首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fox-like canids include taxa from the genera Alopex, Otocyon, Fennecus, Urocyon and Vulpes . Previous morphological analysis indicated that species from the latter three genera are very similar and should be included in the same genus whereas Alopex and Otocyon are sufficiently different to be included in separate genera. Using phylogenetic methods, we analyse mitochondrial DNA (mtDNA) restriction fragment and restriction site data, and 402 bp of cytochrome b sequence variation in fox-like canids. Our results suggest that Alopex lagopus , the arctic fox, is actually a very close relative of the swift fox, a species in the genus Vulpes . Similarly, the fennec, Fennecus zerda is related to the co-existing desert species, the Blanford's fox, Vulpes cana . The grey fox, Urocyon cinereoargenteus , and the bat-eared fox, Otocyon megalotis , are not closely related to each other or to any of the sampled fox taxa. Our results indicate that desert adaptations have evolved independently at least twice in the Canidae, and that Pleistocene glaciations and character divergence may be important causes of morphological change in canids.  相似文献   

2.
3.
We have reconstructed the phylogenetic relationships of 23 species in the dog family, Canidae, using DNA sequence data from six nuclear loci. Individual gene trees were generated with maximum parsimony (MP) and maximum likelihood (ML) analysis. In general, these individual gene trees were not well resolved, but several identical groupings were supported by more than one locus. Phylogenetic analysis with a data set combining the six nuclear loci using MP, ML, and Bayesian approaches produced a more resolved tree that agreed with previously published mitochondrial trees in finding three well-defined clades, including the red fox-like canids, the South American foxes, and the wolf-like canids. In addition, the nuclear data set provides novel indel support for several previously inferred clades. Differences between trees derived from the nuclear data and those from the mitochondrial data include the grouping of the bush dog and maned wolf into a clade with the South American foxes, the grouping of the side-striped jackal (Canis adustus) and black-backed jackal (Canis mesomelas) and the grouping of the bat-eared fox (Otocyon megalotis) with the raccoon dog (Nycteruetes procyonoides). We also analyzed the combined nuclear + mitochondrial tree. Many nodes that were strongly supported in the nuclear tree or the mitochondrial tree remained strongly supported in the nuclear + mitochondrial tree. Relationships within the clades containing the red fox-like canids and South American canids are well resolved, whereas the relationships among the wolf-like canids remain largely undetermined. The lack of resolution within the wolf-like canids may be due to their recent divergence and insufficient time for the accumulation of phylogenetically informative signal.  相似文献   

4.
The Giemsa-banding patterns of chromosomes from the arctic fox (Alopex lagopus), the red fox (Vulpes vulpes), the kit fox (Vulpes macrotis), and the raccoon dog (Nyctereutes procyonoides) are compared. Despite their traditional placement in different genera, the arctic fox and the kit fox have an identical chromosome morphology and G-banding pattern. The red fox has extensive chromosome arm homoeology with these two species, but has only two entire chromosomes in common. All three species share some chromosomes with the raccoon dog, as does the high diploid-numbered grey wolf (Canis lupus, 2n = 78). Moreover, some chromosomes of the raccoon dog show partial or complete homoeology with metacentric feline chromosomes which suggests that these are primitive canid chromosomes. We present the history of chromosomal rearrangements within the Canidae family based on the assumption that a metacentric-dominated karyotype is primitive for the group.  相似文献   

5.
The Egyptian jackal (Canis aureus lupaster) has hitherto been considered a large, rare subspecies of the golden jackal (C. aureus). It has maintained its taxonomical status to date, despite studies demonstrating morphological similarities to the grey wolf (C. lupus). We have analyzed 2055 bp of mitochondrial DNA from C. a. lupaster and investigated the similarity to C. aureus and C. lupus. Through phylogenetic comparison with all wild wolf-like canids (based on 726 bp of the Cytochrome b gene) we conclusively (100% bootstrap support) place the Egyptian jackal within the grey wolf species complex, together with the Holarctic wolf, the Indian wolf and the Himalayan wolf. Like the two latter taxa, C. a. lupaster seems to represent an ancient wolf lineage which most likely colonized Africa prior to the northern hemisphere radiation. We thus refer to C. a. lupaster as the African wolf. Furthermore, we have detected C. a. lupaster individuals at two localities in the Ethiopian highlands, extending the distribution by at least 2,500 km southeast. The only grey wolf species to inhabit the African continent is a cryptic species for which the conservation status urgently needs assessment.  相似文献   

