首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the human autoimmune blistering disease pemphigus vulgaris (PV) pathogenic antibodies bind the desmosomal cadherin desmoglein-3 (dsg3), causing epidermal cell-cell detachment (acantholysis). Pathogenic PV dsg3 autoantibodies were used to initiate desmosome signaling in human keratinocyte cell cultures. Heat shock protein 27 (HSP27) and p38MAPK were identified as proteins rapidly phosphorylated in response to PV IgG. Inhibition of p38MAPK activity prevented PV IgG-induced HSP27 phosphorylation, keratin filament retraction, and actin reorganization. These observations suggest that PV IgG binding to dsg3 activates desmosomal signal transduction cascades leading to (i) p38MAPK and HSP27 phosphorylation and (ii) cytoskeletal reorganization, supporting a mechanistic role for signaling in PV IgG-induced acantholysis. Targeting desmosome signaling via inhibition of p38MAPK and HSP27 phosphorylation may provide novel treatments for PV and other desmosome-associated blistering diseases.  相似文献   

2.
In pemphigus vulgaris and pemphigus foliaceus (PF), autoantibodies against desmoglein-3 and desmoglein-1 induce epidermal cell detachment (acantholysis) and blistering. Activation of keratinocyte intracellular signaling pathways is emerging as an important component of pemphigus IgG-mediated acantholysis. We previously reported activation of p38 mitogen-activated protein kinase (MAPK) in response to pathogenic pemphigus vulgaris and PF IgG. Inhibition of p38MAPK blocked pemphigus IgG-induced cytoskeletal reorganization in tissue culture and blistering in pemphigus mouse models. We now extend these observations by demonstrating two peaks of p38MAPK activation in pemphigus tissue culture and mouse models. Administration of the p38MAPK inhibitor SB202190 before PF IgG injection blocked both peaks of p38MAPK phosphorylation and blister formation, consistent with our previous findings; however, administration of the inhibitor 4 h after PF IgG injection blocked only the later peak of p38MAPK activation but failed to block blistering. Examination of the temporal relationship of p38MAPK phosphorylation and apoptosis showed that apoptosis occurs at or after the second peak of p38MAPK activation. The time course of p38MAPK activation and apoptotic markers, as well as the ability of inhibitors of p38MAPK to block activation of the proapoptotic proteinase caspase-3, suggest that activation of apoptosis is downstream to, and a consequence of, p38MAPK activation in pemphigus acantholysis. Furthermore, these observations suggest that the earlier peak of p38MAPK activation is part of the mechanism leading to acantholysis, whereas the later peak of p38MAPK and apoptosis may not be essential for acantholysis.Pemphigus is a group of related autoimmune diseases characterized by blistering in the skin. The histologic hallmark of these disorders is termed acantholysis, which describes the loss of adhesion between adjacent epithelial cells. The two major variants are pemphigus foliaceus (PF)2 and pemphigus vulgaris (PV). In PF, acantholysis is observed beneath the stratum corneum and within the granular layer of epidermal epithelia, whereas in PV, blister formation occurs above the basal layer of epidermal epithelia and mucosal epithelium. Passive transfer of IgG purified from both PV and PF patient sera reproduces the clinical, histological, and immunologic features of the human diseases, demonstrating that these autoantibodies are pathogenic (1, 2). In PF, autoantibodies target the desmosomal cadherin desmoglein (dsg) 1, whereas in PV, autoantibodies initially target dsg3 (3, 4) in mucosal PV and then subsequently target both dsg1 and dsg3 in mucocutaneous PV (5-7).The mechanism by which pemphigus autoantibodies induce blistering has been under investigation. Work from a number of laboratories has suggested that activation of intracellular events is induced by binding of PF or PV IgG to dsg1 and dsg3, respectively (8-14). Previously, we have reported that PV IgG activate p38MAPK and heat shock protein (HSP) 27 in human keratinocyte tissue cultures (15). Significantly, p38MAPK inhibitors blocked PV IgG-induced keratin filament retraction and actin reorganization in human keratinocyte tissue cultures. Furthermore, we have demonstrated that both PV and PF IgG induce phosphorylation of p38MAPK and HSP25, the murine HSP27 homologue, in mouse models and that inhibitors of p38MAPK block blistering in both the PV (16) and the PF (17) passive transfer mouse models. Additionally, in human skin biopsies from both PV and PF patients, phosphorylation of p38MAPK and HSP27 has been observed (18). Collectively, these observations suggest that activation of p38MAPK within the target keratinocyte contributes directly to loss of cell-cell adhesion induced by pemphigus autoantibodies.Both p38MAPK and HSP27 have been implicated in the regulation of the intermediate filament and actin cytoskeletons (19-25); the ability of p38MAPK inhibitors to block both pemphigus IgG-activated cytoskeletal reorganization and pemphigus IgG-activated blistering suggests that p38MAPK may be acting upstream of the cytoskeleton in the mechanism of acantholysis; however, p38MAPK signaling has been implicated in other cellular responses (reviewed in Ref. 26). For example, there is abundant evidence for p38MAPK involvement in apoptosis (27-29); however, the role of p38MAPK in apoptosis seems to be cell type- and stimulus-dependent. Although p38MAPK signaling promotes cell death in some cell lines, it also functions to enhance survival, growth, and differentiation in other cell lines (30). Several reports describe increased apoptosis of keratinocytes in pemphigus (31-35); however, the relationship between PV IgG-mediated p38MAPK signaling, the induction of apoptosis, and the relationship of apoptosis to blistering has not been defined. This study was undertaken to investigate the relationship between p38MAPK activation, apoptosis, and acantholysis.  相似文献   

