共查询到20条相似文献,搜索用时 0 毫秒
1.
《Channels (Austin, Tex.)》2013,7(1):84-89
We recently reported gating currents recorded from hERG channels expressed in mammalian TSA cells and assessed the kinetics at different voltages. We detected 2 distinct components of charge movement with the bulk of the charge being carried by a slower component. Here we compare our findings in TSA cells with recordings made from oocytes using the Cut Open Vaseline Gap clamp (COVG) and go on to directly compare activation of gating charge and ionic currents at 0 and +60 mV. The data show that gating charge saturates and moves more rapidly than ionic current activates suggesting a transition downstream from the movement of the bulk of gating charge is rate limiting for channel opening. 相似文献
2.
We recently reported gating currents recorded from hERG channels expressed in mammalian TSA cells and assessed the kinetics at different voltages. We detected 2 distinct components of charge movement with the bulk of the charge being carried by a slower component. Here we compare our findings in TSA cells with recordings made from oocytes using the Cut Open Vaseline Gap clamp (COVG) and go on to directly compare activation of gating charge and ionic currents at 0 and +60 mV. The data show that gating charge saturates and moves more rapidly than ionic current activates suggesting a transition downstream from the movement of the bulk of gating charge is rate limiting for channel opening. 相似文献
3.
The opening of voltage-gated sodium, potassium, and calcium ion channels has a steep relationship with voltage. In response to changes in the transmembrane voltage, structural movements of an ion channel that precede channel opening generate a capacitative gating current. The net gating charge displacement due to membrane depolarization is an index of the voltage sensitivity of the ion channel activation process. Understanding the molecular basis of voltage-dependent gating of ion channels requires the measurement and computation of the gating charge, Q. We derive a simple and accurate semianalytic approach to computing the voltage dependence of transient gating charge movement (Q–V relationship) of discrete Markov state models of ion channels using matrix methods. This approach allows rapid computation of Q–V curves for finite and infinite length step depolarizations and is consistent with experimentally measured transient gating charge. This computational approach was applied to Shaker potassium channel gating, including the impact of inactivating particles on potassium channel gating currents. 相似文献
4.
Activation gating of hERG potassium channels: S6 glycines are not required as gating hinges 总被引:3,自引:0,他引:3
Hardman RM Stansfeld PJ Dalibalta S Sutcliffe MJ Mitcheson JS 《The Journal of biological chemistry》2007,282(44):31972-31981
The opening of ion channels is proposed to arise from bending of the pore inner helices that enables them to pivot away from the central axis creating a cytosolic opening for ion diffusion. The flexibility of the inner helices is suggested to occur either at a conserved glycine located adjacent to the selectivity filter (glycine gating hinge) and/or at a second site occupied by glycine or proline containing motifs. Sequence alignment with other K+ channels shows that hERG possesses glycine residues (Gly648 and Gly657) at each of these putative hinge sites. In apparent contrast to the hinge hypotheses, substitution of both glycine residues for alanine causes little effect on either the voltage-dependence or kinetics of channel activation, and open state block by intracellular blockers. Substitution of the glycines with larger hydrophobic residues causes a greater propensity for the channel to open. We propose that in contrast to Shaker the pore of hERG is intrinsically more stable in the open than the closed conformation and that substitution at Gly648 or Gly657 further shifts the gating equilibrium to favor the open state. Molecular dynamics simulations indicate the S6 helices of hERG are inherently flexible, even in the absence of the glycine residues. Thus hERG activation gating exhibits important differences to other Kv channels. Our findings indicate that the hERG inner helix glycine residues are required for the tight packing of the channel helices and that the flexibility afforded by glycine or proline residues is not universally required for activation gating. 相似文献
5.
