首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle,Xylosandrus mutilatus, were studied in relation to its life history using both isolation experiments and scanning electron microscopy (SEM). In the galleries,Ambrosiella sp. was predominant during the larval stages but its relative dominance gradually decreased during the development of the larvae. In contrast, yeasts (mainlyCandida sp.) andPaecilomyces sp. dominated continuously in the galleries after eclosion.Ambrosiella sp. was consistently stored in the mycangia in all adult stages, except in the teneral and overwintering adults when the other fungi were dominant. No fungal spores occurred in the mycangia of the adult beetles reared under aseptic conditions from the pupal stage, while onlyAmbrosiella sp. was stored in those reared from the teneral-adult stage. These results suggest that: (i) Xmutilatus is associated with at least three fungal species, among whichAmbrosiella sp. is the most essential food resource for development of the broods; (ii) immediately after eclosion, new female adults may take at least four associated fungal species, with no or incomplete selection, into their mycangia from the walls of the cradles; and (iii) conditions may well be produced in the mycangia of both matured and dispersing beetles whereby only the spores ofAmbrosiella sp. can proliferate.  相似文献   

2.
A fungus was found to be stored in the mycangia of a horntail,Tremex longicollis, as hyphal fragments. All fungal isolates from the mycangia of 31 adult females of the horntail produced the same colonies on PDA. Basidiocarps ofCerrena unicolor occurred near the emergence hole of the horntail on a dead hackberry tree (Celtis sinensis). The cultures of this fungus were similar to those from the mycangia of the horntail in cultural characteristics. Mating between single-basidiospore mycelia ofC. unicolor and single-arthrospore mycelia from the mycangia of the horntail showed that they were compatible. These results revealed that the fungus isolated from the mycangia ofT. longicollis wasC. unicolor.  相似文献   

3.
Symbioses are increasingly seen as dynamic ecosystems with multiple associates and varying fidelity. Symbiont specificity remains elusive in one of the most ecologically successful and economically damaging eukaryotic symbioses: the ambrosia symbiosis of wood-boring beetles and fungi. We used multiplexed pyrosequencing of amplified internal transcribed spacer II (ITS2) ribosomal DNA (rDNA) libraries to document the communities of fungal associates and symbionts inside the mycangia (fungus transfer organ) of three ambrosia beetle species, Xyleborus affinis, Xyleborus ferrugineus and Xylosandrus crassiusculus. We processed 93 beetle samples from 5 locations across Florida, including reference communities. Fungal communities within mycangia included 14–20 fungus species, many more than reported by culture-based studies. We recovered previously known nutritional symbionts as members of the core community. We also detected several other fungal taxa that are equally frequent but whose function is unknown and many other transient species. The composition of fungal assemblages was significantly correlated with beetle species but not with locality. The type of mycangium appears to determine specificity: two Xyleborus with mandibular mycangia had multiple dominant associates with even abundances; Xylosandrus crassiusculus (mesonotal mycangium) communities were dominated by a single symbiont, Ambrosiella sp. Beetle mycangia also carried many fungi from the environment, including plant pathogens and endophytes. The ITS2 marker proved useful for ecological analyses, but the taxonomic resolution was limited to fungal genus or family, particularly in Ophiostomatales, which are under-represented in our amplicons as well as in public databases. This initial analysis of three beetle species suggests that each clade of ambrosia beetles and each mycangium type may support a functionally and taxonomically distinct symbiosis.  相似文献   

4.
Botryosphaeria dothidea is one of the most common fungal pathogens on a large number of hosts worldwide. Botryosphaeria dothidea and B. kuwatsukai are also the main causal agents of apple ring rot. In this study, we sequenced, assembled and annotated the circular mitogenomes of 12 diverse B. dothidea isolates (105.7–114.8 kb) infecting various plants including apple, and five diverse B. kuwatsukai isolates (118.0–124.6 kb) from apple. B. dothidea mitogenomes harboured a set of 29–31 introns and 48–52 ORFs. In contrast, B. kuwatsukai mitogenomes harboured more introns (32–34) and ORFs (51–54). The variation in mitogenome sizes was associated mainly with different numbers of introns and insertions of mobile genetic elements. Interestingly, B. dothidea and B. kuwatsukai displayed distinct intron distribution patterns, with three intron loci showing presence/absence dynamics in each species. Large numbers of introns (57% in B. dothidea and 49% in B. kuwatsukai) were most likely obtained through horizontal transfer from non-Dothideomycetes. The mitochondrial gene phylogeny supported the differentiation of the two species. Overall, this study sheds light into the mitochondrial evolution of the plant pathogens B. dothidea and B. kuwatsukai, and intron distribution patterns could be useful markers for studies on population diversity.  相似文献   

