首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aquaporin 3 (AQP3) is an aquaglyceroporin that transports water and glycerol and is expressed in the epidermis, among other epithelial tissues. We have recently shown that there is an association between this glycerol channel and phospholipase D2 (PLD2) in caveolin-rich membrane microdomains. While PLD2 is able to hydrolyze membrane phospholipids to generate phosphatidic acid, this enzyme also catalyzes, in the presence of primary alcohols, a transphosphatidylation reaction to produce a phosphatidylalcohol. We have proposed that AQP3 associated with PLD2 provides the physiological primary alcohol glycerol to PLD2 for use in the transphosphatidylation reaction to generate phosphatidylglycerol (PG). Further, we have proposed that PG functions as a signaling molecule to mediate early epidermal keratinocyte differentiation, and manipulation of this signaling module inhibits keratinocyte proliferation and enhances differentiation. In contrast, other investigators have suggested a proliferative role for AQP3 in keratinocytes. In addition, AQP3 knockout mice exhibit an epidermal phenotype, characterized by dry skin, decreased elasticity and delayed barrier repair and wound healing, which can be corrected by glycerol but not other humectants. AQP3 levels have also been found to be altered in human skin diseases. In this article the evidence supporting a role for AQP3 in the epidermis will be discussed.  相似文献   

2.
One of the major characteristics of human skin photoaging induced by ultraviolet (UV) radiation is the dehydration of the skin. Water movement across plasma membrane occurs via diffusion through lipid bilayer and via aquaporins (AQPs). We find that UV induces aquaporin-3 (AQP3) down-regulation in human skin keratinocytes. MEK/ERK inhibitors PD98059 and U0126 inhibit UV-induced down-regulation of AQP3. Antioxidant N-acetyl-L-cysteine or NAC blocks UV-induced MEK/ERK activation and down-regulation of AQP3. All-trans retinoic acid or atRA, while alone inducing AQP3 expression, attenuates UV-induced down-regulation of AQP3 and water permeability. Using special inhibitors, we find that activation of EGFR and inhibition on ERK activation are involved in atRA's protective effects against UV-induced AQP3 down-regulation. Using specific AQP3's water transport inhibitors and siRNA knockdown, we observe that AQP3 is involved in cell migration and in vitro wound healing. UV-induced AQP3 down-regulation results in reduced water permeability, decreased cell migration, and delayed wound healing, which are attenuated by atRA pretreatment. We conclude that atRA protects against UV-induced down-regulation AQP3 and decrease in water permeability, reduction in cell migration and delayed in vitro wound healing via trans-activation of EGFR and inhibition on ROS-mediated MEK/ERK pathway. This novel finding provides evidence to support possible involvement of AQP3 in UV induced skin dehydration.  相似文献   

3.
Lysophosphatidate (LPA) stimulates cell migration and division through a family of G-protein-coupled receptors. Lipid phosphate phosphatase-1 (LPP1) regulates the degradation of extracellular LPA as well as the intracellular accumulation of lipid phosphates. Here we show that increasing the catalytic activity of LPP1 decreased the pertussis toxin-sensitive stimulation of fibroblast migration by LPA and an LPA-receptor agonist that could not be dephosphorylated. Conversely, knockdown of endogenous LPP1 activity increased LPA-induced migration. However, LPP1 did not affect PDGF- or endothelin-induced migration of fibroblasts in Transwell chamber and "wound healing" assays. Thus, in addition to degrading exogenous LPA, LPP1 controls signaling downstream of LPA receptors. Consistent with this conclusion, LPP1 expression decreased phospholipase D (PLD) stimulation by LPA and PDGF, and phosphatidate accumulation. This LPP1 effect was upstream of PLD activation in addition to the possible metabolism of phosphatidate to diacylglycerol. PLD(2) activation was necessary for LPA-, but not PDGF-induced migration. Increased LPP1 expression also decreased the LPA-, but not the PDGF-induced activation of important proteins involved in fibroblast migration. These included decreased LPA-induced activation of ERK and Rho, and the basal activities of Rac and Cdc42. However, ERK and Rho activation were not downstream targets of LPA-induced PLD(2) activity. We conclude that the intracellular actions of LPP1 play important functions in regulating LPA-induced fibroblast migration through PLD2. LPP1 also controls PDGF-induced phosphatidate formation. These results shed new light on the roles of LPP1 in controlling wound healing and the growth and metastasis of tumors.  相似文献   