6.
Canidae species fall into two categories with respect to their chromosome composition: those with high numbered largely acrocentric karyotypes and others with a low numbered principally metacentric karyotype. Those species with low numbered metacentric karyotypes are derived from multiple independent fusions of chromosome segments found as acrocentric chromosomes in the high numbered species. Extensive chromosome homology is apparent among acrocentric chromosome arms within Canidae species; however, little chromosome arm homology exists between Canidae species and those from other Carnivore families. Here we use Zoo-FISH (fluorescent in situ hybridization, also called chromosomal painting) probes from flow-sorted chromosomes of the Japanese raccoon dog (Nyctereutes procyonoides) to examine two phylogenetically divergent canids, the arctic fox (Alopex lagopus) and the crab-eating fox (Cerdocyon thous). The results affirm intra-canid chromosome homologies, also implicated by G-banding. In addition, painting probes from domestic cat (Felis catus), representative of the ancestral carnivore karyotype (ACK), and giant panda (Ailuropoda melanoleuca) were used to define primitive homologous segments apparent between canids and other carnivore families. Canid chromosomes seem unique among carnivores in that many canid chromosome arms are mosaics of two to four homology segments of the ACK chromosome arms. The mosaic pattern apparently preceded the divergence of modern canid species since conserved homology segments among different canid species are common, even though those segments are rearranged relative to the ancestral carnivore genome arrangement. The results indicate an ancestral episode of extensive centric fission leading to an ancestral canid genome organization that was subsequently reorganized by multiple chromosome fusion events in some but not all Canidae lineages.  相似文献   

7.
Chromosome homologies between the Japanese raccoon dog (Nectereutes procyonoides viverrinus, 2n = 39 + 2-4 B chromosomes) and domestic dog (Canis familiaris, 2n = 78) have been established by hybridizing a complete set of canine paint probes onto high-resolution G-banded chromosomes of the raccoon dog. Dog chromosomes 1, 13, and 19 each correspond to two raccoon dog chromosome segments, while the remaining 35 dog autosomes each correspond to a single segment. In total, 38 dog autosome paints revealed 41 conserved segments in the raccoon dog. The use of dog painting probes has enabled integration of the raccoon dog chromosomes into the previously established comparative map for the domestic dog, Arctic fox (Alopex lagopus), and red fox (Vulpes vulpes). Extensive chromosome arm homologies were found among chromosomes of the red fox, Arctic fox, and raccoon dog. Contradicting previous findings, our results show that the raccoon dog does not share a single biarmed autosome in common with the Arctic fox, red fox, or domestic cat. Comparative analysis of the distribution patterns of conserved chromosome segments revealed by dog paints in the genomes of the canids, cats, and human reveals 38 ancestral autosome segments. These segments could represent the ancestral chromosome arms in the karyotype of the most recent ancestor of the Canidae family, which we suggest could have had a low diploid number, based on comparisons with outgroup species.  相似文献   

8.
测定了赤狐的线粒体基因组全序列,总长度为16 723 bp,碱基组成为:31.3% A、26.1% C、14.8% G、27.8% T。和大多数哺乳动物一样,赤狐的线粒体全基因组包含13个蛋白质编码基因、2个核糖体RNA基因、22个转运RNA基因和1个控制区。除ND3基因起始密码子为不常见的ATT外,赤狐与北极狐、狼、家犬、郊狼的线粒体蛋白质编码遵循相同模式。在控制区的保守序列区段1和2之间发现一段较长的富含AC的随机重复序列。为了验证赤狐与其他犬科动物的系统发育关系,利用12个重链蛋白质编码基因,分别通过邻接法和最大简约法构建了系统发育树。结果表明:赤狐与北极狐是姐妹群,它们在犬科中都属于赤狐型分支,而灰狼、家犬和郊狼则属于狼型分支,与现有的系统进化研究结果一致。  相似文献   