5.
Gall-forming Asphondylia are well represented on Australian Acacia and have potential for biological control where Australian acacias cause ecological or economic harm, particularly South Africa. Asphondylia in Australia and South Africa are associated with communities of fungi in their galls. In Australia, Botryosphaeria dothidea (as its Dichomera synanamorph) is the most abundant and sometimes the only fungus present and is implicated as the primary species forming a mutualistic relationship with Asphondylia. In the combined analysis of ITS and elongation factor 1-α sequence data, isolates of B. dothidea from Australia and South Africa form distinct sub-clades. Female Asphondylia carry B. dothidea (as Dichomera conidia) in mycangia located posterior to sternite 7. While conidia are always present on field-collected specimens, laboratory-reared females rarely carry conidia. The mechanism and location of spore collection remains unresolved, but needs to be understood if Asphondylia species are to be utilised for biological control of invasive Australian acacias. As B. dothidea is a polyphagous plant pathogen capable of infecting crops of economic importance, including Acacia plantations, the introduction of novel strains of B. dothidea associated with biological control of acacia is undesirable, however endemic forms of the fungus could possibly be exploited by introduced Asphondylia.  相似文献   

6.
Botryosphaeriaceae species have a wide host range and a worldwide distribution. These fungal species can colonize several plant organs, such as the trunk, leaves and fruit. Some Botryosphaeriaceae species cause important diseases on persimmon, avocado and guava fruit. However, there is a lack of information regarding the mechanisms of penetration by Botryosphaeriaceae species on these tropical and subtropical fruits. This study aimed to better understand the mechanisms involved in fungal penetration, host specificity and aggressiveness of Botryosphaeria dothidea, Lasiodiplodia pseudotheobromae and Neofusicoccum parvum on avocado (Persea americana), guava (Psidium guajava) and persimmon (Diospyros kaki) fruit. Scanning electron microscopy (SEM) image analysis showed that in avocado fruit, the three studied Botryosphaeriaceae species penetrated through lenticels. In guava fruit, penetration through stomata was verified for Botryosphaeria dothidea and Neofusicoccum parvum. In persimmon fruit, an appressoria-like structure was observed for B. dothidea, which suggests direct penetration. Disease incidence in wounded fruit was 24% higher than in non-wounded fruit. Lpseudotheobromae and Nparvum showed differences in aggressiveness in guava fruit. The longest incubation period was observed for Nparvum inoculated on guava, with an average of 4.5 days, and the shortest incubation period was verified for Bdothidea inoculated on avocado, with an average of 2.8 days. The area under the disease progress curve (AUDPC) did not differ between Botryosphaeriaceae species on avocado, whereas on guava and persimmon fruit, the AUDPC was lower for B. dothidea. The information regarding penetration mechanisms and aggressiveness is important to improve postharvest disease control strategies.  相似文献   

7.
T. Kubono  S. Ito 《Mycoscience》2002,43(3):0255-0260
 A hyphomycete consistently isolated from dead oak trees (Quercus serrata and Q. mongolica var. grosseserrata) attacked by the ambrosia beetle Platypus quercivorus in Japan is described and illustrated as Raffaelea quercivora sp. nov. The new species is characterized by having small obovoid to pyriform sympodioconidia and slender, long conidiophores that taper to a point. The fungus has been isolated from the body surfaces and mycangia of the beetle. It is likely that the fungus was transferred to oak trees by P. quercivorus. Received: August 20, 2001 / Accepted: March 14, 2002  相似文献   