3.
Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease caused by autoantibodies directed against the desmosomal cadherin desmoglein-3 (Dsg3). Significant advances in our understanding of pemphigus pathomechanisms have been derived from the generation of pathogenic monoclonal Dsg3 antibodies. However, conflicting models for pemphigus pathogenicity have arisen from studies using either polyclonal PV patient IgG or monoclonal Dsg3 antibodies. In the present study, the pathogenic mechanisms of polyclonal PV IgG and monoclonal Dsg3 antibodies were directly compared. Polyclonal PV IgG cause extensive clustering and endocytosis of keratinocyte cell surface Dsg3, whereas pathogenic mouse monoclonal antibodies compromise cell-cell adhesion strength without causing these alterations in Dsg3 trafficking. Furthermore, tyrosine kinase or p38 MAPK inhibition prevents loss of keratinocyte adhesion in response to polyclonal PV IgG. In contrast, disruption of adhesion by pathogenic monoclonal antibodies is not prevented by these inhibitors either in vitro or in human skin explants. Our results reveal that the pathogenic activity of polyclonal PV IgG can be attributed to p38 MAPK-dependent clustering and endocytosis of Dsg3, whereas pathogenic monoclonal Dsg3 antibodies can function independently of this pathway. These findings have important implications for understanding pemphigus pathophysiology, and for the design of pemphigus model systems and therapeutic interventions.  相似文献   

4.
Pemphigus vulgaris (PV) is an autoimmune blistering disease in which antibodies against the desmosomal cadherin, DSG3 (desmoglein-3), cause acantholysis. It has become increasingly clear that loss of cell-cell adhesion in PV is a complex and active process involving multiple signaling events such as activation of p38MAPK. It has also been demonstrated that incubating keratinocytes with PV IgG causes a redistribution of DSG3 from the cell surface to endosomes, which target these proteins for degradation. This study was undertaken to determine the relationship between p38MAPK and DSG3 endocytosis in pemphigus. In this work, we confirm that PV IgG causes internalization of cell-surface DSG3 into endosomes (as early as 4 h), which are then depleted from both detergent-soluble and detergent-insoluble pools. Cell-surface DSG3 internalization and depletion from both the detergent-soluble and detergent-insoluble fractions were blocked by the p38MAPK inhibitor SB202190. These data suggest that p38MAPK is capable of regulating PV IgG-mediated DSG3 internalization and that previously isolated mechanistic observations may be linked to a common pathway by which pemphigus autoantibodies lead to acantholysis.  相似文献   

