首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Wound healing can be influenced by genes that control the circadian cycle, including Per2 and BMAL1, which coordinate the functions of several organs, including the skin. The aim of the study was to evaluate the role of PER2 during experimental skin wound healing. Two groups (control and Per2-KO), consisting of 14 male mice each, were anesthetized by inhalation, and two 6 mm wounds were created on their dorsal skin using a punch biopsy. A silicone ring was sutured around the wound perimeter to restrict contraction. The wound healing process was clinically measured daily (closure index) until complete wound repair. On Day 6, histomorphometric analysis was performed using the length and thickness of the epithelial migration tongue, in addition to counting vessels underlying the lesion by immunofluorescence assay and maturation of collagen fibers through picrosirius staining. Bromodeoxyuridine (BrdU) incorporation and quantification were performed using the subcutaneous injection technique 2 h before euthanasia and through immunohistochemical analysis of the proliferative index. In addition, the qualitative analysis of myofibroblasts and periostin distribution in connective tissue was performed by immunofluorescence. Statistically significant differences were observed in the healing time between the experimental groups (means: 15.5 days for control mice and 13.5 days for Per2-KO; p = 0.001). The accelerated healing observed in the Per2-KO group (p < 0.05) was accompanied by statistical differences in wound diameter and length of the migrating epithelial tongue (p = 0.01) compared to the control group. Regarding BrdU immunoreactivity, higher expression was observed in the intact epithelium of Per2-KO animals (p = 0.01), and this difference compared to control was also present, to a lesser extent, at the wound site (p = 0.03). Immunofluorescence in the connective tissue underlying the wound showed a higher angiogenic potential in the Per2-KO group in the intact tissue area and the wound region (p < 0.01), where increased expression of myofibroblasts was also observed. Qualitative analysis revealed the distribution of periostin protein and collagen fibers in the connective tissue underlying the wound, with greater organization and maturation during the analyzed period. Our research showed that the absence of the Per2 gene positively impacts the healing time of the skin in vivo. This acceleration depends on the increase of epithelial proliferative and angiogenic capacity of cells carrying the Per2 deletion.  相似文献   

6.
1α,25-Dihydroxyvitamin D3 (VitD3) increases protein and gene expression of phospholipase D1 (PLD1), but not PLD2, in HaCaT human keratinocytes. We show that VitD3 increases PLD1 gene expression through a vitamin D responsive element (VDRE) on the 5′ PLD1 promoter (−260 bp to −246 bp from exon 1). Similar results were obtained by transfecting VitD3 receptor (VDR) into HEK293 cells, which are originally VitD3-unresponsive. Electrophoresis mobility shift assays (EMSA) and chromatin immunoprecipitation (CHIP) assays showed that the complex of VitD3, VDR and retinoid X receptor α (RXRα) binds to the VDRE and increases PLD1 gene expression in HaCaT cells.  相似文献   

7.
dUTPase is involved in preserving DNA integrity in cells. We report an efficient dUTPase silencing by RNAi-based system in stable human cell line. Repression of dUTPase induced specific expression level increments for thymidylate kinase and thymidine kinase, and also an increased sensitization to 5-fluoro-2′-deoxyuridine and 5-fluoro-uracil. The catalytic mechanism of dUTPase was investigated for 5-fluoro-dUTP. The 5F-substitution on the uracil ring of the substrate did not change the kinetic mechanism of dUTP hydrolysis by dUTPase. Results indicate that RNAi silencing of dUTPase induces a complex cellular response wherein sensitivity towards fluoropyrimidines and gene expression levels of related enzymes are both modulated.  相似文献   