8.
Whether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle–fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known. To determine the distribution of fungi associated with the mycangia of the western pine beetle (Dendroctonus brevicomis), we collected beetles from across the insect’s geographic range including multiple genetically distinct populations. Two fungi, Entomocorticium sp. B and Ceratocystiopsis brevicomi, were isolated from the mycangia of beetles from all locations. Repeated sampling at two sites in Montana found that Entomocorticium sp. B was the most prevalent fungus throughout the beetle’s flight season, and that females carrying that fungus were on average larger than females carrying C. brevicomi. We present evidence that throughout the flight season, over broad geographic distances, and among genetically distinct populations of beetle, the western pine beetle is associated with the same two species of fungi. In addition, we provide evidence that one fungal species is associated with larger adult beetles and therefore might provide greater benefit during beetle development. The importance and maintenance of this bark beetle–fungus interaction is discussed.  相似文献   

9.
A strain LF70 endophytic fungus was isolated from the leaves of Huperzia serrata. The fungus was identified as Cladosporium cladosporioides LF70 according to its morphological characteristics and nuclear ribosomal DNA ITS sequence analysis. The strain could produce Huperzine A (HupA) identified through thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) with authentic HupA. The amount of HupA produced by this endophytic fungus was quantified to be 56.84 μg/L by HPLC, which was higher than that of other reported endophytic fungi, Acremonium sp., Blastomyces sp., and Botrytis sp. Acetylcholinesterase inhibition activity of HupA produced by strain LF70 was also similar to authentic HupA in vitro. Isolation of such a fungus may provide a promising alternative approach to producing HupA, which is used in treating Alzheimer’s disease and preventing further memory degeneration.  相似文献   

10.
The endophytic mycobiota of leaves and stems of the mistletoe Phoradendron perrottettii and its host tree Tapirira guianensis, two physiologically connected plant species of the Brazilian savannah in southeastern Brazil, were investigated to evaluate host and organ recurrence among endophytes. Leaves and stems of P. perrottettii and leaves of T. guianensis were sampled in the dry and wet season. Stems of T. guianensis were also sampled in the wet season. Endophytes were isolated by an adapted trituration and particle filtration protocol. A total of 1,615 isolates representing 99 species and 20 sterile morphotypes were recovered; 64 morphospecies occurred as singletons. The number of isolates and species was higher in the wet season. Leaves of P. perrottettii were less densely colonized than other organs studied, but were the most species-rich. Conversely, stems of T. guianensis yielded more isolates but were less species-rich. Both plants were found to harbor similar but distinguishable endophytic assemblages. The Jaccard’s index of similarity between the fungal assemblages of both plants was 0.82, higher than found for other plants in similar habitats. The fungal species composition seemed to be influenced by the collection season and organ type, as demonstrated by multivariate correspondence analysis. Paraconiothyrium brasiliense, P. sporulosum and Verticillium leptobactrum were the dominant species in P. perrottettii. In leaves of T. guianensis, Pseudocercospora sp., Phomopsis sp. 1 and Lecanicillium psalliotae were the most frequent, while Stagonospora sp. 1 and Phomopsis sp. 1 were the dominant endophytes in its stems. The results indicated that some of the dominant endophytic taxa isolated in this study colonize different hosts and plant organs while others seem to exhibit a high degree of host or organ recurrence. This study represents the first evaluation of diversity of fungal endophytes in natural vegetation of the Brazilian savannah and contributes information about the distribution and possible specificity of endophytes in tropical dicotyledoneous plants.  相似文献   

11.
Ambrosia beetles and fungi represent an interesting and economically important symbiosis, but the vast majority of ambrosia fungi remain unexplored, hindering research, management of pathogens, and mitigation of invasive species. Beetles in the subtribe Premnobiini are one example of an entire beetle lineage whose fungal symbionts have never been studied. Here, we identify one dominant fungal symbiont of Premnobius cavipennis by using fungus culturing, community sequencing, microtome sectioning and micro-CT scanning of mycangia. Phylogenetic analyses of combined 18S and 28S rDNA and β-tubulin sequences revealed a highly divergent fungal lineage within Ophiostomatales, Afroraffaelea ambrosiae gen. nov. et sp. nov. The newly described fungal lineage represents another origin of the symbiosis within the Kingdom Fungi, adding to our understanding of the geographic ancestry of ambrosia fungi. P. cavipennis possesses pharyngeal mycangia which appear restrictive in fungus selection. This ambrosia beetle-fungus association has remained stable even after invasions into non-native regions.  相似文献   