5.
Reciprocal cross-talk between receptor tyrosine kinases (RTKs) and classical cadherins (e.g. EGFR/E-cadherin, VEGFR/VE-cadherin) has gained appreciation as a combinatorial molecular mechanism enabling diversification of the signalling environment and according differential cellular responses. Atypical glycosylphosphatidylinositol (GPI)-anchored T-cadherin (T-cad) was recently demonstrated to function as a negative auxiliary regulator of EGFR pathway activation in A431 squamous cell carcinoma (SCC) cells. Here we investigate the reciprocal impact of EGFR activation on T-cad. In resting A431 T-cad was distributed globally over the cell body. Following EGF stimulation T-cad was redistributed to the sites of cell–cell contact where it colocalized with phosphorylated EGFRTyr1068. T-cad redistribution was not affected by endomembrane protein trafficking inhibitor brefeldin A or de novo protein synthesis inhibitor cycloheximide, supporting mobilization of plasma membrane associated T-cad. EGF-induced relocalization of T-cad to cell–cell contacts could be abrogated by specific inhibitors of EGFR tyrosine kinase activity (gefitinib or lapatinib), lipid raft integrity (filipin), actin microfilament polymerization (cytochalasin D or cytochalasin B), p38MAPK (SB203580) or Rac1 (compound4). Erk1/2 inhibitor PD98059 increased phospho-EGFRtyr1068 levels and not only amplified effects of EGF but also per se promoted some relocalization of T-cad to cell–cell contacts. Rac1 activation by EGF was inhibited by gefitinib, lapatinib or SB203580 but amplified by PD98059. Taken together our data suggest that T-cad translocation to cell–cell contacts is sensitive to the activity status of EGFR, requires lipid raft domain integrity and actin filament polymerization, and crucial intracellular signalling mediators include Rac1 and p38MAPK. The study has revealed a novel aspect of reciprocal cross-talk between EGFR and T-cad.  相似文献   

6.
Abstract

Desmosomes are the most important intercellular adhering junctions that adhere two adjacent keratinocytes directly with desmosomal cadherins, that is, desmogleins (Dsgs) and desmocollins, forming an epidermal sheet. Recently, two cell–cell adhesion states of desmosomes, that is, “stable hyper-adhesion” and “dynamic weak-adhesion” conditions have been recognized. They are mutually reversible through cell signaling events involving protein kinase C (PKC), Src and epidermal growth factor receptor (EGFR) during Ca2+-switching and wound healing. This remodeling is impaired in pemphigus vulgaris (PV, an autoimmune blistering disease), caused by anti-Dsg3 antibodies. The antibody binding to Dsg3 activates PKC, Src and EGFR, linked to generation of dynamic weak-adhesion desmosomes, followed by p38MAPK-mediated endocytosis of Dsg3, resulting in the specific depletion of Dsg3 from desmosomes and acantholysis. A variety of pemphigus outside-in signaling may explain different clinical (non-inflammatory, inflammatory, and necrolytic) types of pemphigus. Pemphigus could be referred to a “desmosome-remodeling disease involving pemphigus IgG-activated outside-in signaling events”.  相似文献   

7.
8.
The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients’ biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases including cancer.  相似文献   

9.
Pemphigus vulgaris (PV) is an autoimmune skin disease mediated by autoantibodies directed against the cadherin-type cell adhesion molecules desmoglein (Dsg) 3 and Dsg1 and is characterized by loss of keratinocyte cohesion and epidermal blistering. Several intracellular signaling pathways, such as p38MAPK activation and RhoA inhibition, have been demonstrated to be altered following autoantibody binding and to be causally involved in loss of keratinocyte cohesion. In this paper, we demonstrate that cAMP-mediated signaling completely prevented blister formation in a neonatal pemphigus mouse model. Furthermore, elevation of cellular cAMP levels by forskolin/rolipram or β receptor agonist isoproterenol blocked loss of intercellular adhesion, depletion of cellular Dsg3, and morphologic changes induced by Ab fractions of PV patients (PV-IgG) in cultured keratinocytes. Incubation with PV-IgG alone increased cAMP levels, indicating that cAMP elevation may be a cellular response pathway to strengthen intercellular adhesion. Our data furthermore demonstrate that this protective pathway may involve protein kinase A signaling because protein kinase A inhibition attenuated recovery from PV-IgG-induced cell dissociation. Finally, cAMP increase interfered with PV-IgG-induced signaling by preventing p38MAPK activation both in vitro and in vivo. Taken together, our data provide insights into the cellular response mechanisms following pemphigus autoantibody binding and point to a possible novel and more specific therapeutic approach in pemphigus.  相似文献   