Activation of cyclic nucleotide-modulated channels such as CNG and HCN channels is promoted by ligand-induced conformational changes in their C-terminal regions. The primary intersubunit interface of these C termini includes two salt bridges per subunit, formed between three residues (one positively charged and two negatively charged amino acids) that we term the SB triad. We previously hypothesized that the SB triad is formed in the closed channel and breaks when the channel opens. Here we tested this hypothesis by dynamically manipulating the SB triad in functioning CNGA1 channels. Reversing the charge at positions Arg-431 and Glu-462, two of the SB triad residues, by either mutation or application of charged reagents increased the favorability of channel opening. To determine how a charge reversal mutation in the SB triad structurally affects the channel, we solved the crystal structure of the HCN2 C-terminal region with the equivalent E462R mutation. The backbone structure of this mutant was very similar to that of wild type, but the SB triad was rearranged such that both salt bridges did not always form simultaneously, suggesting a mechanism for the increased ease of opening of the mutant channels. To prevent movement in the SB triad, we tethered two components of the SB triad region together with cysteine-reactive cross-linkers. Preventing normal movement of the SB triad region with short cross-linkers inhibited channel opening, whereas longer cross-linkers did not. These results support our hypothesis that the SB triad forms in the closed channel and indicate that this region expands as the channel opens. 相似文献
6.
External Ba2+ speeds the OFF gating currents (IgOFF) of Shaker K+ channels but only upon repolarization from potentials that are expected to open the channel pore. To study this effect we used a nonconducting and noninactivating mutant of the Shaker K+ channel, ShH4-IR (W434F). External Ba2+ slightly decreases the quantity of ON gating charge (QON) upon depolarization to potentials near -30 mV but has little effect on the quantity of charge upon stepping to more hyperpolarized or depolarized potentials. More strikingly, Ba2+ significantly increases the decay rate of IgOFF upon repolarization to -90 mV from potentials positive to approximately -55 mV. For Ba2+ to have this effect, the depolarizing command must be maintained for a duration that is dependent on the depolarizing potential (> 4 ms at -30 mV and > 1 ms at 0 mV). The actions of Ba2+ on the gating current are dose-dependent (EC50 approximately 0.2 mM) and are not produced by either Ca2+ or Mg2+ (2 mM). The results suggest that Ba2+ binds to a specific site on the Shaker K+ channel that destabilizes the open conformation and thus facilitates the return of gating charge upon repolarization. 相似文献
7.
Hernández-Ochoa EO García-Ferreiro RE García DE 《American journal of physiology. Cell physiology》2007,292(6):C2226-C2238
G protein-coupled receptors (GPCRs) control neuronal functions via ion channel modulation. For voltage-gated ion channels, gating charge movement precedes and underlies channel opening. Therefore, we sought to investigate the effects of G protein activation on gating charge movement. Nonlinear capacitive currents were recorded using the whole cell patch-clamp technique in cultured rat sympathetic neurons. Our results show that gating charge movement depends on voltage with average Boltzmann parameters: maximum charge per unit of linear capacitance (Qmax) = 6.1 ± 0.6 nC/µF, midpoint (Vh) = –29.2 ± 0.5 mV, and measure of steepness (k) = 8.4 ± 0.4 mV. Intracellular dialysis with GTPS produces a nonreversible 34% decrease in Qmax, a 10 mV shift in Vh, and a 63% increase in k with respect to the control. Norepinephrine induces a 7 mV shift in Vh and 40% increase in k. Overexpression of G protein 14 subunits produces a 13% decrease in Qmax, a 9 mV shift in Vh, and a 28% increase in k. We correlate charge movement modulation with the modulated behavior of voltage-gated channels. Concurrently, G protein activation by transmitters and GTPS also inhibit both Na+ and N-type Ca2+ channels. These results reveal an inhibition of gating charge movement by G protein activation that parallels the inhibition of both Na+ and N-type Ca2+ currents. We propose that gating charge movement decrement may precede or accompany some forms of GPCR-mediated channel current inhibition or downregulation. This may be a common step in the GPCR-mediated inhibition of distinct populations of voltage-gated ion channels. ion channel modulation; G protein-coupled receptors; charge movement 相似文献
8.