8.
We previously reported that 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] protects primary human keratinocytes against ultraviolet (UV)B-induced apoptosis. Here, we confirmed the anti-apoptotic effect of 1,25(OH)2D3 in keratinocytes, using cisplatin and doxorubicin as apoptotic triggers. We further showed that 1,25(OH)2D3 activates two survival pathways in keratinocytes: the MEK/extracellular signal regulated kinase (ERK) and the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. Activation of ERK and Akt by 1,25(OH)2D3 was transient, required a minimal dose of 10(-9) M and could be blocked by actinomycin D and cycloheximide. Moreover, inhibition of Akt or ERK activity with respectively a PI-3K inhibitor (LY294002) or MEK inhibitors (PD98059, UO126), partially or totally suppressed the anti-apoptotic capacity of 1,25(OH)2D3. Finally, 1,25(OH)2D3 changed the expression of different apoptosis regulators belonging to the Bcl-2 family. Indeed, 1,25(OH)2D3 treatment increased levels of the anti-apoptotic protein Bcl-2 and decreased levels of the pro-apoptotic proteins Bax and Bad in a time- and dose-dependent way. Induction of Bcl-2 by 1,25(OH)2D3 was further shown to be mediated by ERK and, to a lesser extent, by Akt. In conclusion, 1,25(OH)2D3 clearly protects keratinocytes against apoptosis (1) by activating the MEK/ERK and the PI-3K/Akt survival pathways and (2) by increasing the Bcl-2 to Bax and Bad ratio.  相似文献   

9.
The complex process of wound healing as well as the signaling systems orchestrating this intricate process remain incompletely defined. Using human keratinocytes in primary culture, we sought to characterize their NF-κB responses to wounding alone or in combination with other treatments. We initially characterized these cultured human keratinocytes responses to known NF-κB activators (PMA, TNF- and IL-1) using two different assays, immunohistochemistry and electrophoretic mobility shift (EMSA). After eliciting the expected NF-κB responses, we applied these same assays to assess responses to either wounding or HeNe irradiation alone. The results obtained indicated that only a modest/sporadic activation of NF-κB was elicited by these which was only detectable using immunohistochemistry. When the combination of wounding and HeNe irradiation on NF-κB status was assessed, a marked, localized activation of NF-κB in keratinocytes along the wound edge was found. Treatment induced NF-κB activation (e.g., wounding, HeNe irradiation and combined wounding and HeNe irradiation) was abrogated by pyrrolidine dithiocarbamate (PDTC) which inhibits NF-κB activation through an as yet incompletely understood (antioxidant?) mechanism. These data therefore suggest that NF-κB and oxidation mediated changes in its activation state likely play important roles in normal cutaneous wound healing.  相似文献   

10.
11.
12.
13.
We have recently shown that the mu-opioid receptor [MOR1, also termed mu-opioid peptide (MOP) receptor] is associated with the phospholipase D2 (PLD2), a phospholipid-specific phosphodiesterase located in the plasma membrane. We further demonstrated that, in human embryonic kidney (HEK) 293 cells co-expressing MOR1 and PLD2, treatment with (D-Ala2, Me Phe4, Glyol5)enkephalin (DAMGO) led to an increase in PLD2 activity and an induction of receptor endocytosis, whereas morphine, which does not induce opioid receptor endocytosis, failed to activate PLD2. In contrast, a C-terminal splice variant of the mu-opioid receptor (MOR1D, also termed MOP(1D)) exhibited robust endocytosis in response to both DAMGO and morphine treatment. We report here that MOR1D also mediates an agonist-independent (constitutive) PLD2-activation facilitating agonist-induced and constitutive receptor endocytosis. Inhibition of PLD2 activity by over-expression of a dominant negative PLD2 (nPLD2) blocked the constitutive PLD2 activation and impaired the endocytosis of MOR1D receptors. Moreover, we provide evidence that the endocytotic trafficking of the delta-opioid receptor [DOR, also termed delta-opioid peptide (DOP) receptor] and cannabinoid receptor isoform 1 (CB1) is also mediated by a PLD2-dependent pathway. These data indicate the generally important role for PLD2 in the regulation of agonist-dependent and agonist-independent G protein-coupled receptor (GPCR) endocytosis.  相似文献   