4.
5.
6.
Cao C  Sun Y  Healey S  Bi Z  Hu G  Wan S  Kouttab N  Chu W  Wan Y 《The Biochemical journal》2006,400(2):225-234
AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing.  相似文献   

7.
Repetitive mechanical stimulation of cultured avian skeletal muscle increases the synthesis of prostaglandins (PG) E2 and F which regulate protein turnover rates and muscle cell growth. These stretch-induced PG increases are reduced in low extracellular calcium medium and by specific phospholipase inhibitors. Mechanical stimulation increases the breakdown rate of 3H-arachidonic acid labelled phospholipids, releasing free 3H-arachidonic acid, the rate-limiting precursor of PG synthesis. Mechanical stimulation also increases 3H-arachidonic acid labelled diacylglycerol formation and intracellular levels of inositol phosphates from myo-[2-3H]inositol labelled phospholipids. Phospholipase A2 (PLA2), phosphatidylinositol-specific phospholipase C (PLC), and phospholipase D (PLD) are all activated by stretch. The stretch-induced increases in PG production, 3H-arachidonic acid labelled phospholipid breakdown, and 3H-arachidonic acid labelled diacylglycerol formation occur independently of cellular electrical activity (tetrodotoxin insensitve) whereas the formation of inositol phosphates from myo-[2-3H]inositol labelled phospholipids is dependent on cellular electrical activity. These results indicate that mechanical stimulation increases the lipid-related second messengers arachidonic acid, diacylglycerol, and PG through activation of specific phospholipases such as PLA2 and PLD, but not by activation of phosphatidylinositol-specific PLC. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Laminar shear stress (LSS) due to blood flow contributes to the maintenance of endothelial health by multiple mechanisms including promotion of wound healing. The present study examined the hypothesis that the induction of water channel aquaporin 1 (AQP1) expression by LSS might be functionally associated with endothelial wound healing. When human umbilical vein endothelial cells were exposed to LSS at 12 dyn cm?2 for 24 h, significant increases in AQP1 expression were observed at the mRNA and protein levels as compared with static control. In the in vitro scratch wound healing assay, LSS treatments before and after wound creation enhanced endothelial wound healing and this effect was significantly attenuated by selective suppression of AQP1 expression using small interfering RNA. Ectopic expression of AQP1 enhanced wound healing in the absence of LSS. This study demonstrated that LSS stimulates the endothelial expression of AQP1 that plays a role in wound healing.  相似文献   

9.
We have previously isolated a 22 kDa protein from a rat brain which was found to be involved in activating phospholipsae D (PLD), and identified the protein as hippocalcin through sequence analysis. Nevertheless, the function of hippocalcin for PLD activation still remains to be resolved. Here, we proposed that hippocalcin was involved in extracellular signal-regulated kinase (ERK)-mediated PLD2 expression. To elucidate a role of hippocalcin, we made hippocalcin transfected NIH3T3 cells and showed that the expression of PLD2 and basal PLD activity were increased in hippocalcin transfected cells. We performed PLD assay with dominant negative PLD2 (DN-PLD2) and hippocalcin co-transfected cells. DN-PLD2 suppressed increase of basal PLD activity in hippocalcin transfected cells, suggesting that increased basal PLD activity is due to PLD2 over-expression. Hippocalcin is a Ca2+-binding protein, which is expressed mainly in the hippocampus. Since it is known that lysophosphatidic acid (LPA) increases intracellular Ca2+, we investigated the possible role of hippocalcin in the LPA-induced elevation of intracellular Ca2+. When the intracellular Ca2+ level was increased by LPA, hippocalcin was translocated to the membrane after LPA treatment in hippocalcin transfected cells. In addition, treatment with LPA in hippocalcin transfected cells markedly potentiated PLD2 expression and showed morphological changes of cell shape suggesting that increased PLD2 expression acts as one of the major factors to cause change of cell shape by making altered membrane lipid composition. Hippocalcin-induced PLD2 expression potentiated by LPA in hippocalcin transfected cells was inhibited by a PI-PLC inhibitor, U73122 and a chelator of intracellular Ca2+, BAPTA-AM suggesting that activation of hippocalcin caused by increased intracellular Ca2+ is important to induce over-expression of PLD2. However, downregulation of PKC and treatment of a chelator of extracellular Ca2+, EGTA had little or no effect on the inhibition of hippocalcin-induced PLD2 expression potentiated by LPA in the hippocalcin transfected cells. Interestingly, when we over-express hippocalcin, ERK was activated, and treatment with LPA in hippocalcin transfected cells significantly potentiated ERK activation. Specific inhibition of ERK dramatically abolished hippocalcin-induced PLD2 expression. Taken together, these results suggest for the first time that hippocalcin can induce PLD2 expression and LPA potentiates hippocalcin-induced PLD2 expression, which is mediated by ERK activation.  相似文献   