Pierre Costé de Bagneaux Marta Campiglio Bruno Benedetti Petronel Tuluc 《Channels (Austin, Tex.)》2018,12(1):249-261
Voltage-dependent calcium channels (CaV) activate over a wide range of membrane potentials, and the voltage-dependence of activation of specific channel isoforms is exquisitely tuned to their diverse functions in excitable cells. Alternative splicing further adds to the stunning diversity of gating properties. For example, developmentally regulated insertion of an alternatively spliced exon 29 in the fourth voltage-sensing domain (VSD IV) of CaV1.1 right-shifts voltage-dependence of activation by 30 mV and decreases the current amplitude several-fold. Previously we demonstrated that this regulation of gating properties depends on interactions between positive gating charges (R1, R2) and a negative countercharge (D4) in VSD IV of CaV1.1. Here we investigated whether this molecular mechanism plays a similar role in the VSD IV of CaV1.3 and in VSDs II and IV of CaV1.2 by introducing charge-neutralizing mutations (D4N or E4Q) in the corresponding positions of CaV1.3 and in two splice variants of CaV1.2. In both channels the D4N (VSD IV) mutation resulted in a ?5 mV right-shift of the voltage-dependence of activation and in a reduction of current density to about half of that in controls. However in CaV1.2 the effects were independent of alternative splicing, indicating that the two modulatory processes operate by distinct mechanisms. Together with our previous findings these results suggest that molecular interactions engaging D4 in VSD IV contribute to voltage-sensing in all examined CaV1 channels, however its striking role in regulating the gating properties by alternative splicing appears to be a unique property of the skeletal muscle CaV1.1 channel. 相似文献
9.
10.
Voltage-driven activation of Kv channels results from conformational changes of four voltage sensor domains (VSDs) that surround the K(+) selective pore domain. How the VSD helices rearrange during gating is an area of active research. Luminescence resonance energy transfer (LRET) is a powerful spectroscopic ruler uniquely suitable for addressing the conformational trajectory of these helices. Using a geometric analysis of numerous LRET measurements, we were able to estimate LRET probe positions relative to existing structural models. The experimental movement of helix S4 does not support a large 15-20 A transmembrane "paddle-type" movement or a near-zero A vertical "transporter-type" model. Rather, our measurements demonstrate a moderate S4 displacement of 10 +/- 5 A, with a vertical component of 5 +/- 2 A. The S3 segment moves 2 +/- 1 A in the opposite direction and is therefore not moving as an S3-S4 rigid body. 相似文献
11.
Resolving the gating charge movement associated with late transitions in K channel activation. 下载免费PDF全文
We examined the late transitions in the activation sequence of potassium channels by analyzing gating currents of mutant Shaker IR channels and using the potassium channel blocker 4-aminopyridine (4AP). Gating currents were recorded from a double mutant of Shaker that was nonconducting (W434F mutation) and had the late gating transitions shifted to the right on the voltage axis (L382C mutation), thus separating the late transitions from the early ones. 4AP applied to the double mutant blocked the final transition and made possible novel observations of the isolated intermediate transitions, the ones that immediately precede the final opening of the channel. These transitions, which have not been well characterized previously, produce a distinct fast component in the gating current tails. Two intermediate transitions contribute to the fast component and carry 23% of the total gating charge. The effect of 4AP is well modeled as a selective block of the final gating transition, which opens the channel. The final transition contributes approximately 5% of the total gating charge. 相似文献
12.