10.
Bladder cancer evolves via the accumulation of numerous genetic alterations, with loss of p53 and p16 function representing key events in the development of malignant disease. In addition, components of the epidermal growth factor receptor (EGFR) signaling pathway are frequently overexpressed, providing potential chemotherapeutic targets. We have previously described the generation of "paramalignant" human urothelial cells with disabled p53 or p16 functions. In this study, we investigated the relative responses of normal, paramalignant, and malignant human urothelial cells to EGFR tyrosine kinase inhibitors (PD153035 and GW572016), a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) kinase (MEK) inhibitor (U0126), and a phosphatidylinositol 3-kinase inhibitor (LY294002). The proliferation of normal human urothelial cells was dependent on signaling via the EGFR and MEK pathways and was abolished reversibly by inhibitors of EGFR or downstream MEK signaling pathways. Inhibitors of phosphatidylinositol 3-kinase resulted in only transient cytostasis, which was most likely mediated via cross-talk with the MEK pathway. These responses were maintained in cells with disabled p16 function, whereas cells with loss of p53 function displayed reduced sensitivity to PD153035 and malignant cell lines were the most refractory to PD153035 and U0126. These results indicate that urothelial cells acquire insensitivity to inhibitors of EGFR signaling pathways as a result of malignant transformation. This has important implications for the use of EGFR inhibitors for bladder cancer therapy, as combination treatments with conventional chemotherapy or radiotherapy may protect normal cells and enable better selective targeting of malignant cells.  相似文献   

11.
The autoimmune blistering skin diseases pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are mainly caused by autoantibodies against desmosomal cadherins. In this study, we provide evidence that PV-immunoglobulin G (IgG) and PF-IgG induce skin blistering by interference with Rho A signaling. In vitro, pemphigus IgG caused typical hallmarks of pemphigus pathogenesis such as epidermal blistering in human skin, cell dissociation, and loss of desmoglein 1 (Dsg 1)-mediated binding probed by laser tweezers. These changes were accompanied by interference with Rho A activation and reduction of Rho A activity. Pemphigus IgG-triggered keratinocyte dissociation and Rho A inactivation were p38 mitogen-activated protein kinase dependent. Specific activation of Rho A by cytotoxic necrotizing factor-y abolished all pemphigus-triggered effects, including keratin retraction and release of Dsg 3 from the cytoskeleton. These data demonstrate that Rho A is involved in the regulation of desmosomal adhesion, at least in part by maintaining the cytoskeletal anchorage of desmosomal proteins. This may open the possibility of pemphigus treatment with the epidermal application of Rho A agonists.  相似文献   

12.
Receptor down-regulation is the most prominent regulatory system of EGF receptor (EGFR) signal attenuation and a critical target for therapy against colon cancer, which is highly dependent on the function of the EGFR. In this study, we investigated the effect of ultraviolet-C (UV-C) on down-regulation of EGFR in human colon cancer cells (SW480, HT29, and DLD-1). UV-C caused inhibition of cell survival and proliferation, concurrently inducing the decrease in cell surface EGFR and subsequently its degradation. UV-C, as well as EGFR kinase inhibitors, decreased the expression level of cyclin D1 and the phosphorylated level of retinoblastoma, indicating that EGFR down-regulation is correlated to cell cycle arrest. Although UV-C caused a marked phosphorylation of EGFR at Ser-1046/1047, UV-C also induced activation of p38 MAPK, a stress-inducible kinase believed to negatively regulate tumorigenesis, and the inhibition of p38 MAPK canceled EGFR phosphorylation at Ser-1046/1047, as well as subsequent internalization and degradation, suggesting that p38 MAPK mediates EGFR down-regulation by UV-C. In addition, phosphorylation of p38 MAPK induced by UV-C was mediated through transforming growth factor-β-activated kinase-1. Moreover, pretreatment of the cells with UV-C suppressed EGF-induced phosphorylation of EGFR at tyrosine residues in addition to cell survival signal, Akt. Together, these results suggest that UV-C irradiation induces the removal of EGFRs from the cell surface that can protect colon cancer cells from oncogenic stimulation of EGF, resulting in cell cycle arrest. Hence, UV-C might be applied for clinical strategy against human colon cancers.  相似文献   

