首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was demonstrated that Zn2+, in contrast to Pb2+ and Co2+, initiates the development of the nonspecific mitochondrial permeability (NMP) in hepatocytes. Kinetic analysis of this process was performed. It was proved that Zn-induced NMP is mediated by activation of megachannels (mitochondrial permeability transition pores). Sulfo groups of the ADP/ATP antiporter and carboxylic groups of voltage-dependent anionic channels are also involved in the development of Zn2+-stimulated NMP. Interaction between Zn2+ and cyclophilin D is the key event in the process of activation of NMP. We found that the Na/Ca exchanger exerts an activating effect on the Zn-induced NMP. In general, swelling of the mitochondria and Ca2+ release from these organelles under the action of Zn2+ are based on noticeably dissimilar mechanisms. The observed distinctions depend on the functional state of the mitochondrial transport systems.  相似文献   

2.
The adenine nucleotides ADP and ATP are probably the most important endogenous inhibitors of the mitochondrial permeability transition (MPT). We studied the inhibitory effects of adenine nucleotides on brain MPT by measuring mitochondrial swelling and Ca2+ and cytochrome c release. We observed that in the presence of either ADP or ATP, at 250 μM, brain mitochondria accumulated more than 1 μmol Ca2+ × mg protein−1. ADP or ATP also prevented Ca2+-induced mitochondrial swelling and cytochrome c release. Interestingly, ATP lost most of its inhibitory effects on MPT when the experiments were carried out in the presence of ATP-regenerating systems. These results indicate that MPT inhibition observed in the presence of added ATP could be mainly due to hydrolysis of ATP to ADP. From mitochondrial swelling measurements, half-maximal inhibitory values (K i) of 4.5 and 98 μM were obtained for ADP and ATP, respectively. In addition, a delayed mitochondrial swelling sensitive to higher ADP concentrations was observed. Mitochondrial anoxia/reoxygenation did not interfere with the inhibitory effect of ADP on Ca2+-induced MPT, but oxidative phosphorylation markedly decreased this effect. We conclude that ADP is a potent inhibitor of brain MPT whereas ATP is a weaker inhibitor of this phenomenon. Our results suggest that ADP can have an important protective role against MPT-mediated tissue damage under conditions of brain ischemia and hypoglycemia.  相似文献   

3.
Using AS-30D rat ascites hepatoma cells, we studied the modulating action of various antioxidants, inhibitors of mitochondrial permeability transition pore and inhibitors of the respiratory chain on Cd2+-produced cytotoxicity. It was found that Cd2+ induced both necrosis and apoptosis in a time- and dose-dependent way. This cell injury involved dissipation of the mitochondrial transmembrane potential, respiratory dysfunction and initial increase of the generation of reactive oxygen species (ROS), followed by its decrease after prolonged incubation. Inhibitors of the mitochondrial permeability transition pore, cyclosporin A and bongkrekic acid, and inhibitors of respiratory complex III, stigmatellin and antimycin A, but not inhibitor of complex I, rotenone, partly prevented necrosis evoked by exposure of the cells to Cd2+. Apoptosis of the cells was partly prevented by free radical scavengers and by preincubation with N-acetylcysteine. Stigmatellin, antimycin A and cyclosporin A also abolished Cd2+-induced increase in ROS generation. It is concluded that Cd2+ toxicity in AS-30D rat ascites hepatoma, manifested by cell necrosis and/or apoptosis, involves ROS generation, most likely at the level of respiratory complex III, and is related to opening of the mitochondrial permeability transition pore.  相似文献   

4.
The deleterious action of Cd2+ on rat liver mitochondria was investigated in this work using spectroscopic and microscopic methods. The concentration dependence of Cd2+ on mitochondrial swelling, membrane potential and membrane fluidity was studied. Our aim was to detect the active sites of Cd2+ in the mitochondrial membrane treatments with cyclosporin A (CsA) and EGTA on the mitochondrial permeability transition (MPT) induced by low and high concentrations of Cd2+. The protective effects of dithiothreitol, human serum albumin and monobromobimane+ on Cd2+-induced MPT were also monitored. All of these investigations indicated that Cd2+ can directly affect MPT at two separate localization sites at different concentrations: the classic Ca2+ triggering site and the thiol (–SH) groups of membrane proteins matched by MPT pore opening (defined as “S” site). At the high concentration of Cd2+, other free –SH groups in the mitochondrial matrix may be involved in this process. These findings were supported by transmission electron microscopy and shed light on the toxic mechanism of Cd2+ on mitochondria.  相似文献   

