首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of a water bridge across the lipid bilayer is the first stage of pore formation in molecular dynamic (MD) simulations of electroporation, suggesting that the intrusion of individual water molecules into the membrane interior is the initiation event in a sequence that leads to the formation of a conductive membrane pore. To delineate more clearly the role of water in membrane permeabilization, we conducted extensive MD simulations of water bridge formation, stabilization, and collapse in palmitoyloleoylphosphatidylcholine bilayers and in water–vacuum–water systems, in which two groups of water molecules are separated by a 2.8 nm vacuum gap, a simple analog of a phospholipid bilayer. Certain features, such as the exponential decrease in water bridge initiation time with increased external electric field, are similar in both systems. Other features, such as the relationship between water bridge lifetime and the diameter of the water bridge, are quite different between the two systems. Data such as these contribute to a better and more quantitative understanding of the relative roles of water and lipid in membrane electropore creation and annihilation, facilitating a mechanism-driven development of electroporation protocols. These methods can be extended to more complex, heterogeneous systems that include membrane proteins and intracellular and extracellular membrane attachments, leading to more accurate models of living cells in electric fields.  相似文献   

2.
The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45mV in the physiologically relevant range of membrane tension values (0 to 15dyn/cm). The electrostatic field exhibits a peak (~0.8×10(9)V/m) near the water/lipid interface which shifts by 0.9? towards the bilayer center at 15dyn/cm. Maximum membrane tension of 15dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states.  相似文献   

3.
Alamethicin is a hydrophobic helical peptide of 20 residues, which oligomerizes to form ion-conducting channels in membranes. The behavior of an intact alamethicin channel in POPC bilayers was recently studied, using 2 ns molecular dynamics (MD) simulations of a model hexameric channel. These simulations produced numerous conformations of the channel. In the present study, we used 11 of these channel conformations and carried out continuum-solvent model calculations, similar to those used for the monomers in our previous studies, to investigate the energetics of the channel inside the lipid bilayer. Our results suggest that, out of the 11 channel conformations produced by the MD simulations, only four are stable inside the lipid bilayer, with water-to-membrane free energies of transfer ranging from ~–6 to ~–10 kcal/mol. Analysis of the results suggests two causes for the apparent instability of the remainder of the structures inside the lipid bilayer, both resulting from the desolvation of channel polar groups (i.e. their transfer from the aqueous phase into the bilayer). The first is specific, uncompensated backbone hydrogen bonds, which exist in the region of the channel exposed to the hydrocarbon of the lipid bilayer. The second is exposure of intra-pore water molecules to the surrounding lipid. Thus, the association of these structures with the membrane involves a large electrostatic desolvation free-energy penalty. The apparent conflict between continuum-solvent and MD calculations, and its significance for the interpretation of membrane proteins simulations, are discussed.  相似文献   

4.
Tarek M 《Biophysical journal》2005,88(6):4045-4053
We present results of molecular dynamics simulations of lipid bilayers under a high transverse electrical field aimed at investigating their electroporation. Several systems are studied, namely 1), a bare bilayer, 2), a bilayer containing a peptide nanotube channel, and 3), a system with a peripheral DNA double strand. In all systems, the applied transmembrane electric fields (0.5 V.nm(-1) and 1.0 V.nm(-1)) induce an electroporation of the lipid bilayer manifested by the formation of water wires and water channels across the membrane. The internal structures of the peptide nanotube assembly and that of the DNA strand are hardly modified under field. For system 2, no perturbation of the membrane is witnessed at the vicinity of the channel, which indicates that the interactions of the peptide with the nearby lipids stabilize the bilayer. For system 3, the DNA strand migrates to the interior of the membrane only after electroporation. Interestingly enough, switching of the external transmembrane potential in cases 1 and 2 for few nanoseconds is enough to allow for complete resealing and reconstitution of the bilayer. We provide evidence that the electric field induces a significant lateral stress on the bilayer, manifested by surface tensions of magnitudes in the order of 1 mN.m(-1). This study is believed to capture the essence of several dynamical phenomena observed experimentally and provides a framework for further developments and for new applications.  相似文献   

