共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of chromosome replication involves a common set of regulators in eukaryotes, whereas bacteria with divided genomes use chromosome-specific regulators. How bacterial chromosomes might communicate for replication is not known. In Vibrio cholerae, which has two chromosomes (chrI and chrII), replication initiation is controlled by DnaA in chrI and by RctB in chrII. DnaA has binding sites at the chrI origin of replication as well as outside the origin. RctB likewise binds at the chrII origin and, as shown here, to external sites. The binding to the external sites in chrII inhibits chrII replication. A new kind of site was found in chrI that enhances chrII replication. Consistent with its enhancing activity, the chrI site increased RctB binding to those chrII origin sites that stimulate replication and decreased binding to other sites that inhibit replication. The differential effect on binding suggests that the new site remodels RctB. The chaperone-like activity of the site is supported by the finding that it could relieve the dependence of chrII replication on chaperone proteins DnaJ and DnaK. The presence of a site in chrI that specifically controls chrII replication suggests a mechanism for communication between the two chromosomes for replication. 相似文献
2.
3.
4.
Myxobacteria are predatory and are prolific producers of secondary metabolites. Here, we tested a hypothesized role that secondary metabolite antibiotics function as weapons in predation. To test this, a Myxococcus xanthus Δta1 mutant, blocked in antibiotic TA (myxovirescin) production, was constructed. This TA− mutant was defective in producing a zone of inhibition (ZOI) against Escherichia coli. This shows that TA is the major M. xanthus-diffusible antibacterial agent against E. coli. Correspondingly, the TA− mutant was defective in E. coli killing. Separately, an engineered E. coli strain resistant to TA was shown to be resistant toward predation. Exogenous addition of spectinomycin, a bacteriostatic antibiotic, rescued the predation defect of the TA− mutant. In contrast, against Micrococcus luteus the TA− mutant exhibited no defect in ZOI or killing. Thus, TA plays a selective role on prey species. To extend these studies to other myxobacteria, the role of antibiotic corallopyronin production in predation was tested and also found to be required for Corallococcus coralloides killing on E. coli. Next, a role of TA production in myxobacterial fitness was assessed by measuring swarm expansion. Here, the TA− mutant had a specific swarm rate reduction on prey lawns, and thus reduced fitness, compared to an isogenic TA+ strain. Based on these observations, we conclude that myxobacterial antibiotic production can function as a predatory weapon. To our knowledge, this is the first report to directly show a link between secondary metabolite production and predation. 相似文献
5.
Verena Bachmann Benjamin Kostiuk Daniel Unterweger Laura Diaz-Satizabal Stephen Ogg Stefan Pukatzki 《PLoS neglected tropical diseases》2015,9(8)
The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen’s arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection. 相似文献
6.
Host‐derived O‐glycans inhibit toxigenic conversion by a virulence‐encoding phage in Vibrio cholerae
Benjamin X Wang Julie Takagi Abigail McShane Jin Hwan Park Kazuhiro Aoki Catherine Griffin Jennifer Teschler Giordan Kitts Giulietta Minzer Michael Tiemeyer Rachel Hevey Fitnat Yildiz Katharina Ribbeck 《The EMBO journal》2023,42(3)
Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ‐driven toxigenic conversion or expression of the CTXφ‐encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ‐driven pathogenicity in V. cholerae. Our results indicate that mucin‐associated O‐glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ‐related virulence factors, including the toxin co‐regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O‐glycan structures affect CTXφ‐mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus. 相似文献
7.
Toxin–antitoxin (TA) systems are small genetic elements that typically encode a stable toxin and its labile antitoxin. These cognate pairs are abundant in prokaryotes and have been shown to regulate various cellular functions. Vibrio cholerae, a human pathogen that is the causative agent of cholera, harbors at least thirteen TA loci. While functional HigBA, ParDE have been shown to stabilize plasmids and Phd/Doc to mediate cell death in V. cholerae, the function of seven RelBE-family TA systems is not understood. In this study we investigated the function of the RelBE TA systems in V. cholerae physiology and found that six of the seven relBE loci encoded functional toxins in E. coli. Deletion analyses of each relBE locus indicate that RelBE systems are involved in biofilm formation and reactive oxygen species (ROS) resistance. Interestingly, all seven relBE loci are induced under the standard virulence induction conditions and two of the relBE mutants displayed a colonization defect, which was not due to an effect on virulence gene expression. Although further studies are needed to characterize the mechanism of action, our study reveals that RelBE systems are important for V. cholerae physiology. 相似文献
8.