5.
Ionized COOH groups are present in molecular structures involved in the process of formation of mitochondrial permeability transition pores (MPTPs), in particular, in the ADP/ATP antiporter and/or voltage-dependent anion channels. In experiments on preparations of isolated mitochondria obtained from rat hepatocytes, we found that, in the case of induction of nonspecific permeability through mitochondrial membranes under the action of Cа2+ in a relatively low concentration (15 μM), modulation of the activity of COOH groups with the use of 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (1 mM) led to unidirectional effects, namely to acceleration of the processes of formation of MPTPs and transport of incubation solution and Са2+ through these megachannels, prolongation of the open state of the latter, as well as to increases in the final volume (swelling) of the mitochondria and to a rise in the amount of Са2+ released from these organelles. In contrast, when calcium was used in a high concentration (100 μM), the directions of the above processes were dissimilar. Slowing down of the flow of incubation solution through MPTPs and the process of their formation was observed; at the same time, Са2+ release from the mitochondria was accelerated. However, the final volume of the mitochondria and the amount of Са2+ released from these cellular structures increased. Differences between the effects of the used modulator of the activity of COOH groups on the nonspecific permeability of the mitochondria induced by calcium applied in low and high concentrations are perhaps determined by the following. The process of swelling of the mitochondria is saturable, while Са2+ release from these organelles shows an unlimited pattern. The latter process (Са2+ release) probably undergoes calcium-initiated inactivation. The mechanisms of induction of nonspecific permeability of the mitochondrial membranes under the action of low and high calcium concentrations differ from each other. The calcium uniporter in the mitochondria is sensitive to the modulator of the activity of COOH groups. Diffusion of water through the inner mitochondrial membrane and/or other systems provides some contribution to the studied processes; this can lead to changes in the transport of liquids in these organelles.  相似文献   

6.
We have studied Cd2+-induced effects on mitochondrial respiration and swelling in various media as a function of the [Cd2+] in the presence or absence of different bivalent metal ions or ruthenium red (RR). It was confirmed by monitoring oxygen consumption by isolated rat liver mitochondria that, beginning from 5 M, Cd2+ decreased both ADP and uncoupler-stimulated respiration and increased their basal respiration when succinate was used as respiratory substrate. At concentrations higher than 5 M, Cd2+ stimulated ion permeability of the inner mitochondrial membrane, which was monitored in this study by swelling of both nonenergized mitochondria in 125 mM KNO3 or NH4NO3 medium and succinate-energized mitochondria incubated in a medium containing 25 mM K-acetate and 100 mM sucrose. We have found substantial changes in the above-mentioned Cd2+ effects on mitochondria treated in sequence with 100 M of Ca2+, Sr2+, Mn2+ or Ba2+(Me2+) and 7.5 M RR, as well as the alterations in Cd2+ action on the uptake of 137Cs+ by succinate-energized mitochondria in the presence or absence of valinomycin in acetate medium (50 mM Tris-acetate and 140 mM sucrose) with or without Ca2+ or RR. The evidence obtained indicate that Ca2+ exhibits a synergestic action on all Cd2+ effects examined, whereas Sr2+ and Mn2+, conversely, are antagonistic. In the presence of RR, the Cd2+ effects on respiration [stimulation of State 4 respiration and inhibition of 2,4-dinitrophenol (DNP)-uncoupled respiration] still exist, but are observed at concentrations of cadmium more than one order higher; the inhibition of State 3 respiration by Cd2+, conversely, takes place under even lower cadmium concentrations than those determined without RR in the medium. In addition, RR added simultaneously with cadmium in the incubation medium prevents any swelling in the nitrate media, but induces an increment both in Cd2+-stimulated swelling and 137Cs+ (analog of K+) uptake in the acetate media. For the first time, we have shown that Cd2+-induced swelling in all media under study is susceptible to cyclosporin A (CSA), a high-potency inhibitor of the mitochondrial permeability transition (PT) pore. The observations are interpreted in terms of a dual effect of cadmium on respiratory chain activity and permeability transition.  相似文献   