5.
The transfer of polypeptide segments into lipid bilayers to form transmembrane helices represents the crucial first step in cellular membrane protein folding and assembly. This process is driven by complex and poorly understood atomic interactions of peptides with the lipid bilayer environment. The lack of suitable experimental techniques that can resolve these processes both at atomic resolution and nanosecond timescales has spurred the development of computational techniques. In this review, we summarize the significant progress achieved in the last few years in elucidating the partitioning of peptides into lipid bilayer membranes using atomic detail molecular dynamics simulations. Indeed, partitioning simulations can now provide a wealth of structural and dynamic information. Furthermore, we show that peptide-induced bilayer distortions, insertion pathways, transfer free energies, and kinetic insertion barriers are now accurate enough to complement experiments. Further advances in simulation methods and force field parameter accuracy promise to turn molecular dynamics simulations into a powerful tool for investigating a wide range of membrane active peptide phenomena.  相似文献   

6.
We performed molecular dynamics simulations on dipalmitoylphosphatidylcholine (DPPC)/dimethylsulfoxide (DMSO) system that has the same lipid:solvent weight ratio as in our previous simulation done on DPPC/water. We did not observe a large change in the size of DPPC membrane when the solvent was changed from water to DMSO. Also, we did not observe that a large number of DMSO molecules is permeating into the membrane, as it was suggested to explain the observed change in the bilayer repeat period. We found that the surface potential reverses its sign when water is replaced by DMSO. Based on the results from our simulations, we propose that the repulsion force acting between membranes is reduced when DMSO is added to solvent water and therefore membrane surfaces approach closer to each other and the extra solvent is removed into excess solution.  相似文献   

7.
Steroid hormones are known to freely partition into lipid bilayers. As a case study, we investigated the behavior of the steroid hormone cortisone in a model lipid bilayer. First, we looked at energy barriers involved in the partitioning of a single molecule into a bilayer using umbrella sampling molecular dynamics simulations. A rather wide well of −4.5 kcal/mol was observed in the interfacial region between the lipid headgroup and tailgroup. Next, using two unconstrained molecular dynamics simulations with cortisone initially positioned at distinct locations within a bilayer, we studied the preferred location and orientation of the molecule. Finally, we observed how cortisone molecules could spontaneously insert and localize in a bilayer from bulk solution. The three independent approaches produced a converged picture of how cortisone behaves in a model lipid bilayer.  相似文献   

8.
Successful use of fluorescence sensing in elucidating the biophysical properties of lipid membranes requires knowledge of the distribution and location of an emitting molecule in the bilayer. We report here that 2,6-bis(1H-benzimidazol-2-yl)pyridine (BBP), which is almost non-fluorescent in aqueous solutions, reveals a strong emission enhancement in a hydrophobic environment of a phospholipid bilayer, making it interesting for fluorescence probing of water content in a lipid membrane. Comparing the fluorescence behavior of BBP in a wide variety of solvents with those in phospholipid vesicles, we suggest that the hydrogen bonding interactions between a BBP fluorophore and water molecules play a crucial role in the observed “light switch effect”. Therefore, the loss of water-induced fluorescence quenching inside a membrane are thought to be due to deep penetration of BBP into the hydrophobic, water-free region of a bilayer. Characterized by strong quenching by transition metal ions in solution, BBP also demonstrated significant shielding from the action of the quencher in the presence of phospholipid vesicles. We used the increase in fluorescence intensity, measured upon titration of probe molecules with lipid vesicles, to estimate the partition constant and the Gibbs free energy (ΔG) of transfer of BBP from aqueous buffer into a membrane. Partitioning BBP revealed strongly favorable ΔG, which depends only slightly on the lipid composition of a bilayer, varying in a range from − 6.5 to − 7.0 kcal/mol. To elucidate the binding interactions of the probe with a membrane on the molecular level, a distribution and favorable location of BBP in a POPC bilayer were modeled via atomistic molecular dynamics (MD) simulations using two different approaches: (i) free, diffusion-driven partitioning of the probe molecules into a bilayer and (ii) constrained umbrella sampling of a penetration profile of the dye molecule across a bilayer. Both of these MD approaches agreed with regard to the preferred location of a BBP fluorophore within the interfacial region of a bilayer, located between the hydrocarbon acyl tails and the initial portion of the lipid headgroups. MD simulations also revealed restricted permeability of water molecules into this region of a POPC bilayer, determining the strong fluorescence enhancement observed experimentally for the membrane-partitioned form of BBP.  相似文献   