Wynia-Smith SL Gillian-Daniel AL Satyshur KA Robertson GA 《The Journal of general physiology》2008,132(5):507-520
Human ether-à-go-go–related gene (hERG) channels mediate cardiac repolarization and bind drugs that can cause acquired long QT syndrome and life-threatening arrhythmias. Drugs bind in the vestibule formed by the S6 transmembrane domain, which also contains the activation gate that traps drugs in the vestibule and contributes to their efficacy of block. Although drug-binding residues have been identified, we know little about the roles of specific S6 residues in gating. We introduced cysteine mutations into the hERG channel S6 domain and measured mutational effects on the steady-state distribution and kinetics of transitions between the closed and open states. Energy-minimized molecular models based on the crystal structures of rKv1.2 (open state) and MlotiK1 and KcsA (closed state) provided structural contexts for evaluating mutant residues. The majority of mutations slowed deactivation, shifted conductance voltage curves to more negative potentials, or conferred a constitutive conductance over voltages that normally cause the channel to close. At the most intracellular extreme of the S6 region, Q664, Y667, and S668 were especially sensitive and together formed a ringed domain that occludes the pore in the closed state model. In contrast, mutation of S660, more than a full helical turn away and corresponding by alignment to a critical Shaker gate residue (V478), had little effect on gating. Multiple substitutions of chemically distinct amino acids at the adjacent V659 suggested that, upon closing, the native V659 side chain moves into a hydrophobic pocket but likely does not form the occluding gate itself. Overall, the study indicated that S6 mutagenesis disrupts the energetics primarily of channel closing and identified several residues critical for this process in the native channel. 相似文献
13.
Large-conductance Ca(2+)-activated K(+) channels can be activated by membrane voltage in the absence of Ca(2+) binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca(2+)-activated K(+) channels in the virtual absence of Ca(2+) (<1 nM). Charge movement was measured in response to voltage steps or sinusoidal voltage commands. The charge-voltage relationship (Q-V) is shallower and shifted to more negative voltages than the voltage-dependent open probability (G-V). Both ON and OFF gating currents evoked by brief (0.5-ms) voltage pulses appear to decay rapidly (tau(ON) = 60 microseconds at +200 mV, tau(OFF) = 16 microseconds at -80 mV). However, Q(OFF) increases slowly with pulse duration, indicating that a large fraction of ON charge develops with a time course comparable to that of I(K) activation. The slow onset of this gating charge prevents its detection as a component of I(gON), although it represents approximately 40% of the total charge moved at +140 mV. The decay of I(gOFF) is slowed after depolarizations that open mSlo channels. Yet, the majority of open channel charge relaxation is too rapid to be limited by channel closing. These results can be understood in terms of the allosteric voltage-gating scheme developed in the preceding paper (Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). The model contains five open (O) and five closed (C) states arranged in parallel, and the kinetic and steady-state properties of mSlo gating currents exhibit multiple components associated with C-C, O-O, and C-O transitions. 相似文献
14.
The outermost lysine in the S4 of domain III contributes little to the gating charge in sodium channels 下载免费PDF全文
We investigated the contribution the four outermost basic residues (K1, R2, R3, R4) in segment 4 of domain III in the human cardiac Na channel (hH1a, Na(V)1.5) to the total gating charge (Q(max)). Each of the four basic residues were mutated individually to a cysteine. In addition, R2 was also mutated to a glutamate. All mutant channels were transiently expressed with the alpha1 subunit in fused tsA201 cells. We used the relative reduction in Q(max) caused by anthopleurin-A (ApA) toxin, a site-3 toxin known to inhibit the movement of gating charge associated with domain IV, to estimate the size of the contribution from each basic residue. Studies of the toxin's ability to inhibit gating charge in mutant channels showed that R2 contributed 19-20% to the Q(max), R3 contributed 10%, and K1 and R4 made almost no contribution. In contrast to the outermost basic residue in the S4 of Shaker K channels and in the S4 of domain IV in hH1a, the outermost charge (K1) in domain III of Na channels is outside the voltage field. 相似文献
15.
