首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicification of microbial communities is the most pervasive form of mineralization in two terrestrial hot springs in the Uzon Caldera. X-ray diffraction and electron microscopy reveal a diverse sinter mineral assemblage dominated by opal-A with accessory sulfur, sulfides, alunite group minerals, oxides, and oxyhydroxides. Aluminum laminations (reported for the first time) noted in one deposit may slow opal-A transformational rates enabling mineralized microbial remnants to exist longer in the rock record. Although preservation of microbial forms decreases over time, the collective mineral assemblage and patterning suggests that they are the most persistent lines of evidence of life in the geologic record.  相似文献   

2.
The thermoacidophilic microbial community inhabiting the groundwater with pH 4.0 and temperature 50°C at the East Thermal Field of Uzon Caldera, Kamchatka, was examined using pyrosequencing of the V3 region of the 16S rRNA gene. Bacteria comprise about 30% of microorganisms and are represented primarily by aerobic lithoautotrophs using the energy sources of volcanic origin—thermoacidophilic methanotrophs of the phylum Verrucomicrobia and Acidithiobacillus spp. oxidising metals and reduced sulfur compounds. More than 70% of microbial population in this habitat were represented by archaea, in majority affiliated with “uncultured” lineages. The most numerous group (39% of all archaea) represented a novel division in the phylum Euryarchaeota related to the order Thermoplasmatales. Another abundant group (33% of all archaea) was related to MCG1 lineage of the phylum Crenarchaeota, originally detected in the Yellowstone hot spring as the environmental clone pJP89. The organisms belonging to these two groups are widely spread in hydrothermal environments worldwide. These data indicate an important environmental role of these two archaeal groups and should stimulate the investigation of their metabolism by cultivation or metagenomic approaches.  相似文献   

3.
Microbial communities of four acidic thermal pools in the Uzon Caldera, Kamchatka, Russia, were studied using amplification and pyrosequencing of 16S rRNA gene fragments. The sites differed in temperature and pH: 1805 (60 °C, pH 3.7), 1810 (90 °C, pH 4.1), 1818 (80 °C, pH 3.5), and 1807 (86 °C, pH 5.6). Archaea of the order Sulfolobales were present among the dominant groups in all four pools. Acidilobales dominated in pool 1818 but were a minor fraction at the higher temperature in pool 1810. Uncultivated Archaea of the Hot Thaumarchaeota-related clade were present in significant quantities in pools 1805 and 1807, but they were not abundant in pools 1810 and 1818, where high temperatures were combined with low pH. Nanoarchaeota were present in all pools, but were more abundant in pools 1810 and 1818. A similar abundance pattern was observed for Halobacteriales. Thermophilic Bacteria were less diverse and were mostly represented by aerobic hydrogen- and sulfur-oxidizers of the phylum Aquificae and sulfur-oxidising Proteobacteria of the genus Acidithiobacillus. Thus we showed that extremely acidic hot pools contain diverse microbial communities comprising different metabolic groups of prokaryotes, including putative lithoautotrophs using energy sources of volcanic origin, and various facultative and obligate heterotrophs.  相似文献   

4.
5.
The Zavarzin spring is situated in the caldera of the Uzon volcano, Kamchatka, and is characterized by a temperature of about 60°C, neutral pH, and high concentration of sulfur. The bottom of the spring is covered with a cyanobacterial mat. The structure of the microbial community of the water from the Zavarzin spring was qualitatively and quantitatively characterized by pyrosequencing of the V3 variable region of the 16S rRNA gene, which yielded 37 654 independent sequences. The microbial community includes about 900 bacterial and 90 archaeal genera. Bacteria comprised 95% of the microorganisms and archaea less than 5%. The largest part (32.3%) of the community was constituted by the chemolithoautotrophic bacteria Aquificae from the genera Sulfurihydrogenibium and Thermosulfidibacter. Among autotrophic microorganisms, members of Thermodesulfobacteria (7.3%), the gammaproteobacteria Thiofaba (7.6%), the deltaproteobacteria Desulfurella (2.6%), and the betaproteobacteria Thiomonas (0.6%) were also identified. Heterotrophic bacteria were represented by Calditerrivibrio (12.1%), Thermotogae (6.3%), the betaproteobacteria Tepidimonas (6.0%), Deinococcus-Thermus (4.4%), Caldiserica (1.7%), and Dictyoglomi (1.6%). About 1.9% of microorganisms belonged to the BRC1 phylum, which does not include cultured members, and 0.2% of bacteria formed a new phylogenetic branch of the phylum level, representatives of which have been found only in the Zavarzin spring. Members of all four archaeal phyla were identified: Euryarchaeota (42% of archaeal sequences), Crenarchaeota (50%), Korarchaeota (7.5%), and Nanoarchaeota (0.5%). Thus, in the Zavarzin spring, apart from photosynthesis carried out by the cyanobacterial mat, which covers the bottom, chemolithoautotrophic production of organic matter can occur. In aerobic conditions, it proceeds at the expense of the oxidation of sulfur and its reduced compounds, and in anaerobic conditions, at the expense of the oxidation of hydrogen with sulfur and sulfates as electron acceptors. The organic matter formed by autotrophic bacteria may be utilized by various organotrophic microorganisms, including both fermentative bacteria and organisms that carry out anaerobic respiration with sulfur and nitrate as electron acceptors.  相似文献   