9.
We present experimental and theoretical results of electroporation of small patches of planar lipid bilayers by means of linearly rising current. The experiments were conducted on ~120-μm-diameter patches of planar phospholipid bilayers. The steadily increasing voltage across the bilayer imposed by linearly increasing current led to electroporation of the membrane for voltages above a few hundred millivolts. This method shows new molecular mechanisms of electroporation. We recorded small voltage drops preceding the breakdown of the bilayer due to irreversible electroporation. These voltage drops were often followed by a voltage re-rise within a fraction of a second. Modeling the observed phenomenon by equivalent electric circuits showed that these events relate to opening and closing of conducting pores through the bilayer. Molecular dynamics simulations performed under similar conditions indicate that each event is likely to correspond to the opening and closing of a single pore of about 5 nm in diameter, the conductance of which ranges in the 100-nS scale. This combined experimental and theoretical investigation provides a better quantitative characterization of the size, conductance and lifetime of pores created during lipid bilayer electroporation. Such a molecular insight should enable better control and tuning of electroporation parameters for a wide range of biomedical and biotechnological applications.  相似文献   

10.
Electroporation relates to the cascade of events that follows the application of high electric fields and that leads to cell membrane permeabilization. Despite a wide range of applications, little is known about the electroporation threshold, which varies with membrane lipid composition. Here, using molecular dynamics simulations, we studied the response of dipalmitoyl-phosphatidylcholine, diphytanoyl-phosphocholine-ester and diphytanoyl-phosphocholine-ether lipid bilayers to an applied electric field. Comparing between lipids with acyl chains and methyl branched chains and between lipids with ether and ester linkages, which change drastically the membrane dipole potential, we found that in both cases the electroporation threshold differed substantially. We show, for the first time, that the electroporation threshold of a lipid bilayer depends not only on the “electrical” properties of the membrane, i.e., its dipole potential, but also on the properties of its component hydrophobic tails.  相似文献   

11.
A multiscale modeling approach is applied for simulations of lipids and lipid assemblies on mesoscale. First, molecular dynamics simulation of initially disordered system of lipid molecules in water within all-atomic model was carried out. On the next stage, structural data obtained from the molecular dynamics (MD) simulation were used to build a coarse-grained (ten sites) lipid model, with effective interaction potentials computed by the inverse Monte Carlo method. Finally, several simulations of the coarse-grained model on longer length- and time-scale were performed, both within Monte Carlo and molecular dynamics simulations: a periodical sample of lipid molecules ordered in bilayer, a free sheet of such bilayer without periodic boundary conditions, formation of vesicle from a plain membrane, process of self-assembly of lipids randomly dispersed in volume. It was shown that the coarse-grained model, developed exclusively from all-atomic simulation data, reproduces well all the basic features of lipids in water solution.  相似文献   

12.
It has been widely accepted that the thermally excited motions of the molecules in a cell membrane is the prerequisite for a cell to carry its biological functions. On the other hand, the detailed mapping of the ultrafast picosecond single-molecule and the collective lipid dynamics in a cell membrane remains rather elusive. Here, we report all-atom molecular dynamics simulations of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer over a wide range of temperature. We elucidate a molecular mechanism underlying the lateral lipid diffusion in a cell membrane across the gel, rippled, and liquid phases using an analysis of the longitudinal and transverse current correlation spectra, the velocity auto-correlation functions, and the molecules mean square displacements. The molecular mechanism is based on the anomalous ultrafast vibrational properties of lipid molecules at the viscous-to-elastic crossover. The macroscopic lipid diffusion coefficients predicted by the proposed diffusion model are in a good agreement with experimentally observed values. Furthermore, we unveil the role of water confined at the water-lipid interface in triggering collective vibrations in a lipid bilayer.  相似文献   

