotriose - MTet maltotetraose - R MTet chromatographic migration rate in relation to that of maltotetraose  相似文献   

20.
Summary A mouse embryonic stem (ES) cell line E14 and early mouse embryos were stained with a panel of 15 monoclonal antibodies recognizing sialylated or potentially sialylated carbohydrate determinants, Sialyl Le-x and sialyl Le-a were detected on the pre-implantation embryo from the 8-cell stage, and sialyl Le-a weakly on undifferentiated ES cells. Changes in cell surface carbohydrates occurred after induction of ES cell differentiation with retinoic acid (RA) and dibutyryl cAMP. Qualitative analysis of the neutral glycolipids of untreated and RA-treated ES cells using high-performance thin-layer chromatography (HPTLC) revealed few differences between the two types of culture. The major gangliosides in both cultures were indicative of an active a ganglioside synthesis pathway. GD3, a precursor of the b synthesis pathway, previously reported to be characteristic of embryonal carcinoma (EC) cells, was absent. RA-induced differentiation caused a shift in the spectrum to more complex gangliosides. Application of fast atom bombardment mass spectrometry (FAB-MS) to permethylated derivatives of individual bands permitted partial characterization of an unusual sialylated glycolipid and a rare ganglioside with the suggested structure of GalNAc-GD1a.Abbreviations NeuAc N-acetylneuraminic acid - Cer ceramide - CMH monohexosylceramide - CDH lactosylceramide (Gal1-4Glc1-Cer) - CTH ceramide trihexoside (Gal1-4Gal1-4Glc1-Cer) - globoside (GalNAc1-3 Gal1-4Gal1-4Glc1-Cer) - Forssman antigen (GalNAc1-3GalNAc1-3Gal1-4Gal1-4Glc1-Cer) - GM3 (NeuAc2-3Gal1-4Glc1-Cer) - GD3 (NeuAc2-8NeuAc2-3Gal1-4Glc1-Cer) - GM1 (Gal1-3GalNAc1-4[NeuAca2-3]Gal1-4Glc1-Cer) - GD1a (NeuAc2-3Gal1-3GalNAc1-4[NeuAc2-3]Gal1-4Glc1-Cer) - GT1b (Neu5Ac2-3Gal1-3GalNAc1-4[Neu5Ac2-8Neu5Ac2-3]Gal1-4Glc1-Cer) The glycolipids are named according to Svennerholm (1963) and the recommendations of the IUPAC-IUB Commission on Biochemical Nomenclature (1978).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号