9.
Previous research implies that competitive character displacement in felids and mustelids of Israel is expressed by canine size. Anatomy and observed killing behaviour of canids suggest that canines in this group are less adapted for the stylized role they play in felids and mustelids. Thus we hypothesized that character displacement, if it exists in canids, should not be manifested more clearly by canine size than by other traits. Five sympatric and at least partially syntopic canids occupy Israel, while in North Africa the largest (wolf) and smallest (Blanford's fox) are absent. Sexual size dimorphism in Israeli canids is generally less than in felids and mustelids (in which we analysed each sex as a separate ‘morphospecies’), so we used mixed-sex samples to represent each species. The three largest species (wolf, golden jackal and red fox) are also represented by Middle Palaeolithic samples in Israel, and all three had larger carnassial lengths then. Carnassial lengths, canine diameters and skull lengths are all remarkable evenly spaced among the five recent species in Israel. In Egypt, no trait manifests significant equality. Despite regional fluctuations in size, the carnassial length ratios of the three smaller species (foxes) are strikingly constant (1.18–1.21) throughout the region, while the ratios for the three larger species (wolf, jackal and red fox), sympatric only in Israel, are larger (1.33–1.34). Finally, mean carnassial length of jackals is constant across North Africa, while skull length and canine diameter both increase from Algeria through Egypt. All three traits are larger in Egypt than in Israel. We tentatively ascribe the equal ratios in Israel to competitive character displacement, though this hypothesis is speculative because of numerous lacunae in knowledge of diet, killing behaviour, available resources and extent of food limitation. Furthermore, humans have greatly affected range, density and ecology of wolves and jackals in the last century. Larger sizes in the Palaeolithic may well be manifestations of Bergmann's rule. The constancy of carnassial length in North African jackals, notwithstanding a longitudinal cline in CBLs of these populations, and the constant ratio between jackal and red fox carnassial length are both consistent with a hypothesis of character release in the absence of the wolf.  相似文献   

10.
Male bat-eared foxes, Otocyon megalotis, are known to contribute extensively to parental care. Yet, the exact roles that males and females play in raising offspring remain relatively unexplored. Here, we describe interactions between adult foxes and their presumed offspring based on a pilot study on three family groups of a wild population in South Africa. We report the first recorded instance of dung provisioning observed in canids. A male bat-eared fox provided dung to his offspring during a foraging trip, presumably to give them access to the ensconced insects. Further, this male provisioned the young foxes with large, live insects. Similar to other researchers, we never observed provisioning by females, but the females in this population did interact socially with their young in addition to suckling. We emphasize the importance of anecdotal reports of novel behavioural responses in wild canids, as an accumulation of such evidence may reveal patterns of innovative behaviour presently unrecognized in this family.  相似文献   

11.
Single nucleotide polymorphisms (SNP) are the ideal marker for characterizing genomic variation but can be difficult to find in nonmodel species. We explored the usefulness of the dog genome for finding SNPs in distantly related nonmodel canids and evaluated so-ascertained SNPs. Using 40 primer pairs designed from randomly selected bacterial artificial chromosome clones from the dog genome, we successfully sequenced 80-88% of loci in a coyote (Canis latrans), grey fox (Urocyon cinereoargenteus), and red fox (Vulpes vulpes), which compared favourably to a 60% success rate for each species using 10 primer pairs conserved across mammals. Loci were minimally heterogeneous with respect to SNP density, which was similar, overall, in a discovery panel of nine red foxes to that previously reported for a panel of eight wolves (Canis lupus). Additionally, individual heterozygosity was similar across the three canids in this study. However, the proportion of SNP sites shared with the dog decreased with phylogenetic divergence, with no SNPs shared between red foxes and dogs. Density of interspecific SNPs increased approximately linearly with divergence time between species. Using red foxes from three populations, we estimated F(ST) based on each of 42 SNPs and 14 microsatellites and simulated null distributions conditioned on each marker type. Relative to SNPs, microsatellites systematically underestimated F(ST) and produced biased null distributions, indicating that SNPs are superior markers for these functions. By reconstituting the frequency spectrum of SNPs discovered in nine red foxes, we discovered an estimated 77-89% of all SNPs (within the region screened) present in North American red foxes. In sum, these findings indicate that information from the dog genome enables easy ascertainment of random and gene-linked SNPs throughout the Canidae and illustrate the value of SNPs in ecological and evolutionary genetics.  相似文献   