13.
Emodin is one of the most abundant anthraquinone derivatives found in nature. It is the active principle of some traditional herbal medicines with known biological activities. In this work, we combined experimental and theoretical studies to reveal information about location, orientation, interaction and perturbing effects of Emodin on lipid bilayers, where we have taken into account the neutral form of the Emodin (EMH) and its anionic/deprotonated form (EM?). Using both UV/Visible spectrophotometric techniques and molecular dynamics (MD) simulations, we showed that both EMH and EM? are located in a lipid membrane. Additionally, using MD simulations, we revealed that both forms of Emodin are very close to glycerol groups of the lipid molecules, with the EMH inserted more deeply into the bilayer and more disoriented relative to the normal of the membrane when compared with the EM?, which is more exposed to interfacial water. Analysis of several structural properties of acyl chains of the lipids in a hydrated pure DMPC bilayer and in the presence of Emodin revealed that both EMH and EM? affect the lipid bilayer, resulting in a remarkable disorder of the bilayer in the vicinity of the Emodin. However, the disorder caused by EMH is weaker than that caused by EM?. Our results suggest that these disorders caused by Emodin might lead to distinct effects on lipid bilayers including its disruption which are reported in the literature.  相似文献   

14.
《Biophysical journal》2022,121(17):3188-3199
Membrane reshaping is an essential biological process. The chemical composition of lipid membranes determines their mechanical properties and thus the energetics of their shape. Hundreds of distinct lipid species make up native bilayers, and this diversity complicates efforts to uncover what compositional factors drive membrane stability in cells. Simplifying assumptions, therefore, are used to generate quantitative predictions of bilayer dynamics based on lipid composition. One assumption commonly used is that “per lipid” mechanical properties are both additive and constant—that they are an intrinsic property of lipids independent of the surrounding composition. Related to this is the assumption that lipid bulkiness, or “shape,” determines its curvature preference, independently of context. In this study, all-atom molecular dynamics simulations on three separate multilipid systems were used to explicitly test these assumptions, applying methodology recently developed to isolate properties of single lipids or nanometer-scale patches of lipids. The curvature preference experienced by populations of lipid conformations were inferred from their redistribution on a dynamically fluctuating bilayer. Representative populations were extracted by both structural similarity and semi-automated hidden Markov model analysis. The curvature preferences of lipid dimers were then determined and compared with an additive model that combines the monomer curvature preference of both the individual lipids. In all three systems, we identified conformational subpopulations of lipid dimers that showed non-additive curvature preference, in each case mediated by a special chemical interaction (e.g., hydrogen bonding). Our study highlights the importance of specific chemical interactions between lipids in multicomponent bilayers and the impact of interactions on bilayer stiffness. We identify two mechanisms of bilayer softening: diffusional softening, driven by the dynamic coupling between lipid distributions and membrane undulations, and conformational softening, driven by the inter-conversion between distinct dimeric conformations.  相似文献   

15.
We present the results of molecular dynamics (MD) simulations of a phospholipid membrane in water, including full atomic detail. The goal of the simulations was twofold: first we wanted to set up a simulation system which is able to reproduce experimental results and can serve as a model membrane in future simulations. This goal being reached it is then further possible to gain insight in to those properties that are experimentally more difficult to access. The system studied is dipalmitoylphosphatidylcholine/water, consisting of 5408 atoms. Using original force field parameters the membrane turned out to approach a gel-like state. With slight changes of the parameters, the system adopted a liquid-crystalline state. Separate 80 ps runs were performed on both the gel and liquid-crystalline systems. Comparison of MD results with reliable experimental data (bilayer repeat distance, surface area per lipid, tail order parameters, atom distributions) showed that our simulations, especially the one in the liquid-crystalline phase, can serve as a realistic model for a phospholipid membrane. Further analysis of the trajectories revealed valuable information on various properties. In the liquid-crystalline phase, the interface turns out to be quite diffuse, with water molecules penetrating into the bilayer to the position of the carbonyl groups. The 10–90% width of the interface turns out to be 1.3 nm and the width of the hydrocarbon interior 3.0 nm. The headgroup dipoles are oriented at a small angle with respect to the bilayer plane. The resulting charge distribution is almost completely cancelled by the water molecules. The electron density distribution shows a large dip in the middle of the membrane. In this part the tails are more flexible. The mean life time between dihedral transitions is 20 ps. The average number of gauche angles per tail is 3.5. The occurrence of kinks is not a significant feature.Abbreviations MD molecular dynamics - DPPC dipalmitoylphosphatidylcholine - SPC simple point charges - DPPE dipalmitoylphosphatidylethanolamine Correspondence to: H. J. C. Berendsen  相似文献   