6.
Samples of water from the hot springs of Uzon Caldera with temperatures from 68 to 87°C and pHs of 4.1 to 7.0, supplemented with proteinaceous (albumin, casein, or α- or β-keratin) or carbohydrate (cellulose, carboxymethyl cellulose, chitin, or agarose) biological polymers, were filled with thermal water and incubated at the same sites, with the contents of the tubes freely accessible to the hydrothermal fluid. As a result, several enrichment cultures growing in situ on different polymeric substrates were obtained. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments obtained after PCR with Bacteria-specific primers showed that the bacterial communities developing on carbohydrates included the genera Caldicellulosiruptor and Dictyoglomus and that those developing on proteins contained members of the Thermotogales order. DGGE analysis performed after PCR with Archaea- and Crenarchaeota-specific primers showed that archaea related to uncultured environmental clones, particularly those of the Crenarchaeota phylum, were present in both carbohydrate- and protein-degrading communities. Five isolates obtained from in situ enrichments or corresponding natural samples of water and sediments represented the bacterial genera Dictyoglomus and Caldanaerobacter as well as new archaea of the Crenarchaeota phylum. Thus, in situ enrichment and consequent isolation showed the diversity of thermophilic prokaryotes competing for biopolymers in microbial communities of terrestrial hot springs.  相似文献   

7.
8.
A novel thermophilic, alkali-tolerant, and CO-tolerant strain JW/WZ-YB58T was isolated from green mat samples obtained from the Zarvarzin II hot spring in the Uzon Caldera, Kamchatka (Far East Russia). Cells were Gram-type and Gram stain-positive, strictly aerobic, 0.7–0.8 μm in width and 5.5–12 μm in length and produced terminal spherical spores of 1.2–1.6 μm in diameter with the mother cell swelling around 2 μm in diameter (drumstick-type morphology). Cells grew optimally at pH25°C 8.2–8.4 and temperature 50–52°C and tolerated maximally 6% (w/v) NaCl. They were strict heterotrophs and could not use either CO or CO2 (both with or without H2) as sole carbon source, but tolerated up to 90% (v/v) CO in the headspace. The isolate grew on various complex substrates such as yeast extract, on carbohydrates, and organic acids, which included starch, d-galactose, d-mannose, glutamate, fumarate and acetate. Catalase reaction was negative. The membrane polar lipids were dominated by branched saturated fatty acids, which included iso-15:0 (24.5%), anteiso-15:0 (18.3%), iso-16:0 (9.9%), iso-17:0 (17.5%) and anteiso-17:0 (9.7%) as major constituents. The DNA G+C content of the strain is 45 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain JW/WZ-YB58T is distantly (<93% similarity) related to members of Bacillaceae. On the basis of 16S rRNA gene sequence, physiological and phenotypic characteristics, the isolate JW/WZ-YB58T (ATCC BAA-1258; DSM 17740) is proposed to be the type strain for the type species of the new taxa within the family Bacillaceae, Thermalkalibacillus uzoniensis gen. nov. sp. nov. The Genbank accession number for the 16S rRNA gene sequence is DQ221694.The Genbank accession number for the 16S rRNA gene sequence of strain JW/WZ-YB58T is DQ221694.  相似文献   

9.
10.
In situ analysis of the 16S rRNA genes from bacterial mats of five hydrothermal springs (36–58°C) in the Uzon caldera (Kamchatka, Russia) was carried out using clone libraries. Eight clone libraries contained 18 dominant phylotypes (over 4–5%). In most clone libraries, the phylotype of the green sulfur bacterium Chlorobaculum sp. was among the dominant ones. The phylotypes of the green nonsulfur bacteria Chloroflexus and Roseiflexus and of purple nonsulfur bacteria Rhodoblastus, Rhodopseudomonas, and Rhodoferax were also among the dominant ones. Cyanobacteria were represented by one dominant phylotype in a single spring. Among nonphototrophic bacteria, the dominant phylotypes belonged to Sulfyrihydrogenibium sp., Geothrix sp., Acidobacterium sp., Meiothermus sp., Thiomonas sp., Thiofaba sp., and Spirochaeta sp. Three phylotypes were not identified at the genus level. Most genera of phototrophic and nonphototrophic organisms corresponding to the phylotypes from Uzon hydrotherms have been previously revealed in the hydrotherms of volcanically active regions of America, Asia, and Europe. These results indicate predominance of bacterial mats carrying out anaerobic photosynthesis in the hydrotherms of the Uzon caldera.  相似文献   