10.
Statins are 3-hydroxyl-3-methyglutaryl-CoA reductase inhibitors that are commonly used to inhibit cholesterol biosynthesis. Emerging data have suggested that they also have "pleotropic effects," including modulating actin cytoskeleton reorganization. Here, we report an effect of simvastatin on the trafficking of aquaporin-2 (AQP2). Specifically, simvastatin induced the membrane accumulation of AQP2 in cell cultures and kidneys in situ. The effect of simvastatin was independent of protein kinase A activation and phosphorylation at AQP2-Ser(256), a critical event involved in vasopressin (VP)-regulated AQP2 trafficking. Further investigation showed that simvastatin inhibited endocytosis in parallel with downregulation of RhoA activity. Overexpression of active RhoA attenuated simvastatin's effect, suggesting the involvement of this small GTPase in simvastatin-mediated AQP2 trafficking. Finally, the effect of simvastatin on urinary concentration was investigated in VP-deficient Brattleboro rats. Simvastatin acutely (3-6 h) increased urinary concentration and decreased urine output in these animals. In summary, simvastatin regulates AQP2 trafficking in vitro and urinary concentration in vivo via events involving downregulation of Rho GTPase activity and inhibition of endocytosis. Our study provides an alternative mechanism to regulate AQP2 trafficking, bypassing the VP-vasopressin receptor signaling pathway.  相似文献   

11.
Many of the effects of 1α,25-(OH)2D3 and 24R,25-(OH)2D3 on costochondral chondrocytes are mediated by the protein kinase C (PKC) signal transduction pathway. 1α,25-(OH)2D3 activates PKC in costochondral growth zone chondrocytes through a specific membrane receptor (1α,25-mVDR), involving rapid increases in diacylglycerol via a phospholipase C (PLC)-dependent mechanism. 24R,25-(OH)2D3 activates PKC in resting zone chondrocytes. Although diacylglycerol is increased by 24R,25-(OH)2D3, PLC is not involved, suggesting a phospholipase D (PLD)-dependent mechanism. Here, we show that resting zone and growth zone cells express mRNAs for PLD1a, PLD1b, and PLD2. Both cell types have PLD activity, but levels are higher in resting zone cells. 24R,25-(OH)2D3, but not 24S,25-(OH)2D3 or 1α,25-(OH)2D3, stimulates PLD activity in resting zone cells within 3 min via nongenomic mechanisms. Neither 1α,25-(OH)2D3 nor 24R,25-(OH)2D3 affected PLD in growth zone cells. Basal and 24R,25-(OH)2D3-stimulated PLD were inhibited by the PLD inhibitors wortmannin and EDS. Inhibition of phosphatidylinositol 3-kinase (PI 3-kinase), PKC, phosphatidylinositol-specific PLC (PI-PLC), and phosphatidylcholine-specific PLC (PC-PLC) had no effect on PLD activity. Thus, 24R,25-(OH)2D3 stimulates PLD, and PI 3-kinase, PI-PLC and PKC are not involved, whereas PLD is required for stimulation of PKC by 24R,25-(OH)2D3. Pertussis toxin, GDPβS, and GTPγS had no effect on 24R,25-(OH)2D3-dependent PLD when added to cell cultures, indicating that G-proteins are not involved. These data show that PKC activation in resting zone cells is mediated by PLD and suggest that a functional 24R,25-(OH)2D3-mVDR is required. The results also support the conclusion that the 24R,25-(OH)2D3-responsive PLD is PLD2, since this PLD isoform is G-protein-independent.  相似文献   