7.
Low levels of ADP binding at the ADP/ATP translocase caused inhibition of the Ca2+-inducedpermeability transition of the mitochondrial inner membrane, when measured using the shrinkage assay on mitochondria, which have already undergone a transition. Inhibition was preventedby carboxyatractyloside, but potentiated by bongkrekic acid, which increased the affinity forinhibition by ADP. This suggests that inhibition was related to the conformation of thetranslocase. Ca2+ addition was calculated to remove most of the free ADP. Ca2+ added after ADPinduced a slow decay of the inhibition, which probably reflected the dissociation of ADP fromthe translocator. We conclude that the probability of forming a permeability transition pore(PTP) is much greater when the translocase is in the CAT conformation than in the BKAconformation, and, in the absence of CAT and BKA, the translocator is shifted between theBKA and CAT conformations by ADP binding and removal, even in deenergized mitochondria with no nucleotide gradients.  相似文献   

8.
Triggering ofthe permeability transition pore (PTP) in isolated mitochondria causesrelease of matrix Ca2+, ions, andmetabolites, and it has been proposed that the PTP mediatesmitochondrial Ca2+ release inintact cells. To study the role of the PTP in mitochondrial energymetabolism, the mitochondrial content ofCa2+,Mg2+, ATP, and ADP was determinedin hormonally stimulated rat livers perfused with cyclosporin A (CsA).Stimulation of livers perfused in the absence of CsA with glucagon andphenylephrine induced an extensive uptake ofCa2+,Mg2+, and ATP plus ADP by themitochondria, followed by a release on omission of hormones. In thepresence of CsA, the PTP was fully inhibited, but neither thehormone-induced uptake of Ca2+,ATP, or ADP by mitochondria nor their release after washout of hormoneswas significantly changed. We conclude that the regulation of sustainedchanges in mitochondrial Ca2+content induced by hormonal stimulation is independent of the PTP.

  相似文献   

9.
This study was undertaken to evaluate whether chemical hypoxia-induced cell injury is a result of reactive oxygen species (ROS) generation, ATP depletion, mitochondrial permeability transition, and an increase in intracellular Ca2+, in A172 cells, a human glioma cell line. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport, in a glucose-free medium. Exposure of cells to chemical hypoxia resulted in cell death, ROS generation, ATP depletion, and mitochondrial permeability transition. The H2O2 scavenger pyruvate prevented cell death, ROS generation, and mitochondrial permeability transition induced by chemical hypoxia. In contrast, changes mediated by chemical hypoxia were not affected by hydroxyl radical scavengers. Antioxidants did not affect cell death and ATP depletion induced by chemical hypoxia, although they prevented ROS production and mitochondrial permeability transition induced by chemical hypoxia. Chemical hypoxia did not increase lipid peroxidation even when antimycin A was increased to 50 M, whereas the oxidant t-butylhydroperoxide caused a significant increase in lipid peroxidation, at a concentration that is less effective than chemical hypoxia in inducing cell death. Fructose protected against cell death and mitochondrial permeability transition induced by chemical hypoxia. However, ROS generation and ATP depletion were not prevented by fructose. Chemical hypoxia caused the early increase in intracellular Ca2+. The cell death and ROS generation induced by chemical hypoxia were altered by modulation of intracellular Ca2+ concentration with ruthenium red, TMB-8, and BAPTA/AM. However, mitochondrial permeability transition was not affected by these compounds. These results indicate that chemical hypoxia causes cell death, which may be, in part, mediated by H2O2 generation via a lipid peroxidation-independent mechanism and elevated intracellular Ca2+. In addition, these data suggest that chemical hypoxia-induced cell death is not associated directly with ATP depletion and mitochondrial permeability transition.  相似文献   

10.
Summary The control by nucleotides of the Ca2+-activated channel which regulates the nonspecific permeability of the mitochondrial inner membrane has been investigated quantitatively. The cooperative binding of two molecules of ADP to the internal (matrix) side of the channel causes a mixed-type inhibition of channel activity. ATP, AMP, cAMP and GDP are all ineffective. NADH shows a pattern of inhibition similar to that of ADP, though the apparentK I is higher by a factor of 200. NADPH relieves the inhibition by NADH. NAD+ also inhibits, but its affinity is a factor of 10 less than that of NADH. When ADP and NADH are added together, they act synergistically to inhibit the Ca2+-activated channel. It is concluded that the concept of the modification of enzyme activity by the allosteric binding of nucleotides, which is well established for soluble enzyme systems, also has application to the regulation of channels that control membrane permeability.  相似文献   