13.
Epidermal growth factor receptor (EGFR) is overexpressed in human pancreatic cancer and is one of the clinical targets in its treatment. In the present study we investigated the mechanism underlying ultraviolet C (UVC)-radiation-induced cell growth inhibition and downregulation of EGFR in human pancreatic cancer cells (Panc1 and KP3). The cell proliferation assay indicated that Panc1 and KP3 cells were more sensitive to UVC radiation, and their growth was significantly inhibited compared to cells of the normal human pancreatic epithelial cell line, PE. Although EGFR levels was extremely low in PE cells, EGFR were highly overexpressed in Panc1 and KP3 cells, and UVC radiation downregulated the expression of EGFR in a time-dependent manner and induced phosphorylation of EGFR at Ser1046/1047 (S1046/7) in Panc1 and KP3 cells. UVC radiation induced activation of p38 mitogen-activated protein kinase (MAPK), and EGFR phosphorylation at S1046/7 induced by UVC radiation was markedly attenuated by the inhibition of p38 MAPK. Moreover, fluorescence microscopy revealed that p38 MAPK activated by UVC radiation triggered EGFR internalization and that this was not correlated with c-Cbl, an ubiquitin ligase, which plays an important role in EGF-induced EGFR downregulation. Taken together, our results suggest that in pancreatic cancer cells UVC radiation induced desensitization of the cells to EGFR stimuli via phosphorylation of EGFR at S1046/7 by activation of p38 MAPK, independent of c-Cbl.  相似文献   

14.
Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.  相似文献   

15.
Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly sensitive to this combination treatment. As such, further evaluation of this combination therapy is warranted and could prove to be an effective therapeutic approach for patients with inherent EGFR TKI-resistant NSCLC.  相似文献   

16.
Zhang Y  Dong Z  Bode AM  Ma WY  Chen N  Dong Z 《DNA and cell biology》2001,20(12):769-779
Most of the signal pathways involved in ultraviolet (UV)-induced skin carcinogenesis are thought to originate at plasma membrane receptors. However, UVA-induced signal transduction to downstream ribosomal protein S6 kinases, p70(S6K) and p90(RSK), is not well understood. In this report, we show that UVA stimulation of the epidermal growth factor receptor (EGFR) may lead to activation of p70(S6K)/p90(RSK) through phosphatidyl isositol (PI)-3 kinase and extracellular receptor-activated kinases (ERKs). Evidence is provided that phosphorylation and activation of p70(S6K)/p90(RSK) induced by UVA were prevented in Egfr(-/-) cells and were also markedly inhibited by the EGFR-specific tyrosine kinase inhibitors AG1478 and PD153035. Furthermore, EGFR tyrosine kinase inhibitors and EGFR deficiency significantly suppressed activation of PI-3 kinase and ERKs in regulating activation of p90(RSK)/p70(S6K) but had no effect on activation of c-Jun NH(2)-terminal kinases (JNKs) and p38 kinase in response to UVA. Thus, our results suggest that UVA-induced EGFR signaling may be required for activation of p90(RSK)/p70(S6K), PI-3 kinase, and ERKs but not JNKs or p38 kinase.  相似文献   

17.
Although it is accepted that pemphigus antibody binding to keratinocytes (KCs) evokes an array of intracellular biochemical events resulting in cell detachment and death, the triggering events remain obscure. It has been postulated that the binding of pemphigus vulgaris IgG (PVIgG) to KCs induces "desmosomal" signaling. Because in contrast to integrins and classical cadherins, desmoglein (Dsg) molecules are not known to elicit intracellular signaling, and because PV patients also produce non-Dsg autoantibodies, we investigated the roles of both Dsg and non-desmoglein PV antigens. The time course studies of KCs treated with PVIgG demonstrated that the activity of Src peaked at 30 min, EGF receptor kinase (EGFRK) at 60 min, and p38 MAPK at 240 min. The Src inhibitor PP2 decreased EGFRK and p38 activities by approximately 45 and 30%, respectively, indicating that in addition to Src, PVIgG evokes other triggering events. The shrinkage of KCs (cell volume reduction) became significant at 120 min, keratin aggregation at 240 min, and an increase of TUNEL positivity at 360 min. Pretreatment of KCs with PP2 blocked PVIgG-dependent cell shrinkage and keratin aggregation by approximately 50% and TUNEL positivity by approximately 25%. The p38 MAPK inhibitor PD169316 inhibited these effects by approximately 15, 20, and 70%, respectively. Transfection of KCs with small interfering RNAs that silenced expression of Dsg1 and/or Dsg3 proteins, blocked approximately 50% of p38 MAPK activity but did not significantly alter the PVIgG-dependent rise in Src and EGFRK activities. These results indicate that activation of p38 MAPK is a late signaling step associated with collapse of the cytoskeleton and disassembly of desmosomes caused by upstream events involving Src and EGFRK. Therefore, the early acantholytic events are triggered by non-Dsg antibodies.  相似文献   