12.
Phosphatidic acid (PA) is a lipid second messenger located at the intersection of several lipid metabolism and cell signaling events including membrane trafficking, survival, and proliferation. Generation of signaling PA has long been primarily attributed to the activation of phospholipase D (PLD). PLD catalyzes the hydrolysis of phosphatidylcholine into PA. A variety of both receptor-tyrosine kinase and G-protein-coupled receptor stimulations have been shown to lead to PLD activation and PA generation. This study focuses on profiling the PA pool upon P2Y6 receptor signaling manipulation to determine the major PA producing enzymes. Here we show that PLD, although highly active, is not responsible for the majority of stable PA being produced upon UDP stimulation of the P2Y6 receptor and that PA levels are tightly regulated. By following PA flux in the cell we show that PLD is involved in an initial increase in PA upon receptor stimulation; however, when PLD is blocked, the cell compensates by increasing PA production from other sources. We further delineate the P2Y6 signaling pathway showing that phospholipase Cβ3 (PLCβ3), PLCδ1, DGKζ and PLD are all downstream of receptor activation. We also show that DGKζ is a novel negative regulator of PLD activity in this system that occurs through an inhibitory mechanism with PKCα. These results further define the downstream events resulting in PA production in the P2Y6 receptor signaling pathway.  相似文献   

13.
The major component of the epidermis, keratinocytes, must continuously proliferate and differentiate to form the mechanical and water permeability barrier of the skin. Our previous data have suggested a potential role in these processes for phospholipase D (PLD), an enzyme that hydrolyzes phospholipids to generate phosphatidic acid. In the presence of primary alcohols, PLD also catalyzes a transphosphatidylation reaction to produce phosphatidylalcohols, and this characteristic has been exploited to monitor the activity of PLD in intact cells. In this report, PLD was demonstrated to utilize the physiological alcohol glycerol to form phosphatidylglycerol (PG) in vitro. In intact primary murine epidermal keratinocytes treated for 24 h with elevated extracellular Ca(2+) levels, but not 1,25-dihydroxyvitamin D(3), incubation with radioactive glycerol resulted in an increase in PLD-mediated radiolabeled PG production. This effect was dose-dependent and biphasic, with maximal PG formation detected after exposure to an intermediate (125 microM) Ca(2+) concentration. Furthermore, the biphasic nature of the response was due, in part, to a corresponding biphasic change in glycerol uptake. Finally, short-term treatment of keratinocytes with phorbol 12-myristate 13-acetate (PMA) failed to increase PG synthesis and inhibited glycerol uptake. Since (1) PMA is reported to activate PLD-1 to a greater extent than PLD-2, (2) 1,25-dihydroxyvitamin D(3) increases the expression/activity of PLD-1 in keratinocytes, and (3) PLD-2 is co-localized with a glycerol channel in keratinocyte membrane microdomains, we speculate that radiolabeled PG production from radioactive glycerol is a measure of PLD-2 activation in these cells. Our results also suggest that PLD-mediated PG synthesis may be regulated at the level of both PLD activity and alcohol substrate availability via changes in glycerol uptake.  相似文献   

14.
Deletion of the epidermal water/glycerol transporter aquaporin-3 (AQP3) in mice reduced superficial skin conductance by approximately 2-fold (Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M., and Verkman, A. S. (2002) J. Biol. Chem. 277, 17147-17153), suggesting defective stratum corneum (SC) hydration. Here, we demonstrate significant impairment of skin hydration, elasticity, barrier recovery, and wound healing in AQP3 null mice in a hairless (SKH1) genetic background and investigate the cause of the functional defects by analysis of SC morphology and composition. Utilizing a novel (3)H(2)O distribution method, SC water content was reduced by approximately 50% in AQP3 null mice. Skin elasticity measured by cutometry was significantly reduced in AQP3 null mice with approximately 50% reductions in elasticity parameters Uf, Ue, and Ur. Although basal skin barrier function was not impaired, AQP3 deletion produced an approximately 2-fold delay in recovery of barrier function as measured by transepidermal water loss after tape stripping. Another biosynthetic skin function, wound healing, was also approximately 2-fold delayed by AQP3 deletion. By electron microscopy AQP3 deletion did not affect the structure of the unperturbed SC. The SC content of ions (Na(+), K(+), Ca(2+), Mg(2+)) and small solutes (urea, lactic acid, glucose) was not affected by AQP3 deletion nor was the absolute amount or profile of lipids and free amino acids. However, AQP3 deletion produced significant reductions in glycerol content in SC and epidermis (in nmol/microg protein: 5.5 +/- 0.4 versus 2.3 +/- 0.7 in SC; 0.037 +/- 0.007 versus 0.022 +/- 0.005 in epidermis) but not in dermis or blood. These results establish hydration, mechanical, and biosynthetic defects in skin of AQP3-deficient mice. The selective reduction in epidermal and SC glycerol content in AQP3 null mice may account for these defects, providing the first functional evidence for physiologically important glycerol transport by an aquaporin.  相似文献   