11.
12.
The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated.  相似文献   

13.
The physicochemical and microbial characteristics of some medium-temperature hydrotherms of Kamchatka Peninsula (Uzon caldera), habitats of the hoverfly Eristalinus sepulchralis larvae, were studied. In these hydrothermal vents, the larvae were found to use various prokaryotic and eukaryotic microorganisms as a nutrient substrate. The rates of chemo- and photosynthetic activity of the suspended microbial communities inhabiting the hydrotherms and supporting the existence of larvae were measured. By light and electron microscopy, exo- and endosymbiotic prokaryotic microorganisms were revealed in the digestive and respiratory systems of larvae.  相似文献   

14.
The methane-oxidizing microbial communities inhabiting the bottom sediments of 36 hot springs of the Uzon caldera (Kamchatka, Russia) located in the thermal fields Vostochnoe, Oranzhevoe, and Severnoe, as well as near the lakes Fumarol’noe and Khloridnoe and the Izvilistyi stream, were studied. Methanotrophic bacteria were detected by PCR and FISH in only 8 hot springs. The highest numbers of copies of the pmoA gene (molecular marker of methanotrophy) (2.8 × 107 and 1.1 × 107 copies/mL sediment) were detected in the Kul’turnyi and Kvadrat springs; however, in other springs, the numbers of the pmoA gene copies were significantly lower (5.4 × 103–2.8 × 106 copies/mL sediment). By using the FISH method, only type I methanotrophs were detected in these springs, with their percentage ranging from 0.3 to 20.5% of the total number of eubacteria. PCR-DGGE analysis of the pmoA gene showed that the diversity of methanotrophs was extremely low (no more that two components). Analysis of the deduced PmoA amino acid sequences demonstrated that methanotrophic bacteria of the genus Methylothermus, closely related to representatives of two valid species, widely occurred in the thermal springs near Lake Fumarol’noe. Other bacteria differing considerably from the detected Methylothermus species were detected as well. In the springs with low pH values (2.6–3.8), methanotrophic Gammaproteobacteria most closely related to the genera Methylomonas and Methylobacter were detected for the first time.  相似文献   

15.
The micromorphological structure of microbial mats (biomats) from the hot springs of the Vilyuchinskaya hydrothermal system, Kamchatka Peninsula, Russia, were investigated. The Vilyuchinskie hot springs had a discharge temperature of 55-56 degrees C and Na-Ca-HCO3-type waters rich in silicic and boric acids. Water and biomats had high concentrations of Fe, Mn, Sr, and As. Enumeration of total bacterial abundance (TBA) demonstrated a low density of bacterial populations. However, the fractions of metabolically active bacteria and respiring iron-oxidizing bacteria in the hot-spring water were high, comprising 68 and 21% of TBA, respectively. Scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (SEM-EDX) showed that unicellular rod-shaped bacteria about 5-microm long predominated in the brown biomats. The mineral capsules of these bacteria contained large amounts of Fe and Si. Extracellular and intracellular particles were observed by transmission electron microscopy. Fe-oxidizing bacteria were isolated from the biomats on agar plates with selective medium. Therefore, it can be concluded that microorganisms inhabiting the biomats of the Vilyuchinskie hot springs are essential for the deposition of Fe-minerals at neutral pH.  相似文献   

16.
Infectious hematopoietic necrosis virus (IHNV) is a well known rhabdoviral pathogen of salmonid fish in North America that has become established in Asia and Europe. On the Pacific coast of Russia, IHNV was first detected in hatchery sockeye from the Kamchatka Peninsula in 2001. Results of virological examinations of over 10,000 wild and cultured salmonid fish from Kamchatka during 1996 to 2005 revealed IHNV in several sockeye salmon Oncorhynchus nerka populations. The virus was isolated from spawning adults and from juveniles undergoing epidemics in both hatchery and wild sockeye populations from the Bolshaya watershed. No virus was detected in 2 other watersheds, or in species other than sockeye salmon. Genetic typing of 8 virus isolates by sequence analysis of partial glycoprotein and nucleocapsid genes revealed that they were genetically homogeneous and fell within the U genogroup of IHNV. In phylogenetic analyses, the Russian IHNV sequences were indistinguishable from the sequences of North American U genogroup isolates that occur throughout Alaska, British Columbia, Washington, and Oregon. The high similarity, and in some cases identity, between Russian and North American IHNV isolates suggests virus transmission or exposure to a common viral reservoir in the North Pacific Ocean.  相似文献   