11.
Eosin-5-maleimide is impermeable to the inner mitochondrial membrane, exhibiting essentially no reactivity with matrix glutathione or with beta-hydroxybutyrate dehydrogenase located on the matrix surface of the inner membrane. In intact mitochondria, eosin-5-maleimide is unreactive with the ADP/ATP antiporter even under conditions which promote maximal labeling by N-[3H]ethylmaleimide (i.e., ADP present). However, eosin-5-maleimide readily labels the ADP/ATP antiporter in "inverted" inner membrane vesicles even in the presence of N-ethylmaleimide. Labeling is prevented if the vesicles are prepared from mitochondria pretreated with carboxyatractyloside. In contrast to the ADP/ATP antiporter, essential sulfhydryl groups of the Pi/H+ symporter are accessible to eosin-5-maleimide in intact mitochondria with optimal inhibition of phosphate transport being observed at 25 degrees C. Eosin-5-maleimide also prevents labeling of the Pi/H+ symporter by N-[3H]ethylmaleimide. These results show that essential sulfhydryl groups of the ADP/ATP antiporter and the Pi/H+ symporter have differing reactivities and locations in functionally intact mitochondria. With respect to eosin-5-maleimide, sulfhydryl groups of the ADP/ATP carrier occur in two distinct classes, both of which are inaccessible in intact mitochondria. Only one class, depending on conditions, can be exposed in submitochondrial particles. In contrast, sulfhydryl group(s) of the Pi/H+ symporter behave as a single reactive class which is readily accessible in mitochondria at 25 degrees C.  相似文献   

12.
The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.  相似文献   

13.
The oxidation of critical cysteines/related thiols of adenine nucleotide translocase (ANT) is believed to be an important event of the Ca2+-induced mitochondrial permeability transition (MPT), a process mediated by a cyclosporine A/ADP-sensitive permeability transition pores (PTP) opening. We addressed the ANT-Cys56 relative mobility status resulting from the interaction of ANT/surrounding cardiolipins with Ca2+ and/or ADP by means of computational chemistry analysis (Molecular Interaction Fields and Molecular Dynamics studies), supported by classic mitochondrial swelling assays. The following events were predicted: (i) Ca2+ interacts preferentially with the ANT surrounding cardiolipins bound to the H4 helix of translocase, (ii) weakens the cardiolipins/ANT interactions and (iii) destabilizes the initial ANT-Cys56 residue increasing its relative mobility. The binding of ADP that stabilizes the conformation “m” of ANT and/or cardiolipin, respectively to H5 and H4 helices, could stabilize their contacts with the short helix h56 that includes Cys56, accounting for reducing its relative mobility. The results suggest that Ca2+ binding to adenine nucleotide translocase (ANT)-surrounding cardiolipins in c-state of the translocase enhances (ANT)-Cys56 relative mobility and that this may constitute a potential critical step of Ca2+-induced PTP opening.  相似文献   

14.
We studied the Са2+- and Cd2+-induced development of the nonspecific permeability of the mitochondrial inner membrane in preparations obtained from rat liver tissue, which is accompanied by swelling of these organelles and intensification of light dispersion of their suspension. Addition of 5 to 100 μM Са2+ or 1 to 50 μM Сd2+ to the medium caused swelling of the mitochondria. With increase in concentrations of Са2+ and Cd2+, the latency of the effect decreased, and the rate of swelling of these organelles increased. Upon isolated action of Са2+, the intensity of the process (amplitude of changes) did not depend significantly on the concentration of the above ions, while upon isolated action of Cd2+, it was the maximum at the concentration of 1 mM and noticeably decreased with increase in the concentration. The dependence of the rate of Са2+- and Cd2+-induced swelling of the mitochondria on the concentration of these ions was described by power and sigmoid functions, respectively. The calculated maximum rate and the constant of 50% saturation of these processes were equal to 0.609 and 1.084 extinction units/min⋅mg protein and 19.85 and 7.28 μM for Са2+- and Cd2+-induced swelling of the mitochondria, respectively. Cyclosporine A (10 μM) suppressed completely the Са2+-induced swelling of the mitochondria and decreased only partly the Cd2+-induced swelling. Dithiothreitol (1 mM) inhibited completely the latter effect but did not influence significantly the Са2+-stimulated process. Therefore, the distinctions between the kinetics of Са2+- and Cd2+-induced swelling of the mitochondria, as well as the different sensitivity of these processes to cyclosporine A and dithiothreitol, prove that the mechanisms underlying interactions between the cations of the above metals and the inner mitochondrial membrane in the course of the development of nonspecific permeability of these organelles are dissimilar. *Deceased  相似文献   