15.
Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early wound healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target.  相似文献   

16.
The pathogenesis of interstitial cystitis/painful bladder syndrome (IC/PBS) is multifactorial, but likely involves urothelial cell dysfunction and mast cell accumulation in the bladder wall. Activated mast cells in the bladder wall release several inflammatory mediators, including histamine and tryptase. We determined whether mitogen-activated protein (MAP) kinases are activated in response to tryptase stimulation of urothelial cells derived from human normal and IC/PBS bladders. Tryptase stimulation of normal urothelial cells resulted in a 2.5-fold increase in extracellular signal regulated kinase 1/2 (ERK 1/2). A 5.5-fold increase in ERK 1/2 activity was observed in urothelial cells isolated from IC/PBS bladders. No significant change in p38 MAP kinase was observed in tryptase-stimulated normal urothelial cells but a 2.5-fold increase was observed in cells isolated from IC/PBS bladders. Inhibition of ERK 1/2 with PD98059 or inhibition of p38 MAP kinase with SB203580 did not block tryptase-stimulated iPLA2 activation. Incubation with the membrane phospholipid-derived PLA2 hydrolysis product lysoplasmenylcholine increased ERK 1/2 activity, suggesting the iPLA2 activation is upstream of ERK 1/2. Real time measurements of impedance to evaluate wound healing of cell cultures indicated increased healing rates in normal and IC/PBS urothelial cells in the presence of tryptase, with inhibition of ERK 1/2 significantly decreasing the wound healing rate of IC/PBS urothelium. We conclude that activation of ERK 1/2 in response to tryptase stimulation may facilitate wound healing or cell motility in areas of inflammation in the bladder associated with IC/PBS.  相似文献   

17.
Lipid mediators generated from metabolism of arachidonic acid play a crucial role in the initiating and resolution of acute inflammation by shifting from pro-inflammatory prostaglandin (PG) E2 to anti-inflammatory PGD2 and its metabolites. The changes in PG levels over time during the normal wound-repair process have not, however, been reported. We determined the temporal expression of PG and their biosynthetic enzymes using the full thickness incisional model of normal wound healing in mice. We demonstrate that during normal wound repair, there is a shift in the metabolism of arachidonate from PGE2 during the acute inflammatory phase to PGD2 during the repair phase. This shift is mediated by temporal changes in the expression of cyclooxygenases (COX) and microsomal PGES (mPGES)-1. Inducible COX (COX-2) expression is sustained throughout the initiation and repair process, but mPGES-1 is increased only during the acute inflammatory phase and its disappearance coincides with increased PGD2. PGD2 and its degradation products are known to mediate their anti-inflammatory effects by binding to peroxisome proliferators-activated receptor gamma (PPARgamma). In this study, we show that PPARgamma is upregulated during the resolution phase of wound repair concomitant with the shift to PGD2, and may be responsible for initiating endogenous mechanism resulting in healing/resolution.  相似文献   