12.
An emerging nut rot of chestnut caused by the fungus Gnomoniopsis castaneae was reported soon after the invasion of the exotic gall wasp Dryocosmus kuriphilus in Italy. The goal of this work was to assess the association between the spread of the fungal pathogen and the infestation of the pest by testing if:I) viable inoculum of G. castaneae can be carried by adults of D. kuriphilus;II) the fungal colonization is related to the number of adults inhabiting the galls;III) the fungal colonization of chestnut buds and the oviposition are associated.Fungal isolations and PCR-based molecular assays were performed on 323 chestnut galls and on their emerging D. kuriphilus adults, whose number was compared between galls colonized and not colonized by G. castaneae. To test the association between fungal colonization and oviposition, Monte Carlo simulations assuming different scenarios of ecological interactions were carried out and validated through isolation trials performed on 597 and 688 chestnut buds collected before and after oviposition, respectively.Although DNA of G. castaneae was detected in a sample of 40% of the adults developed in colonized galls, the fungus could never be isolated from insects, suggesting that the pest is an unlikely vector of viable inoculum.On average, the emerging adults were significantly more abundant from galls colonized by G. castaneae than from not colonized ones (3.76 vs. 2.54, P < 0.05), indicating a possible fungus/pest synergy.The simulations implying no interaction between G. castaneae and D. kuriphilus after fungal colonization were confirmed as the most likely. In fact, G. castaneae was present in 33.8% of the buds before oviposition, while no association was detected between fungal colonization and oviposition (odds ratio 0.98, 0.71–1.33 95% CI). These findings suggest that the fungus/pest synergy is asymmetrically favorable to the pest and occurs after oviposition.  相似文献   

13.
Insects that depend on microbial mutualists evolved a variety of organs to transport the microsymbionts while dispersing. The ontogeny and variability of such organs is rarely studied, and the microsymbiont*s effects on the animal tissue development remain unknown in most cases. Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae or Platypodinae) and their mutualistic fungi are an ideal system to study the animalfungus interactions. While the interspecific diversity of their fungus transport organ一 mycangia—is well-known, their developmental plasticity has been poorly described. To determine the ontogeny of the mycangium and the influence of the symbiotic fungus on the tissue development, we dissected by hand or scanned with micro-CT the mycangia in various developmental stages in five Xylosandrus ambrosia beetle species that possess a large, mesonotal mycangium: Xylosandrus amputatus. Xylosandrus compactus, Xylosandrus crassiusculus, Xylosandrus discolor, and Xylosandrus germanus. We processed 181 beetle samples from the United States and China. All five species displayed three stages of the mycangium development:(1) young teneral adults had an empty, deflated and cryptic mycangium without fungal mass;(2) in fully mature adults during dispersal, the promesonotal membrane was inflated, and most individuals developed a mycangium mostly filled with the symbiont, though size and symmetry varied;and (3) after successful establishment of their new galleries, most females discharged the bulk of the fun gal inoculum and deflated the mycangium. Experimental aposymbiotic individuals demonstrated that the pronotal membrane invaginated independently of the presence of the fungus, but the fungus was required for inflation. Mycangia are more dynamic than previously thought, and their morphological changes correspond to the phases of the symbiosis. Importantly, studies of the fungal symbionts or plant pathogen transmission in ambrosia beetles need to consider which developmental stage to sample. We provide illustrations of the different stages, including microphotography of dissections and micro-CT scans.  相似文献   