17.
18.
Population densities of anaerobic Fe(III)-reducing bacteria (FeRB) and aerobic heterotrophs were inversely correlated in the surficial (0-2 cm) layers of Sapelo Island, Georgia, salt marsh sediments. In surficial sediments where densities of aerobic heterotrophs were low, the density of culturable FeRB correlated positively with the concentration of amorphous Fe(III) oxyhydroxides extractable by ascorbate. High FeRB densities and a decrease with depth of ascorbate-extractable Fe(III) were observed in the upper 6 cm of a tidal creek core. Culturable sulfate-reducing bacteria (SRB) and SRB-targeted rRNA signals were also detected in the upper 6-cm depth. The disappearance of FeRB below 6 cm, however, coincided with a large increase in the abundance of SRB. Thus, when FeRB are not limited by the availability of readily reducible amorphous Fe(III) oxyhydroxides, FeRB may outcompete SRB for growth substrates. Shewanella putrefaciens- and Geobacteraceae-targeted rRNA signals were at or below detection limits in all sediment samples, indicating that these FeRB are not predominant members of the active FeRB populations. The ubiquitous presence of FeRB at the sites studied challenges the traditional view that dissimilatory Fe(III) reduction is not an important pathway of organic carbon oxidation in salt marsh sediments.  相似文献   

19.
【目的】泉古菌为陆地热泉系统的主要古菌类群,可能在自然界生源元素的地球化学循环中发挥着重要作用。本研究旨在揭示俄罗斯堪察加地区热泉以及热泉周边区域的泉古菌多样性,同时基于之前已获得的我国云南地区热泉数据,比较两地区泉古菌群落差异。【方法】通过构建16S rRNA基因片段克隆文库获得序列信息和丰度,随后进行物种多样性、系统发育和群落结构差异分析。【结果】高温热泉Burlyashi Liza(BSL,89℃)中的泉古菌全部属于热变形菌纲(Thermoprotei)内的物种。中温热泉TF Vent 2(TFV,49℃)的群落结构主要由不确定的热变形菌纲类群、不确定的泉古菌类群、高温水环境泉古菌类群Ⅱ(HWCG-Ⅱ)和奇古菌下的Group1.1b类群组成。热泉周边常温环境的主要物种与热泉环境的代表性克隆pJP41一起聚成一个较大的遗传分枝。Jackknife聚类树和主坐标分析(Principal coordinates analysis,PCoA)的结果显示:温度相似的样点,其泉古菌群落结构相对来说更为相似。【结论】俄罗斯堪察加地区与我国云南地区热泉中的泉古菌存在着一定程度上的不同。陆地热泉系统影响着其周边环境的泉古菌类群。热泉中泉古菌群落结构受温度的明显影响。  相似文献   

20.
Bioremediation methods that precipitate contaminants in situ as solid (mineral) phases can provide cost-effective options for removing dissolved metals in contaminated groundwater. The current field-scale experiments demonstrate that indigenous bacteria can be stimulated to remove metals by injection of electron-donating substrates and nutrients into a contaminated aquifer. Groundwater at the investigation site is aerobic and contains high levels of lead, cadmium, zinc, copper, and sulfuric acid (pH = 3.1) derived from a car-battery recycling plant. During the experiments, lead, cadmium, zinc, and copper were almost completely removed by precipitation of solid sulfide phases, as pH increased from 3 to ∼ 5 and Eh dropped from +400 mV to -150 mV. X-ray and transmission electron microscopy (TEM) analyses of filtered material from the treated groundwater indicated the presence of newly formed nanocrystalline metal sulfides. Genetic sequencing indicated that the principal species of sulfate-reducing bacteria involved in the bioremediation process was Desulfosporosinus orientis. Geochemical modeling shows that oxidation of added substrates and subsequent bacterial sulfate reduction produced desired geochemical conditions (i.e., decreasing Eh and increasing pH) for the precipitation and sorption of metal sulfides. Geophysical survey results suggest that bioremediation lowers electrical conductance of groundwater and possibly increases the magnetic susceptibility of porous media. This study demonstrates that integrated geochemical, geophysical, and microbiological analyses, combined with theoretical modeling, can successfully track and predict the progress of subsurface bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号