The cytoplasmic ends of the four S6 transmembrane segments of voltage-gated potassium channels converge in a bundle crossing that acts as the activation gate that opens in response to a depolarization. To explore whether the cytoplasmic extension of the S6 segment (the S6 tail) plays a role in coupling voltage sensor and activation gate movements, we examined the effect of cysteine substitution from residues N482 to T489 on the kinetics and voltage-dependence of S4 charge movement and on the kinetics of deactivation of ionic current. Among these mutants, F484C has the steepest voltage-dependent charge movement, the largest Q-V shift, and the fastest OFF gating currents. Further study of the residue at position 484, using mutagenesis and modification of F484C by cysteine reagents, suggests that aromaticity at this position is essential to maintain normal coupling. We used periodicity analysis to appraise the possibility that the S6 tail has an alpha-helical structure. Although we obtained an alpha-periodicity index of 2.41 for gating current parameters, a new randomization test produced an indecisive conclusion about the secondary structure of this region. Taken together, our results suggest that the tail end of S6 plays an important role in coupling between activation gating and charge movement. 相似文献
16.
Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. 总被引:4,自引:0,他引:4 下载免费PDF全文
In the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels convert stimulus-induced changes in the internal concentrations of cGMP and cAMP into changes in membrane potential. Although it is known that significant activation of these channels requires the binding of three or more molecules of ligand, the detailed molecular mechanism remains obscure. We have probed the structural changes that occur during channel activation by using sulfhydryl-reactive methanethiosulfonate (MTS) reagents and N-ethylmaleimide (NEM). When expressed in Xenopus oocytes, the alpha-subunit of the bovine retinal channel forms homomultimeric channels that are activated by cGMP with a K1/2 of approximately 100 microM. Cyclic AMP, on the other hand, is a very poor activator; a saturating concentration elicits only 1% of the maximum current produced by cGMP. Treatment of excised patches with MTS-ethyltrimethylamine (MTSET) or NEM dramatically potentiated the channel's response to both cyclic nucleotides. After MTSET treatment, the dose-response relation for cGMP was shifted by over two orders of magnitude to lower concentrations. The effect on channel activation by cAMP was even more striking. After modification, the channels were fully activated by cAMP with a K1/2 of approximately 60 microM. This potentiation was abolished by conversion of Cys481 to a nonreactive alanine residue. Potentiation occurred more rapidly in the presence of saturating cGMP, indicating that this region of the channel is more accessible when the channel is open. Cys481 is located in a linker region between the transmembrane and cGMP-binding domains of the channel. These results suggest that this region of the channel undergoes significant movement during the activation process and is critical for coupling ligand binding to pore opening. Potentiation, however, is not mediated by the recently reported interaction between the amino- and carboxy-terminal regions of the alpha-subunit. Deletion of the entire amino-terminal domain had little effect on potentiation by MTSET. 相似文献
17.
Deborah L. Capes Marcel P. Goldschen-Ohm Manoel Arcisio-Miranda Francisco Bezanilla Baron Chanda 《The Journal of general physiology》2013,142(2):101-112
Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na+ channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K+ current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Although the voltage sensor of domain IV (DIV) has been implicated in fast inactivation, it remains unclear whether the activation of DIV alone is sufficient for fast inactivation to occur. Here, we functionally neutralize each specific voltage sensor by mutating several critical arginines in the S4 segment to glutamines. We assess the individual role of each voltage-sensing domain in the voltage dependence and kinetics of fast inactivation upon its specific inhibition. We show that movement of the DIV voltage sensor is the rate-limiting step for both development and recovery from fast inactivation. Our data suggest that activation of the DIV voltage sensor alone is sufficient for fast inactivation to occur, and that activation of DIV before channel opening is the molecular mechanism for closed-state inactivation. We propose a kinetic model of sodium channel gating that can account for our major findings over a wide voltage range by postulating that DIV movement is both necessary and sufficient for fast inactivation. 相似文献
18.
