首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thiazole Orange (TO)-conjugated Peptide Nucleic Acid (PNA) probes have been reported as a valuable strategy for DNA analysis; however, no investigations targeting RNA molecules and no comparisons between different derivatization approaches have been reported so far. In this work, two TO-conjugated PNAs for genogroup II noroviruses (NoV GII) detection were designed and synthesized. Both the probes target the most conserved stretch of nucleotides identified in the open reading frame 1-2 (ORF1-ORF2) junction region and differ for the dye conjugation strategy: one PNA is end-labelled with the TO molecule tethered by a linker; the other probe bears the TO molecule directly linked to the PNA backbone, replacing a conventional nucleobase. The spectroscopic properties of the two PNA probes were studied and their applicability to NoVs detection, using an isothermal assay, was investigated. Both probes showed good specificity and high fluorescence enhancement upon hybridization, especially targeting RNA molecules. Moreover, the two probes were successfully employed for NoVs detection from stool specimens in an isothermal-based amplification assay targeting RNA 'amplicons'. The probes showed to be specific even in the presence of high concentrations of non-target RNA.  相似文献   

2.
3.
Previous fluorescence melting curve analysis (FMCA) used intercalating dyes, and this method has restricted application. Therefore, FMCA methods such as probe-based FMCA and molecular beacons were studied. However, the usual dual-labeled probes do not possess adequate fluorescence quenching ability and sufficient specificity, and molecular beacons with the necessary stem structures are hard to design. Therefore, we have developed a peptide nucleic acid (PNA)-based FMCA method. PNA oligonucleotide can have a much higher melting temperature (Tm) value than DNA. Therefore, short PNA probes can have adequate Tm values for FMCA, and short probes can have higher specificity and accuracy in FMCA. Moreover, dual-labeled PNA probes have self-quenching ability via single-strand base stacking, which makes PNA more favorable. In addition, this method can facilitate simultaneous identification of multiple DNA templates. In conventional real-time polymerase chain reaction (PCR), one fluorescence channel can identify only one DNA template. However, this method uses two fluorescence channels to detect three types of DNA. Experiments were performed with one to three different DNA sequences mixed in a single tube. This method can be used to identify multiple DNA sequences in a single tube with high specificity and high clarity.  相似文献   

4.
Peptide nucleic acid (PNA) is a DNA mimic in which the nucleobases are linked by an N-(2-aminoethyl) glycine backbone. Here we report that PNA can interact with single-stranded DNA (ssDNA) in a non-sequence-specific fashion. We observed that a 15mer PNA inhibited the ssDNA-stimulated ATPase activity of a bacteriophage T4 helicase, Dda. Surprisingly, when a fluorescein-labeled 15mer PNA was used in binding studies no interaction was observed between PNA and Dda. However, fluorescence polarization did reveal non-sequence-specific interactions between PNA and ssDNA. Thus, the inhibition of ATPase activity of Dda appears to result from depletion of the available ssDNA due to non-Watson–Crick binding of PNA to ssDNA. Inhibition of the ssDNA-stimulated ATPase activity was observed for several PNAs of varying length and sequence. To study the basis for this phenomenon, we examined self-aggregation by PNAs. The 15mer PNA readily self-aggregates to the point of precipitation. Since PNAs are hydrophobic, they aggregate more than DNA or RNA, making the study of this phenomenon essential for understanding the properties of PNA. Non-sequence-specific interactions between PNA and ssDNA were observed at moderate concentrations of PNA, suggesting that such interactions should be considered for antisense and antigene applications.  相似文献   

5.
DNA and RNA oligomers that contain stretches of guanines can associate to form stable secondary structures including G-quadruplexes. Our study shows that the (UUAAAAGAAAAGGGGGGAU) RNA sequence, from the human immunodeficiency virus type 1 (HIV-1 polypurine tract or PPT sequence) forms in vitro a stable folded structure involving the G-run. We have investigated the ability of pyrimidine peptide nucleic acid (PNA) oligomers targeted to the PPT sequence to invade the folded RNA and exhibit biological activity at the translation level in vitro and in cells. We find that PNAs can form stable complexes even with the structured PPT RNA target at neutral pH. We show that T-rich PNAs, namely the tridecamer-I PNA (C4T4CT4) forms triplex structures whereas the C-rich tridecamer-II PNA (TC6T4CT) likely forms a duplex with the target RNA. Interestingly, we find that both C-rich and T-rich PNAs arrested in vitro translation elongation specifically at the PPT target site. Finally, we show that T-rich and C-rich tridecamer PNAs that have been identified as efficient and specific blockers of translation elongation in vitro, specifically inhibit translation in streptolysin-O permeabilized cells where the PPT target sequence has been introduced upstream the reporter luciferase gene.  相似文献   

6.
Peptide nucleic acids (PNAs) are synthetic homologs of nucleic acids in which the phosphate-sugar polynucleotide backbone is replaced by a flexible pseudo-peptide polymer to which the nucleobases are linked. This structure gives PNAs the capacity to hybridize with high affinity and specificity to complementary sequences of DNA and RNA, and also confers remarkable resistance to DNAses and proteinases. The unique physico-chemical characteristics of PNAs have led to the development of a wide range of biological assays. Several exciting new applications of PNA technology have been published recently in genetics and cytogenetics. Also, PNA-based hybridization technology is developing rapidly within the field of in situ fluorescence hybridization, pointing out the great potential of PNA probes for chromosomal investigations.  相似文献   