15.
Summary Control of mitochondrial respiration depends on ADP availability to the F1ATPase. An electrochemical gradient of ADP and ATP across the mitochondrial inner membrane is maintained by the adenine nucleotide translocase which provides ADP to the matrix for ATP synthesis and ATP for energy-dependent processes in the cytosol. Mitochondrial respiration is responsive to the cytosolic phosphorylation potential, ATP/ADP · Pi which is in apparent equilibrium with the first two sites in the electron transport chain. Conventional measures of free adenine nucleotides is a confounding issue in determining cytosolic and mitochondrial phosphorylation potentials. The advent of phosphorus-31 nuclear magnetic resonance (P-31 NMR) allows the determination of intracellular free concentrations of ATP, creatine-P and Pi in perfused muscle in situ. In the glucose-perfused heart, there is an absence of correlation between the cytosolic phosphorylation potential as determined by P-31 NMR and cardiac oxygen consumption over a range of work loads. These data suggest that contractile work leads to increased generation of mitochondrial NADH so that ATP production keeps pace with myosin ATPase activity. The mechanism of increased ATP synthesis is referred to as stimulusre-sponse-metabolism coupling. In muscle, increased contractility is a result of interventions which increase cytosolic free Ca2+ concentrations. The Ca2- signal thus generated increases glycogen breakdown and myosin ATPase in the cytosol. This signal is concomitantly transmitted to the mitochondria which respond to small increases in matrix Ca2+ by activation of Ca2+-sensitive dehydrogenases. The Ca2+-activated dehydrogenase activities are key rate-controlling enzymes in tricarboxylic acid cycle flux, and their activation by Ca2- leads to increased pyridine nucleotide reduction and oxidative phosphorylation. These observations which have been consistent in preparations both in vitro and in situ do not obviate a role for ADP control of muscle respiration, but do explain, in part, the lack of dramatic fluctuations in the cytosolic phosphorylation potential over a large range of contractile activities.  相似文献   

16.

Objective

Studying the impact of Hepatitis B virus S protein (HBs) on early apoptotic events in human spermatozoa and sperm fertilizing capacity.

Methodology/Principal Findings

Spermatozoa were exposed to HBs (0, 25, 50, 100 µg/ml) for 3 h, and then fluo-4 AM calcium assay, Calcein/Co2+ assay, protein extraction and ELISA, ADP/ATP ratio assay, sperm motility and hyperactivation and sperm-zona pellucida (ZP) binding and ZP-induced acrosome reaction (ZPIAR) tests were performed. The results showed that in the spermatozoa, with increasing concentration of HBs, (1) average cytosolic free Ca2+ concentration ([Ca2+]i) rose; (2) fluorescence intensity of Cal-AM declined; (3) average levels of cytochrome c decreased in mitochondrial fraction and increased in cytosolic fraction; (4) ADP/ATP ratios rose; (5) average rates of total motility and mean hyperactivation declined; (6) average rate of ZPIAR declined. In the above groups the effects of HBs exhibited dose dependency. However, there was no significant difference in the number of sperms bound to ZP between the control and all test groups.

Conclusion

HBs could induce early events in the apoptotic cascade in human spermatozoa, such as elevation of [Ca2+]i, opening of mitochondrial permeability transition pore (MPTP), release of cytochrome c (cyt c) and increase of ADP/ATP ratio, but exerted a negative impact on sperm fertilizing capacity.  相似文献   

17.
Lipid peroxidation in isolated rat liver mitochondria, mitoplast, and mitochondrial inner membrane fragments was induced either by ferrous ions, or in an NADPH-dependent process by complexing with adenine nucleotides (ADP or ATP) iron. The Fe2+-induced lipid peroxidation is nonenzymic when inner membrane fragments are used, while the differences in the inhibitory effect of Mn2+ ions and the stimulatory effect of the ionophore A-23187 in mitochondria and inner membrane fragments suggest an enzymic mechanism for ferrous ion-induced lipid peroxidation in intact mitochondria. Contrary to this the ADP/Fe/NADPH-dependent lipid peroxidation is an enzymic process both in mitochondria and inner membrane preparations. We have shown that cytochrome P450 is involved in the ADP/Fe/NADPH-induced lipid peroxidation. Succinate, a known inhibitor of NADPH-dependent lipid peroxidation, inhibited the Fe2+-induced process also, and there was no difference in this effect when inner membrane preparations, mitochondria, or mitoplasts were used.  相似文献   