12.
Cape foxes (Vulpes chama) and bat-eared foxes (Otocyon megalotis) are sympatric with black-backed jackals (Canis mesomelas) over much of southern Africa, although competition with and/or predation by jackals may suppress local populations of both fox species. From 2005 to 2008, we captured, radio-collared, and monitored 11 cape foxes, 22 bat-eared foxes, and 15 black-backed jackals on a game ranch in South Africa to investigate their spatial, habitat, temporal, and dietary resource overlap. Mean annual home-range sizes were 27.7 km2 for cape foxes, 5.0 km2 for bat-eared foxes, and 17.8 km2 for jackal family groups. Home ranges overlapped completely between species, although core areas overlapped less (<45%), with cape foxes and jackals overlapping the least (12%). When active, cape foxes, but not bat-eared foxes, used core areas of jackal groups less than expected. Additionally, both fox species used jackal core areas less than expected for their den sites, suggesting areas outside jackal core areas were used as refuges by foxes. Strong levels of habitat partitioning were not apparent at the study site or home-range levels, although habitat selection for den sites differed between jackals and cape foxes. Jackals were the most diurnal across seasons, whereas cape foxes were the most nocturnal. Diets overlapped little (R0 = 0.20–0.34) among the canid species, with bat-eared foxes overlapping the least with the others. Jackals killed at least 5 collared bat-eared foxes and 1 collared cape fox, indicating potential interference competition, probably for exclusive use of territorial space rather than over shared resources. We conclude that bat-eared foxes coexisted with jackals primarily by their dietary specialization and group living. Cape foxes coexisted with jackals by exhibiting high levels of spatial, habitat, temporal, and dietary partitioning. Surprisingly, the fox species exhibited positive associations with each other. Our results show the mechanisms that may allow jackals to suppress fox populations, yet also show how foxes, in turn, use different mechanisms to coexist with a dominant canid. © 2012 The Wildlife Society.  相似文献   

13.
Hamster X fox somatic cell hybrids segregating individual fox chromosomes in different combinations were used to assign seven structural loci to fox chromosomes. The gene for ME1 was mapped on the VFU1 chromosome, the genes for ADK and PP being located on the VFU4 chromosome. The gene for GSR was assigned to the VFU7 chromosome and the genes for MPI and COT1 were assigned to the VFU15 chromosome. Localization of these genes enhances the established fox genetic map and extends the known syntenic homologies between the fox and other mammalian. The comparison of data on gene mapping has provided basis for suggestion that there are significant differences in rates of karyotypic evolution in many mammalian taxa.  相似文献   

14.
Accurate detection of pregnancy is a useful tool in zoo management and husbandry, conservation breeding programs and research settings. Our study evaluated the ability of a commercial relaxin hormone assay used in domestic dogs (ReproCHEKTM) to accurately detect pregnancy through plasma analysis in two wolf and two fox species. The relaxin assay detected all of the pregnancies greater than 25 days gestation for island foxes, fennec foxes, gray wolves, and Mexican gray wolves. For island foxes, three negative relaxin results were attributed to using the test earlier postconception than manufacturer recommendation (before day 20). Five other negative results were found for females estimated at 15–25 days gestation, spanning the early and intermediate period (21–30 days gestation) when relaxin may be detected but less reliably. There were no false‐positive results in nonmated negative control animals. Relaxin assay results were highly correlated with ultrasound results and the intra‐assay replicate agreement was 100%. Our results show that the ReproCHEKTM commercial relaxin assay is a minimally invasive and reliable method for pregnancy detection in these wild species when used after 25 days gestation and might be applied to other canids as well. Furthermore, this assay is easy to run and requires no specialized equipment, making it extremely useful for zoo and field research applications. Zoo Biol 27:406–413, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Analyses of Y chromosome haplotypes uniquely provide a paternal picture of evolutionary histories and offer a very useful contrast to studies based on maternally inherited mitochondrial DNA (mtDNA). Here we used a bioinformatic approach based on comparison of male and female sequence coverage to identify 4.7 Mb from the grey wolf (Canis lupis) Y chromosome, probably representing most of the male‐specific, nonampliconic sequence from the euchromatic part of the chromosome. We characterized this sequence and then identified ≈1,500 Y‐linked single nucleotide polymorphisms in a sample of 145 resequenced male wolves, including 75 Finnish wolf genomes newly sequenced in this study, and in 24 dogs and eight other canids. We found 53 Y chromosome haplotypes, of which 26 were seen in grey wolves, that clustered in four major haplogroups. All four haplogroups were represented in samples of Finnish wolves, showing that haplogroup lineages were not partitioned on a continental scale. However, regional population structure was indicated because individual haplotypes were never shared between geographically distant areas, and genetically similar haplotypes were only found within the same geographical region. The deepest split between grey wolf haplogroups was estimated to have occurred 125,000 years ago, which is considerably older than recent estimates of the time of divergence of wolf populations. The distribution of dogs in a phylogenetic tree of Y chromosome haplotypes supports multiple domestication events, or wolf paternal introgression, starting 29,000 years ago. We also addressed the disputed origin of a recently founded population of Scandinavian wolves and observed that founding as well as most recent immigrant haplotypes were present in the neighbouring Finnish population, but not in sequenced wolves from elsewhere in the world, or in dogs.  相似文献   