16.
Nanosecond, megavolt-per-meter pulses--higher power but lower total energy than the electroporative pulses used to introduce normally excluded material into biological cells--produce large intracellular electric fields without destructively charging the plasma membrane. Nanoelectropulse perturbation of mammalian cells causes translocation of phosphatidylserine (PS) to the outer face of the cell, intracellular calcium release, and in some cell types a subsequent progression to apoptosis. Experimental observations and molecular dynamics (MD) simulations of membranes in pulsed electric fields presented here support the hypothesis that nanoelectropulse-induced PS externalization is driven by the electric potential that appears across the lipid bilayer during a pulse and is facilitated by the poration of the membrane that occurs even during pulses as brief as 3 ns. MD simulations of phospholipid bilayers in supraphysiological electric fields show a tight association between PS externalization and membrane pore formation on a nanosecond time scale that is consistent with experimental evidence for electropermeabilization and anode-directed PS translocation after nanosecond electric pulse exposure, suggesting a molecular mechanism for nanoelectroporation and nanosecond PS externalization: electrophoretic migration of the negatively charged PS head group along the surface of nanometer-diameter electropores initiated by field-driven alignment of water dipoles at the membrane interface.  相似文献   

17.
SGTx1 is a gating-modifier toxin that has been shown to inhibit the voltage-gated potassium channel Kv2.1. SGTx1 is thought to bind to the S3b-S4a region of the voltage-sensor, and is believed to alter the energetics of gating. Gating-modifier toxins such as SGTx1 are of interest as they can be used to probe the structure and dynamics of their target channels. Although there are experimental data for SGTx1, its interaction with lipid bilayer membranes remains to be characterized. We performed atomistic and coarse-grained molecular dynamics simulations to study the interaction of SGTx1 with a POPC and a 3:1 POPE/POPG lipid bilayer membrane. We reveal the preferential partitioning of SGTx1 into the water/membrane interface of the bilayer. We also show that electrostatic interactions between the charged residues of SGTx1 and the lipid headgroups play an important role in stabilizing SGTx1 in a bilayer environment.  相似文献   

18.
BackgroundStrong electric fields are known to affect cell membrane permeability, which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on how this affects the cell membrane permeability.MethodWe here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.Results and conclusionsWe show how oxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.General significanceThis study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.  相似文献   

19.
SGTx1 is a gating-modifier toxin that has been shown to inhibit the voltage-gated potassium channel Kv2.1. SGTx1 is thought to bind to the S3b-S4a region of the voltage-sensor, and is believed to alter the energetics of gating. Gating-modifier toxins such as SGTx1 are of interest as they can be used to probe the structure and dynamics of their target channels. Although there are experimental data for SGTx1, its interaction with lipid bilayer membranes remains to be characterized. We performed atomistic and coarse-grained molecular dynamics simulations to study the interaction of SGTx1 with a POPC and a 3:1 POPE/POPG lipid bilayer membrane. We reveal the preferential partitioning of SGTx1 into the water/membrane interface of the bilayer. We also show that electrostatic interactions between the charged residues of SGTx1 and the lipid headgroups play an important role in stabilizing SGTx1 in a bilayer environment.  相似文献   

20.
The results of a series of numerical simulations of the aqueous interface near several types of lipid bilayer headgroups are presented. The Monte Carlo method was used to study 172 water molecules located between two lipid bilayers separated by 24.5 Å. The types of headgroups used in the studies include phosphorylcholine, -ethanolamine and -serine. The quantities calculated were molecular density, dipolar orientation and number of hydrogen bonds as functions of the distance from the interfacial regions. The data point out important differences in the organization of the interfacial water for each of the three different lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号