14.
Previous studies demonstrated that melittin, the main peptide in bee venom, could cause persistent spontaneous pain, primary heat and mechanical hyperalgesia, and enhance the excitability of spinal nociceptive neurons. However, the underlying mechanism of melittin-induced cutaneous hypersensitivity is unknown. Effects of melittin applied topically to acutely dissociated rat dorsal root ganglion neurons were studied using whole-cell patch clamp and calcium imaging techniques. Melittin induced intracellular calcium increases in 60% of small (<25 μm) and medium (<40 μm) diameter sensory neurons. In current clamp, topical application of melittin evoked long-lasting firing in 55% of small and medium-sized neurons tested. In voltage clamp, melittin evoked inward currents in sensory neurons in a concentration-dependent manner. Repeated application of melittin caused increased amplitude of the inward currents. Most melittin-sensitive neurons were capsaicin-sensitive, and 65% were isolectin B4 positive. Capsazepine, the TRPV1 receptor inhibitor, completely abolished the melittin-induced inward currents and intracellular calcium transients. Inhibitions of signaling pathways showed that phospholipase A2, but not phospholipase C, was involved in producing the melittin-induced inward currents. Inhibitors of cyclooxygenases (COX) and lipoxygenases (LOX), two key components of the arachidonic acid metabolism pathway, each partially suppressed the inward current evoked by melittin. Inhibitors of protein kinase A (PKA), but not of PKC, also abolished the melittin-induced inward currents. These results indicate that melittin can directly excite small and medium-sized sensory neurons at least in part by activating TRPV1 receptors via PLA2-COXs/LOXs cascade pathways.  相似文献   

15.
In dermatology, photodynamic therapy (PDT) is widely used in skin tumors, infections, etc., because of the killing effect triggered by toxic reactive oxygen species (ROS). However, the ROS concentration is determined by various photosensitizer concentrations and formulations, as well as various irradiation parameters. Low-dose PDT leads to sufficiently low ROS level, which results in biological effects that are the exact opposite of the killing potency. Therefore, in recent years, low-dose PDT has been exploited in improving aging and wound. Low-dose ALA/MAL PDT might improve aging through promoting the proliferation of fibroblasts, blocking DNA damage, counteracting oxidative stress, inhibiting melanogenesis, and remodeling lymphatic vessels in aged skin. Promoting fibroblasts and epidermal stem cells proliferation and migration, promoting granulation tissue formation and angiogenesis and regulating the inflammatory process might be the mechanisms of low-dose ALA/MAL PDT in wound healing. Nevertheless, the positive effects of low-dose PDT have not been thoroughly investigated in dermatology, and high-quality studies are still needed to fill the relevant vacancy.  相似文献   

16.
In a dermal wound model, consisting of human skin fibroblasts in collagen matrix, continuous sinusoidal electrical current stimulation elicited a maximum increase of [3H]thymidine relative to control at 41 mV/m amplitude, 10 Hz. In this paper we elaborate cell cycle kinetics, using the same parameters. Labeling occurred over 4-h intervals beginning at 12 to 20 h after onset of electric exposure. The results suggest a significant increase in [3H]thymidine incorporation over an 8-h period extending from 16–24 hours after stimulus initiation. Bioelectromagnetics 19:68–74, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
We investigated the capacity of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] to protect human keratinocytes against the hazardous effects of ultraviolet B (UVB)-irradiation, recognized as the most important etiological factor in the development of skin cancer. Cytoprotective effects of 1,25(OH)(2)D(3) on UVB-irradiated keratinocytes were seen morphologically and quantified using a colorimetric survival assay. Moreover, 1,25(OH)(2)D(3) suppressed UVB-induced apoptotic cell death. An ELISA, detecting DNA-fragmentation, demonstrated that pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM for 24 h reduced UVB-stimulated apoptosis by 55-70%. This suppression required pharmacological concentrations 1,25(OH)(2)D(3) and a preincubation period of several hours. In addition, 1,25(OH)(2)D(3) also inhibited mitochondrial cytochrome c release (90%), a hallmark event of UVB-induced apoptosis. Furthermore, we demonstrated that 1,25(OH)(2)D(3) reduced two important mediators of the UV-response, namely, c-Jun-NH(2)-terminal kinase (JNK) activation and interleukin-6 (IL-6) production. As shown by Western blotting, pretreatment of keratinocytes with 1,25(OH)(2)D(3) 1 microM diminished UVB-stimulated JNK activation with more than 30%. 1,25(OH)(2)D(3) treatment (1 microM) reduced UVB-induced IL-6 mRNA expression and secretion with 75-90%. Taken together, these findings suggest the existence of a photoprotective effect of active vitamin D(3) and create new perspectives for the pharmacological use of active vitamin D compounds in the prevention of UVB-induced skin damage and carcinogenesis.  相似文献   