16.
Apex predators may influence carnivore communities through the suppression of competitively dominant mesopredators, however they also provide carrion subsidies that could influence foraging and competition among sympatric mesopredators when small prey is scarce. We assessed coyote Canis latrans and red fox Vulpes vulpes winter diet overlap and composition from scats collected in two study areas with 3‐fold difference in grey wolf Canis lupus density due to a wolf control program. We hypothesized that differences in diet composition would be driven by the use of carrion, and tested whether 1) apex predators facilitate resource overlap, or 2) apex predators facilitate resource partitioning. We estimated the available biomass of snowshoe hares and voles based on pellet density and vole capture rates in each study area. We used molecular analysis to confirm species identification of predator scats, and used microscopic evaluation of prey remains to analyze diet composition of 471 coyote and fox scats. Ungulate carrion, voles and snowshoe hares comprised 73% of coyote and fox diet, and differences in use of carrion and microtines accounted for nearly 60% of the dissimilarity in diet among these canids. Carrion was the top‐ranked item in the coyote diet in both study areas, whereas carrion use by red foxes declined 3‐fold in the study area with higher wolf and small prey abundance. Diet overlap tended to be lower and diet diversity tended to be higher where wolves were more abundant, though these trends were not statistically significant. Taken together, our findings indicate that carrion provisions could facilitate resource partitioning in mesocarnivore communities by alleviating exploitation competition for small mammals.  相似文献   

17.
Red fox (Vulpes vulpes) and wolf (Canis lupus) are two widespread opportunistic predators living in simpatry in many areas. Nonetheless, scarce information are available on their trophic interactions. We investigated food habits of these two carnivores in a mountain area in Italy and assessed the extent of their trophic niche overlap, focusing on the consumption of wild ungulates. Thereby we analyzed the content of 669 red fox scats and 253 wolf scats collected between May 2008 and April 2009. Red foxes resulted to have a more than three times higher niche breadth than wolves. Vegetables, small mammals, wild ungulates, and invertebrates were major items (altogether 92% of volume) of the red fox annual diet. On the contrary wolf annual diet relied on wild ungulates (94% of volume) with wild boar (Sus scrofa) being the main food item. The degree of trophic niche overlap between the two species was found to be low (Pianka's O = 0.356). Diet variation between the warm and the cold seasons was limited in both species, and higher in red fox than in wolf. The two canids appeared to use wild ungulates unevenly being the former more selective for younger preys, smaller in size (newborn piglets and roe deer Capreolus capreolus fawns), whereas the latter exhibited a preference for medium-sized and large ungulates (10–35 kg wild boar and adult roe deer). Even if wild ungulates represent the main shared food category, the different use of age/weight classes by the two predators, together with their possible consumption as carrions by red fox, suggests a very limited trophic competition between wolf and red fox.This study represents a contribution to the knowledge of trophic interaction in predator–prey systems where sympatric carnivores are present.  相似文献   

18.
To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation.  相似文献   

19.
Endangered San Joaquin kit foxes Vulpes macrotis mutica can be sympatrically distributed with as many as four other canids: red fox, gray fox, coyote and domestic dog. Canid scats are often found during routine fieldwork, but cannot be reliably identified to species. To detect and study the endangered kit fox, we developed mitochondrial DNA markers that can be amplified from small amounts of DNA extracted from scats. We amplified a 412-bp fragment of the mitochondrial cytochrome- b gene from scat samples and digested it with three restriction enzymes. The resulting restriction profiles discriminated among all five canid species and correctly identified 10 'unknown' fox scats to species in blind tests. We have applied our technique to identify canids species for an environmental management study and a conservation study. We envision that our protocol, and similar ones developed for other endangered species will be greatly used for conservation management in the future.  相似文献   

20.
Origin and status of the Great Lakes wolf   总被引:1,自引:1,他引:0  
An extensive debate concerning the origin and taxonomic status of wolf-like canids in the North American Great Lakes region and the consequences for conservation politics regarding these enigmatic predators is ongoing. Using maternally, paternally and biparentally inherited molecular markers, we demonstrate that the Great Lakes wolves are a unique population or ecotype of gray wolves. Furthermore, we show that the Great Lakes wolves experienced high degrees of ancient and recent introgression of coyote and western gray wolf mtDNA and Y-chromosome haplotypes, and that the recent demographic bottleneck caused by persecution and habitat depletion in the early 1900s is not reflected in the genetic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号