18.
This report summarizes recent work in our laboratory aimed at understanding protein-mediated mitochondrial cation transport. We are studying three distinct cation cycles that contain porters catalyzing influx and efflux of cations between cytosol and mitochondrial matrix. Each of these cation cycles plays a major physiological role in the overall energy economy. The K+ cycle maintains the integrity of the vesicular structure and includes the K+/H+ antiporter, the KATP channel, and K+ leak driven by the high membrane potential. The Ca2+ cycle relays the signals calling for modulation of ATP production and includes the Ca2+ channel, the Na+/Ca2+ antiporter, and the Na+/H+ antiporter. The H+ cycle of brown adipose tissue mitochondria provides heat to hibernating and newborn mammals and consists of the uncoupling protein, which catalyzes regulated H+ influx.  相似文献   

19.
This paper considers stages of the search (initiated by V. P. Skulachev) for a receptor protein for fatty acids that is involved in their uncoupling effect. Based on these studies, mechanism of the ADP/ATP antiporter involvement in the uncoupling induced by fatty acids was proposed (Skulachev, V. P. (1991) FEBS Lett., 294, 158– 162). New data (suppression by carboxyatractylate of the SDS-induced uncoupling, pH-dependence of the ADP/ATP and the glutamate/aspartate antiporter contributions to the uncoupling, etc.) led to modification of this hypothesis. During discussion of the uncoupling effect of fatty acids caused by opening of the Ca2+-dependent pore, special attention is given to the effects of carboxyatractylate added in the presence of ADP. The functioning of the uncoupling protein UCP2 in kidney mitochondria is considered, as well as the diversity observed by us in effects of 200 µM GDP on decrease in under the influence of oleic acid added after H2O2 (in the presence of succinate, oligomycin, malonate). A speculative explanation of the findings is as follows: 1) products of lipid and/or fatty acid peroxidation (PPO)modify the ADP/ATP antiporter in such a way that its involvement in the fatty acid-induced uncoupling is suppressed by GDP; 2) GDP increases the PPO concentration in the matrix by suppression of efflux of fatty acid hydroperoxide anions through the UCP (Goglia, F., and Skulachev, V. P. (2003) FASEB, 17, 1585–1591)and/or of efflux of PPO anions with involvement of the GDP-sensitive ADP/ATP antiporter; 3) PPO can potentiate the oleate-induced decrease in due to inhibition of succinate oxidation.Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 197–202.Original Russian Text Copyright © 2005 by Mokhova, Khailova.This revised version was published online in April 2005 with corrections to the post codes.  相似文献   

20.
Mitochondria undergo a permeability transition (PT), i.e., become nonselectively permeable to small solutes, in response to a wide range of conditions/compounds. In general, opening of the permeability transition pore (PTP) is Ca2+- and Pi-dependent and is blocked by cyclosporin A (CsA), trifluoperazine (TFP), ADP, and butylated hydroxytoluene (BHT). Gudz and coworkers have reported [7th European Bioenergetics Conference, EBEC Short Reports (1992)7, 125], however, that, under some conditions, BHT increases mitochondrial permeability via a process that may not share all of these characteristics. Specifically, they determined that the BHT-induced permeability transition was independent of Ca2+ and was insensitive to CsA. We have used mitochondrial swelling to compare in greater detail the changes in permeability induced by BHT and by Ca2+ plus Pi with the following results. (1) The dependence of permeability on BHT concentration is triphasic: there is a threshold BHT concentration (ca. 60 nmol BHT/ mg mitochondrial protein) below which no increase occurs; BHT enhances permeability in an intermediate concentration range; and at high BHT concentrations (> 120 nmol/mg) permeability is again reduced. (2) The effects of BHT depend on the ratio of BHT to mitochondrial protein. (3) Concentrations of BHT too low to induce swelling block the PT induced by Ca2+ and Pi. (4) The dependence of the Ca2+-triggered PT on Pi concentration is biphasic. Below a threshold of 50–100 M, no swelling occurs. Above this threshold swelling increases rapidly. (5) Pi levels too low to support the Ca2+-induced PT inhibit BHT-induced swelling. (6) Swelling induced by BHT can bestimulated by agents and treatments that block the PT induced by Ca2+ plus Pi. These data suggest that BHT and Ca2+ plus Pi, increase mitochondrial permeability via two mutually exclusive mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号