18.
Extensive skin loss from a variety of conditions such as severe thermal injury is associated with significant functional morbidity and mortality. In recent years, the healing quality has been improved for patients who suffer burns due in part to the usage of skin replacement mainly prepared from multi-layered sheets of cultured keratinocytes. Although it is known that keratinocytes are a rich source of wound healing promoting factors such as transforming growth factor-beta1 (TGF-beta1), it is not clear whether differentiated keratinocytes in a multi-layer form release this multi-functional growth factor and has any functional influence on dermal fibroblasts. This study examined the hypothesis that keratinocytes in mono- and multi-layer forms express different levels of TGF-beta1. To address this hypothesis, keratinocytes were grown in serum free medium (KSFM) supplemented with bovine pituitary extract (50 microg/ml) and EGF (5 microg/ml). When cells reached confluency, conditioned medium was removed and replaced with 50% KSFM with no additives and 50% DMEM without serum and cells were allowed to form multi-layers and differentiate. The conditioned medium was then collected every 48 h up to 24 days and the level of TGF-beta1 and the efficacy of a keratinocyte released fibroblast mitogenic factor were evaluated by ELISA and (3)H-thymidine incorporation, respectively. Northern analysis was also employed to evaluate the expression of TGF-beta1, involucrin, TIMP-1, and 18 S ribosomal RNA in keratinocytes at different times of the onset of differentiation. The microscopic morphology of keratinocytes at different times of induction of cell differentiation showed detachments (nodules) of many regions of keratinocyte sheet from culture substratum within 1-2 weeks. The numbers and sizes of these nodules were increased as the process of keratinocyte differentiation proceed. The results of TGF-beta1 evaluation revealed that mono-layers of cultured keratinocytes which were round, attached, and proliferating in KSFM + BPE and EGF containing medium released a significantly higher level of TGF-beta1 (196 +/- 58 pg /ml) relative to those grown in multi-layer forms (28 +/- 7.8 pg/ml). A longitudinal experiment was then conducted and the results showed that cells on the onset of differentiation released even greater level of TGF-beta1 (388 +/- 53 pg/ml) relative to those grown in KSFM + BPE and EGF. This finding was consistent with the expression of TGF-beta1 mRNA evaluated in keratinocytes grown in test medium for various duration. In general, the level of TGF-beta1 protein and mRNA gradually reduced to its lowest level within 12 days of growing cells in our test medium. When aliquots of the collected keratinocyte conditioned medium were added to dermal fibroblasts, the level of (3)H-thymidine incorporation increased only in those cells receiving aliquots of conditioned medium containing high levels of TGF-beta1. When involucrin was used as a differentiation marker for keratinocytes at different time points, the highest level of involucrin mRNA expression was found at the later stage of cell differentiation. In conclusion, high involucrin expressing differentiated keratinocytes seem to be quiescent in releasing both TGF-beta1 and a fibroblast mitogenic factor.  相似文献   

19.
Summary The human vitamin D receptor mRNA expression in preconfluent human cultured keratinocytes was upregulated by treatment of these cells with 10&#x2212;8 M 1,25(OH)2D3 for 24 hours. Additionally, human c-myc mRNA expression was decreased in a dose dependent manner by 1,25(OH)2D3 in both preconfluent and confluent cultured human keratinocytes.  相似文献   

20.
磷脂酶D(PLD)催化卵磷脂(Phosphatidylc holine,PC)水解产生胆碱(Choline)和磷脂酸(Phosphatidic acid,PA),其代谢产物参与调控细胞内许多生理和生化过程。在过表达磷脂酶D3(PLD3)的成肌细胞(C2C12细胞)中,研究了PLD3对胰岛素刺激后Akt通路激活的影响。研究结果表明,PLD3过表达细胞的Akt磷酸化水平比对照组低,并且不受胰岛素浓度变化的调控。虽然PLD3过表达细胞中Akt磷酸化水平随胰岛素刺激时间的延长而有所增加,但磷酸化总水平比对照组低。磷脂酶D抑制剂丁-1醇能够抑制对照组胰岛素刺激下Akt磷酸化,却不能抑制PLD3过表达细胞的Akt磷酸化,并且PLD3过表达细胞Akt磷酸化水平比对照组高6倍。用磷脂酸(PA)做刺激时,对照组的Akt磷酸化明显增加,而PLD3过表达细胞株的Akt磷酸化没有显著变化;用PA和胰岛素同时刺激时,PLD3过表达株和对照组的Akt磷酸化均比PA单独刺激时降低。这说明PLD3的过表达抑制成肌细胞内胰岛素信号的传导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号