9.
10.
Treatment of Vibrio cholerae el tor strain SLH22(J) with nitrofurantoin induced dose-dependent prophage kappa, the maximum induction being 6-fold the spontaneous induction level. UV-inactivated kappa phages were Weigle reactivated, the maximum Weigle factor being 1.8 and 2.0 respectively in nitrofurantoin and UV pretreated el tor strain H218 Smr. Nitrofurantoin treatment also caused significant filamentation of the el tor strain H218 Smr and mutation of these cells from ampicillin sensitivity to ampicillin resistance. The levels of the four SOS-like responses induced by this drug were low but significant. 相似文献
11.
Vibrio cholerae is motile by means of its single polar flagellum which is driven by the sodium-motive force. In the motor driving rotation of the flagellar filament, a stator complex consisting of subunits PomA and PomB converts the electrochemical sodium ion gradient into torque. Charged or polar residues within the membrane part of PomB could act as ligands for Na+, or stabilize a hydrogen bond network by interacting with water within the putative channel between PomA and PomB. By analyzing a large data set of individual tracks of swimming cells, we show that S26 located within the transmembrane helix of PomB is required to promote very fast swimming of V. cholerae. Loss of hypermotility was observed with the S26T variant of PomB at pH 7.0, but fast swimming was restored by decreasing the H+ concentration of the external medium. Our study identifies S26 as a second important residue besides D23 in the PomB channel. It is proposed that S26, together with D23 located in close proximity, is important to perturb the hydration shell of Na+ before its passage through a constriction within the stator channel. 相似文献
12.
Christopher J. Jones Andrew Utada Kimberly R. Davis Wiriya Thongsomboon David Zamorano Sanchez Vinita Banakar Lynette Cegelski Gerard C. L. Wong Fitnat H. Yildiz 《PLoS pathogens》2015,11(10)
In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase. 相似文献
13.
14.
Tobias D?rr Hubert Lam Laura Alvarez Felipe Cava Brigid M. Davis Matthew K. Waldor 《PLoS genetics》2014,10(6)
The bacterial cell wall, which is comprised of a mesh of polysaccharide strands crosslinked via peptide bridges (peptidoglycan, PG), is critical for maintenance of cell shape and survival. PG assembly is mediated by a variety of Penicillin Binding Proteins (PBP) whose fundamental activities have been characterized in great detail; however, there is limited knowledge of the factors that modulate their activities in different environments or growth phases. In Vibrio cholerae, the cause of cholera, PG synthesis during the transition into stationary phase is primarily mediated by the bifunctional enzyme PBP1A. Here, we screened an ordered V. cholerae transposon library for mutants that are sensitive to growth inhibition by non-canonical D-amino acids (DAA), which prevent growth and maintenance of cell shape in PBP1A-deficient V. cholerae. In addition to PBP1A and its lipoprotein activator LpoA, we found that CsiV, a small periplasmic protein with no previously described function, is essential for growth in the presence of DAA. Deletion of csiV, like deletion of lpoA or the PBP1A–encoding gene mrcA, causes cells to lose their rod shape in the presence of DAA or the beta-lactam antibiotic cefsulodin, and all three mutations are synthetically lethal with deletion of mrcB, which encodes PBP1B, V. cholerae''s second key bifunctional PBP. CsiV interacts with LpoA and PG but apparently not with PBP1A, supporting the hypothesis that CsiV promotes LpoA''s role as an activator of PBP1A, and thereby modulates V. cholerae PG biogenesis. Finally, the requirement for CsiV in PBP1A-mediated growth of V. cholerae can be overcome either by augmenting PG synthesis or by reducing PG degradation, thereby highlighting the importance of balancing these two processes for bacterial survival. 相似文献
15.
16.
Juliane Kühn Flavio Finger Enrico Bertuzzo Sandrine Borgeaud Marino Gatto Andrea Rinaldo Melanie Blokesch 《PLoS neglected tropical diseases》2014,8(12)
Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT), whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings. 相似文献
17.
18.