18.
The common plant phospholipase D (PLD), PLDα, has been proposed to be involved in wound-induced production of jasmonic acid. To better understand the role(s) of PLDα in the wound response, detailed lipid analysis was carried out to determine the in vivo substrates and the contribution of PLDα in wound-induced lipid metabolism in Arabidopsis thaliana. Mechanical wounding of Arabidopsis leaves resulted in significantly less hydrolysis of phosphatidylcholine (PC) in PLDα-deficient than in wild-type plants. Hydrolysis of phosphatidylethanolamine, phosphatidylglycerol (PG), and phosphatidylinositol within 30 min of wounding was not significantly different in PLDα-deficient and wild-type leaves. Phosphatidic acid (PA) levels increased rapidly in wild-type and, to a lesser extent, in PLDα-deficient plants. The acyl composition of the PA generated by wounding suggests that the major in vivo substrate of PLD in wild-type leaves was PC, and that PG hydrolysis accounted for 10–15% of the wound-induced PA in wild-type leaves. Comparison of the acyl compositions of the wound-induced PA of wild-type and PLDα-deficient leaves indicated that PLDα hydrolyzed PG more readily than other PLD isoforms did. Wounding produced substantial increases in free linoleic and linolenic acids in wild-type plants, whereas PLDα-deficient plants showed only a slight increase in linoleic acid and no significant increase in linolenic acid. These results demonstrate that PLDα and at least one other PLD isoform, as well as other hydrolytic enzymes, are active in mechanically wounded Arabidopsis leaves, and PLDα is involved in wound-induced metabolism of polyunsaturated fatty acids.  相似文献   

19.
Cells of gut and skin frequently suffer mechanically-induced plasma membrane disruptions in vivo, and bioactive molecules, including basic fibroblast growth factor (bFGF), could enter and leave cytoplasm through these disruptions. We here provide three lines of evidence that bFGF is released with surprising efficiency through plasma membrane disruptions, resembling those known to occur in vivo, produced by scraping endothelial cells from their culturing substratum. First, 41% of the total of bFGF extractable in 1 M NaCl by freeze-thaw and sonication was released simply by scraping the endothelial cells. Second, relative to release of lactate dehydrogenase, cells wounded by scraping under conditions promoting greater than 60% cell survival released a significantly larger amount (up to twofold more) of growth promoting activity than did cells uniformly killed and irreversibly permeabilized by scraping in the cold or by freezing and thawing. Last, cells that survived membrane disruptions released, and contained, less bFGF on each subsequent wounding, consistent with release of bFGF through transient (i.e., survivable) membrane disruptions. A polyclonal antibody against bFGF completely neutralized the growth promoting activity released by scraping, confirming that bFGF is released through endothelial cell plasma membrane disruptions. Cell fractionation and immunolocalization, including a novel permeabilization technique for electron microscope immunolocalization, demonstrated a cytosolic location of bFGF. We conclude that many characteristics of bFGF--its broad spectrum of producing and target cell types, cytosolic location, efficient release through biologically and pathologically relevant plasma membrane wounds, and its release from cells that survive membrane wounds--make it a strong candidate as a "wound hormone" for rapidly initiating the cell growth required for routine maintenance of tissue integrity and/or repair after injury.  相似文献   

20.
Lysophosphatidylcholine (lysoPC) is a bioactive phospholipid that is involved in atherogenesis and inflammatory processes. However, the present understanding of mechanisms whereby lysophosphatidylcholine exerts its pathophysiological actions is incomplete. In the present work, we show that lysoPC stimulates phospholipase D (PLD) activity in mouse peritoneal macrophages. PLD activation leads to the generation of important second messengers such as phosphatidic acid, lysophosphatidic acid, and diacylglycerol, all of which can regulate cellular responses involved in atherogenesis and inflammation. The activation of PLD by lysoPC was attenuated by down-regulation of protein kinase C activity with prolonged incubation with 100 nm of 4beta-phorbol 12-myristate 13-acetate (PMA). Preincubation of the macrophages with the tyrosine kinase inhibitor genistein also decreased the stimulation of PLD by lysoPC, while pretreatment with orthovanadate, which inhibits tyrosine phosphatases, enhanced basal and lysoPC-stimulated PLD activity. The activation of PLD by lysoPC was attenuated by the platelet activating factor (PAF) receptor antagonist WEB-2086, suggesting a role for PAF receptor activation in this process. Furthermore, acetylation of lysoPC substantially increased its potency in activating PLD, suggesting that a cellular metabolite of lysoPC such as 1-acyl 2-acetyl PC might be responsible for at least part of the effect of lysoPC on PLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号