Kinetics of intramembrane charge movement and conductance activation of batrachotoxin-modified sodium channels in frog node of Ranvier 总被引:1,自引:0,他引:1 下载免费PDF全文
Sodium current and intramembrane gating charge movement (Q) were monitored in voltage-clamped frog node of Ranvier after modification of all sodium channels by batrachotoxin (BTX). Sodium current activation followed a single-exponential time course, provided a delay was interposed between the onset of the step ON depolarization and that of the current change. The delay decreased with increased ON depolarization and, for a constant ON depolarization, increased with prehyperpolarization. ON charge movement followed a single-exponential time course with time constants tau Q,ON slightly larger than tau Na, ON. For pulses between -70 and -50 mV, tau Q,ON/tau Na,ON = 1.14 +/- 0.08. The OFF charge movement and OFF sodium current tails after a depolarizing pulse followed single-exponential time courses, with tau Q, OFF larger than tau Na, OFF. tau Q,OFF/tau Na,OFF increased with OFF voltage from 1 near -100 mV to 2 near -160 mV. At a set OFF potential (-120 mV), both tau Q,OFF and tau Na,OFF increased with ON pulse duration. The delay in INa activation and the effect of ON pulse duration on tau Q,OFF and tau Na,OFF are inconsistent with a simple two-state, single-transition model for the gating of batrachotoxin-modified sodium channels. 相似文献
19.
The voltage-gated K(+) (Kv) channel subunit Kv6.4 does not form functional homotetrameric channels but co-assembles with Kv2.1 to form functional Kv2.1/Kv6.4 heterotetrameric channels. Compared to Kv2.1 homotetramers, Kv6.4 exerts a ~40 mV hyperpolarizing shift in the voltage-dependence of Kv2.1/Kv6.4 channel inactivation, without a significant effect on activation gating. However, the underlying mechanism of this Kv6.4-induced modulation of Kv2.1 channel inactivation, and whether the Kv6.4 subunit participates in the voltage-dependent gating of heterotetrameric channels is not well understood. Here we report distinct gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels, compared to Kv2.1 homotetramers, as revealed by gating current recordings from mammalian cells expressing these channels. The gating charge movement of Kv2.1/Kv6.4 heterotetrameric channels displayed an extra component around the physiological K(+) equilibrium potential, characterized by a second sigmoidal relationship of the voltage-dependence of gating charge movement. This distinct gating charge displacement reflects movement of the Kv6.4 voltage-sensing domain and has a voltage-dependency that matches the hyperpolarizing shift in Kv2.1/Kv6.4 channel inactivation. These results provide a mechanistic basis for the modulation of Kv2.1 channel inactivation gating kinetics by silent Kv6.4 subunits. 相似文献
20.
Anil V. Nair Chuong H. H. Nguyen Monica Mazzolini 《European biophysics journal : EBJ》2009,38(7):993-1002
This work completes previous findings and, using cysteine scanning mutagenesis (CSM) and biochemical methods, provides detailed
analysis of conformational changes of the S6 domain and C-linker during gating of CNGA1 channels. Specific residues between
Phe375 and Val424 were mutated to a cysteine in the CNGA1 and CNGA1cys-free background and the effect of intracellular Cd2+ or cross-linkers of different length in the open and closed state was studied. In the closed state, Cd2+ ions inhibited mutant channels A406C and Q409C and the longer cross-linker reagent M-4-M inhibited mutant channels A406Ccys-free and Q409Ccys-free. Cd2+ ions inhibited mutant channels D413C and Y418C in the open state, both constructed in a CNGA1 and CNGA1cys-free background. Our results suggest that, in the closed state, residues from Phe375 to approximately Ala406 form a helical bundle
with a three-dimensional (3D) structure similar to those of the KcsA; furthermore, in the open state, residues from Ser399
to Gln409 in homologous subunits move far apart, as expected from the gating in K+ channels; in contrast, residues from Asp413 to Tyr418 in homologous subunits become closer in the open state.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献