Nina Bertaux-Skeirik Rui Feng Michael A. Schumacher Jing Li Maxime M. Mahe Amy C. Engevik Jose E. Javier Richard M. Peek Jr Karen Ottemann Veronique Orian-Rousseau Gregory P. Boivin Michael A. Helmrath Yana Zavros 《PLoS pathogens》2015,11(2)
The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specificconstituent of Helicobacter pylori (H. pylori) thataugments cancer risk. CagA translocates into the cytoplasm where it stimulates cellsignaling through the interaction with tyrosine kinase c-Met receptor, leadingcellular proliferation. Identified as a potential gastric stem cell marker,cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, butwhether it plays a functional role in H. pylori-induced epithelialproliferation is unknown. We tested the hypothesis that CD44 plays a functional rolein H. pylori-induced epithelial cell proliferation. To assay changesin gastric epithelial cell proliferation in relation to the direct interaction withH. pylori, human- and mouse-derived gastric organoids wereinfected with the G27 H. pylori strain or a mutant G27 strainbearing cagA deletion (∆CagA::cat). Epithelial proliferationwas quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed byimmunoprecipitation followed by Western blot analysis for expression of CD44 andCagA. H. pylori infection of both mouse- and human-derived gastricorganoids induced epithelial proliferation that correlated with c-Metphosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. Theformation of this complex did not occur in organoids infected with∆CagA::cat. Epithelial proliferation in response toH. pylori infection was lost in infected organoids derived fromCD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited aninduction in proliferation when infected with H. pylorithat was notseen in organoids pre-treated with a peptide inhibitor specific to CD44. In thewell-established Mongolian gerbil model of gastric cancer, animals treated with CD44peptide inhibitor Pep1, resulted in the inhibition of H.pylori-induced proliferation and associated atrophic gastritis. The currentstudy reports a unique approach to study H. pylori interaction withthe human gastric epithelium. Here, we show that CD44 plays a functional role inH. pylori-induced epithelial cell proliferation. 相似文献
19.
Vibrio fischeri Outer Membrane Protein OmpU Plays a Role in Normal Symbiotic Colonization 总被引:3,自引:0,他引:3 下载免费PDF全文
The nascent light-emitting organ of newly hatched juveniles of the Hawaiian sepiolid squid Euprymna scolopes is specifically colonized by cells of Vibrio fischeri that are obtained from the ambient seawater. The mechanisms that promote this specific, cooperative colonization are likely to require a number of bacterial and host-derived factors and activities, only some of which have been described to date. A characteristic of many host-pathogen associations is the presence of bacterial mechanisms that allow attachment to specific tissues. These mechanisms have been well characterized and often involve bacterial fimbriae or outer membrane proteins (OMPs) that act as adhesins, the expression of which has been linked to virulence regulators such as ToxR in Vibrio cholerae. Analogous or even homologous mechanisms are probably operative in the initiation and persistence of cooperative bacterial associations, although considerably less is known about them. We report the presence in V. fischeri of ompU, a gene encoding a 32.5-kDa protein homolog of two other OMPs, OmpU of V. cholerae (50.8% amino acid sequence identity) and OmpL of Photobacterium profundum (45.5% identity). A null mutation introduced into the V. fischeri ompU resulted in the loss of an OMP with an estimated molecular mass of about 34 kDa; genetic complementation of the mutant strain with a DNA fragment containing only the ompU gene restored the production of this protein. The expression of the V. fischeri OmpU was not significantly affected by either (i) iron or phosphate limitation or (ii) a mutation that renders V. fischeri defective in the synthesis of a homolog of the OMP-regulatory protein ToxR. The ompU mutant grew normally in complex nutrient media but was more susceptible to growth inhibition in the presence of either anionic detergents or the antimicrobial peptide protamine sulfate. Interestingly, colonization experiments showed that the ompU null mutant initiated a symbiotic association with juvenile light organ tissue with only about 60% of the effectiveness of the parent strain. When colonization did occur, it proceeded more slowly and resulted in an approximately fourfold-smaller bacterial population. Surprisingly, there was no evidence that in a mixed infection with its parent, the ompU-defective strain had a competitive disadvantage, suggesting that the presence of the parent strain provided a shared compensatory activity. Thus, the OmpU protein appears to play a role in the normal process by which V. fischeri initiates its colonization of the nascent light organ of juvenile squids. 相似文献
20.
Christine P. Diggle Daniel J. Moore Girish Mali Petra zur Lage Aouatef Ait-Lounis Miriam Schmidts Amelia Shoemark Amaya Garcia Munoz Mihail R. Halachev Philippe Gautier Patricia L. Yeyati David T. Bonthron Ian M. Carr Bruce Hayward Alexander F. Markham Jilly E. Hope Alex von Kriegsheim Hannah M. Mitchison Ian J. Jackson Bénédicte Durand Walter Reith Eamonn Sheridan Andrew P. Jarman Pleasantine Mill 《PLoS genetics》2014,10(9)