14.
The Ambrosia gall midge [Asteromyia carbonifera (Osten Sacken) (Diptera: Cecidomyiidae: Alycaulini)] consists, in part, of a complex of genetically differentiated populations that have diverged in gall morphology on the host plant Solidago altissima L. (Asteraceae). This divergence appears to be an incipient adaptive radiation that may be driven by parasitoid pressure. Understanding the mechanisms driving this genetic and phenotypic diversification requires a close examination of the relationship between the midge and its fungal associate Botryosphaeria dothidea (Moug.) Ces. & De Not. (Ascomycota: Dothideomycetes), whose mycelia actually form the protective gall structure. We used manipulative experiments to test the degree of interdependency of the fungus and the midge, and we employed field and laboratory studies to gain insight into the source of fungal conidia, which our data and observations indicate are collected by females and stored in specialized pockets (mycangia) on the ovipositor. Manipulative experiments demonstrate that fungal proliferation on the host plant is dependent on the midge larvae and larvae exhibit significant growth on the fungus alone. Field observations and experiments were unable to identify the source of mycangial conidia; however, analyses of conidia shape suggest a biotrophic source. We conclude that this association is an obligatory mutualism with respect to successful gall formation. These findings corroborate recent findings that the primary food source of the midge is the gall fungus.  相似文献   

15.
Invasive plants have caused great economic losses and environmental problems worldwide. Eupatorium adenophorum is one of the most invasive weeds in China. To better understand its invasive mechanisms, in the present paper, the microbial communities of healthy and diseased leaves of E. adenophorum were obtained using both culture-independent and -dependent methods and their diversities were compared. The bacteria obtained from culture-independent method belong to Proteobacteria (95.8%), Actinobacteria (2.1%), and Firmicutes (2.1%) and fungi belong to Ascomycota (65.2%) and Basidiomycota (34.8%). Very few overlapped microbial species were found by culture-dependent and -independent methods. Healthy leaves display higher bacterial diversity than diseased leaves. Phylogenetic structures are very different between healthy and diseased phyllosphere microbial communities. Bacteria close to Acinetobacter and Pseudomonas were dominant on healthy leaves, whereas those close to Shigella were dominant on diseased leaves. 52.9% of fungal clones from healthy leaves were Ustilaginomycetes, close to Rhodotorula phylloplana and uncultured basidomycete; by contrast, 60% of clones from diseased leaves were Lecanoromycetes, close to Umbilicaria muehlenbergii. No bacteria but four fungal strains phylogenetically close to Myrothecium sp. and Alternaria alternate were pathogenic to seedlings and detached leaves of the invasive plant. Therefore, this plant may be resistant to pathogens from bacteria but not fungi in its introduced range.  相似文献   

16.
White-rot basidiomycetes are the main decomposers of woody biomass in forest ecosystems. Little is known, however, about the interactions between white-rot fungi and other microorganisms in decayed wood. A wood-rotting fungus, Stereum sp. strain TN4F, was isolated from a fruit body, and its coexisting cultivable bacteria were isolated from its substrate; natural white-rot decayed wood. The effects of bacteria on fungal growth were examined by confrontational assay in vitro. A growth-promoting bacterium for this Stereum strain was identified as Curtobacterium sp. TN4W-19, using 16SrRNA sequencing. A confrontational assay revealed that Curtobacterium sp. TN4W-19 significantly promoted the mycelial growth of Stereum sp. TN4F in the direction of the bacterial colony, without direct contact between the mycelium and bacterial cells. This is the first report of a positive interaction between a white-rot fungus and a coexisting bacterial strain in vitro.  相似文献   

17.
In this study, we examined the genetic structures of the ambrosia fungus isolated from mycangia of the scolytine beetle, Xylosandrus germanus to understand their co‐evolutionary relationships. We analyzed datasets of three ambrosia fungus loci (18S rDNA, 28S rDNA, and the β‐tubulin gene) and a X. germanus locus dataset (cytochrome c oxidase subunit 1 (COI) mitochondrial DNA). The ambrosia fungi were separated into three cultural morphptypes, and their haplotypes were distinguished by phylogenetic analysis on the basis of the three loci. The COI phylogenetic analysis revealed three distinct genetic lineages (clades A, B, and C) within X. germanus, each of which corresponded to specific ambrosia fungus cultural morphptypes. The fungal symbiont phylogeny was not concordant with that of the beetle. Our results suggest that X. germanus may be unable to exchange its mycangial fungi, but extraordinary horizontal transmission of symbiotic fungi between the beetle's lineages occurred at least once during the evolutionary history of this symbiosis.  相似文献   