18.
Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus and cell type specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction of COX-2 expression. This study aims to elucidate the role of intracellular signaling pathways in Zn2+-induced COX-2 expression in human bronchial epithelial cells. Inhibitors of the phosphatidylinositol 3-kinase (PI3K) potently block Zn2+-induced COX-2 mRNA and protein expression. Overexpression of adenoviral constructs encoding dominant-negative Akt kinase downstream of PI3K or wild-type phosphatase and tensin homolog deleted on chromosome 10, an important PI3K phosphatase, suppresses COX-2 mRNA expression induced by Zn2+. Zn2+ exposure induces phosphorylation of the tyrosine kinases, including Src and EGF receptor (EGFR), and the p38 mitogen-activated protein kinase. Blockage of these kinases results in inhibition of Zn2+-induced Akt phosphorylation as well as COX-2 protein expression. Overexpression of dominant negative p38 constructs suppresses Zn2+-induced increase in COX-2 promoter activity. In contrast, the c-Jun NH2-terminal kinase and the extracellular signal-regulated kinases have minimal effect on Akt phosphorylation and COX-2 expression. Inhibition of p38, Src, and EGFR kinases with pharmacological inhibitors markedly reduces Akt phosphorylation induced by Zn2+. However, the PI3K inhibitors do not show inhibitory effects on p38, Src, and EGFR. These data suggest that p38 and EGFR kinase-mediated Akt activation is required for Zn2+-induced COX-2 expression and that the PI3K/Akt signaling pathway plays a central role in this event.  相似文献   

19.
Epidermal growth factor receptor (EGFR) has been shown to be activated by specific ligands as well as other cellular stimuli including tumor necrosis factor-alpha (TNF-alpha). In the present study, we found that cellular stress suppressed ligand-mediated EGFR activity. Both TNF-alpha and osmotic stress rapidly induced phosphorylation of EGFR. This phosphorylation of EGFR and the activation of mitogen-activated protein kinases and NF-kappaB occurred independently of the shedding of extracellular membrane-bound EGFR ligands and intracellular EGFR tyrosine kinase activity. Transforming growth factor-beta-activated kinase 1 (TAK1) was involved in the TNF-alpha-induced signaling pathway to EGFR. In addition, experiments using chemical inhibitors and small interfering RNA demonstrated that p38 alpha is a common mediator for the cellular stress-induced phosphorylation of EGFR. Surprisingly, the modified EGFR was not able to respond to its extracellular ligand due to transient internalization through the clathrin-mediated mechanism. Furthermore, turnover of p38 activation led to dephosphorylation and recycling back to the cell surface of EGFR. These results demonstrated that TNF-alpha has opposite bifunctional activities in modulating the function of the EGFR.  相似文献   

20.
Up-regulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Sphingosine-1-phosphate (S1P) has been shown to play a key role in inflammation via adhesion molecules induction, and then causes lung injury. However, the mechanisms underlying S1P-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. The effect of S1P on ICAM-1 expression was determined by Western blot and real-time PCR. The involvement of signaling pathways in these responses was investigated by using the selective pharmacological inhibitors and transfection with siRNAs. S1P markedly induced ICAM-1 expression and monocyte adhesion which were attenuated by pretreatment with the inhibitor of S1PR1 (W123), S1PR3 (CAY10444), c-Src (PP1), EGFR (AG1478), PDGFR (AG1296), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), PI3K (LY294002), or AP-1 (Tanshinone IIA) and transfection with siRNA of S1PR1, S1PR3, c-Src, EGFR, PDGFR, p38, p42, JNK1, c-Jun, or c-Fos. We observed that S1P-stimulated p42/p44 MAPK and p38 MAPK activation was mediated via a c-Src/EGFR and PDGFR-dependent pathway. S1P caused the c-Src/EGFR/PDGFR complex formation. On the other hand, we demonstrated that S1P induced p42/p44 MAPK and p38 MAPK-dependent Akt activation. In addition, S1P-stimulated JNK1/2 phosphorylation was attenuated by SP600125 or PP1. Finally, S1P enhanced c-Fos mRNA levels and c-Jun phosphorylation. S1P-induced c-Jun activation was reduced by PP1, AG1478, AG1296, U0126, SP600125, SB202190, or LY294002. These results demonstrated that S1P-induced ICAM-1 expression and monocyte adhesion were mediated through S1PR1/3/c-Src/EGFR, PDGFR/p38 MAPK, p42/p44 MAPK/Akt-dependent AP-1 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号