18.
Illiciomyia yukawai (Diptera: Cecidomyiidae) induces leaf galls on Illicium anisatum (Schisandraceae) and exhibits 1‐year (yr) and 2‐yr type life history patterns. Geographical and annual variations in the proportion of 2‐yr to 1‐yr type individuals of I. yukawai were studied from 1977 to 1994 and in 2008, 2009 and 2014. An analysis of geographical variation at 13 different census fields indicated that the proportion of 2‐yr type individuals significantly increased with the decrease of mean annual temperature reflected by altitudinal and latitudinal gradients. However, a multiple regression analysis indicated that the annual variation in the proportion was not correlated with temperature, gall density, abundance of host resources or parasitism by hymenopteran parasitoids. Thus, we eliminated the effects of these external factors that have been thought to determine the annual variation. We need to take alternative intrinsic factors, instead of external factors, into consideration to explain the annual variation. The fall of galled leaves occasionally caused a higher mortality of 2‐yr type individuals than those of 1‐yr type. Nevertheless, 2‐yr type individuals exist. We considered that the existence of 2‐yr type individuals of I. yukawai has an adaptive significance to diversify risks against catastrophic events such as the serious shortage of host buds and high percentage of parasitism that happen more frequently than the high mortality caused by the fall of galled leaves.  相似文献   

19.
The adult behavior of an ambrosia gall midge Illiciomyia yukawai (Diptera: Cecidomyiidae) that induces leaf galls on Illicium anisatum (Illiciaceae) was studied at the population level from 1977 to 1995 in Kagoshima, Japan. Most males emerged between 0:00 and 08:00 h and females between 05:00 and 11:00 h. Males swarmed around the host trees between 05:00 and 11:00 h. Mating occurred on the host leaves mainly between 06:00 and 08:00 h. Females then left the host trees for somewhere else, possibly to collect symbiont fungal conidia. From 08:00 to 16:00 h, females were observed ovipositing into the host shoots. The low development threshold temperature for overwintered larvae was 14°C, while the thermal constant for emergence differed with individuals. Thermal totals above 14°C up to the 50% emergence date varied yearly from 33.1 to 68.7 degree‐days. The 50% emergence date varied from 9 to 18 May. The thermal totals significantly correlated with the 50% emergence date but did not correlate with the date when 50% of shoots became suitable for oviposition. Thus, the host‐plant responded to thermal effects differently from the gall midge. Illiciomyia yukawai has been synchronizing well with the host‐plant phenology but will suffer from asynchrony when global warming becomes more conspicuous.  相似文献   

20.
Aims: To characterize and identify a novel Huperzine A (HupA)‐producing fungal strain Slf14 isolated from Huperzia serrata (Thunb. ex Murray) Trev. in China. Methods and Results: The isolation, identification and characterization of a novel endophytic fungus producing HupA specifically and consistently from the leaves of H. serrata were investigated. The fungus was identified as Shiraia sp. Slf14 by molecular and morphological methods. The HupA produced by this endophytic fungus was shown to be identical to authentic HupA analysed by thin layer chromatographic, High‐performance liquid chromatography (HPLC), LC‐MS, 1H NMR and acetylcholinesterase (AChE) inhibition activity in vitro. The amount of HupA produced by Shiraia sp. Slf14 was quantified to be 327·8 μg l?1 by HPLC, which was far higher than that of the reported endophytic fungi, Acremonium sp., Blastomyces sp. and Botrytis sp. Conclusions: The production of HupA by endophyte Shiraia sp. Slf14 is an enigmatic observation. It would be interesting to further study the HupA production and regulation by the cultured endophyte in H. serrata and in axenic cultures. Significance and Impact of the Study: Although the current accumulation of HupA by the endophyte is not very high, it could provide a promising alterative approach for large‐scale production of HupA. However, further strain improvement and the fermentation process optimization are required to result in the consistent and dependable production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号