7.
Peptide Nucleic Acids (PNAs) are single-stranded synthetic nucleic acids with a pseudopeptide backbone in lieu of the phosphodiester linked sugar and phosphate found in traditional oligos. PNA designed complementary to the bacterial Shine-Dalgarno or start codon regions of mRNA disrupts translation resulting in the transient reduction in protein expression. This study examines the use of PNA technology to interrupt protein expression in obligate intracellular Rickettsia sp. Their historically intractable genetic system limits characterization of protein function. We designed PNA targeting mRNA for rOmpB from Rickettsia typhi and rickA from Rickettsia montanensis, ubiquitous factors important for infection. Using an in vitro translation system and competitive binding assays, we determined that our PNAs bind target regions. Electroporation of R. typhi and R. montanensis with PNA specific to rOmpB and rickA, respectively, reduced the bacteria’s ability to infect host cells. These studies open the possibility of using PNA to suppress protein synthesis in obligate intracellular bacteria.  相似文献   

8.
9.
10.
11.
Peptide nucleic acids (PNAs) are neutral DNA analogues, which bind single-stranded DNA (ssDNA) strongly and with high sequence specificity. However, binding efficiency is dependent on the purine content of the PNA strand. This property make more difficult application of PNA as hybridization probes in, e.g., PNA chips, since at a set temperature the hybridization of a fraction of the DNA targets to the PNA probes does not obey Watson-Crick binding rules. The polypurine PNAs, for example, bind the mismatch containing DNA targets stronger, than the pyrimidine rich PNAs their fully complementary targets. Herein we show that PNA-DNA binding efficiency can be finely tuned by the conjugation of derivatives of naphthalene diimide (NADI) to the N-terminus of PNA using polyamide linkers of different lengths. This approach can potentially be used for the design of PNA probes, which bind their DNA targets with similar affinity independently of the PNA sequence.  相似文献   

12.
Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2–PNA triplex, without appreciable binding to single-stranded regions to form an RNA–PNA duplex or, via strand invasion, forming an RNA–PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed −1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2–PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA–PNA and DNA–PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson–Crick-like G–L pair. An RNA2–PNA triplex is significantly more stable than a DNA2–PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone–backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.  相似文献   

13.
Using fluorescence in situ hybridization to detect bacterial groups has several inherent limitations. DNA probes are generally used, targeting sites on the 16S rRNA. However, much of the 16S rRNA is highly conserved, with variable regions often located in inaccessible areas where secondary structures can restrict probe access. Here, we describe the use of peptide nucleic acid (PNA) probes as a superior alternative to DNA probes, especially when used for environmental samples. A complex bacterial genus (Legionella) was studied, and two probes were designed, one to detect all species and one targeted to Legionella pneumophila. These probes were developed from existing sequences and are targeted to low-binding-affinity sites on the 16S rRNA. In total, 47 strains of Legionella were tested. In all cases, the Legionella spp. PNA probe labeled cells strongly but did not bind to any non-Legionella species. Likewise, the specific L. pneumophila PNA probe labeled only strains of L. pneumophila. By contrast, the equivalent DNA probes performed poorly. To assess the applicability of this method for use on environmental samples, drinking-water biofilms were spiked with a known concentration of L. pneumophila bacteria. Quantifications of the L. pneumophila bacteria were compared using PNA hybridization and standard culture methods. The culture method quantified only 10% of the number of L. pneumophila bacteria found by PNA hybridization. This illustrates the value of this method for use on complex environmental samples, especially where cells may be in a viable but noncultivable state.  相似文献   

14.
We describe the synthesis of peptide nucleic acid (PNA)-titanium dioxide (TiO2) nanoconjugates and several novel methods developed to investigate the DNA hybridization behaviors of these constructs. PNAs are synthetic DNA analogs resistant to degradation by cellular enzymes that hybridize to single-stranded DNA (ssDNA) with higher affinity than DNA oligonucleotides, invade double-stranded DNA (dsDNA), and form different PNA/DNA complexes. Previously, we developed a DNA-TiO2 nanoconjugate capable of hybridizing to target DNA intracellularly in a sequence-specific manner with the ability to cleave DNA when excited by electromagnetic radiation but susceptible to degradation that may lower its intracellular targeting efficiency and retention time. PNA-TiO2 nanoconjugates described in the current article hybridize to target ssDNA, oligonucleotide dsDNA, and supercoiled plasmid DNA under physiological-like ionic and temperature conditions, enabling rapid, inexpensive, sequence-specific concentration of nucleic acids in vitro. When modified by the addition of imaging agents or peptides, hybridization capabilities of PNA-TiO2 nanoconjugates are enhanced, providing essential benefits for numerous in vitro and in vivo applications. The series of experiments shown here could not be done with either TiO2-DNA nanoconjugates or PNAs alone, and the novel methods developed will benefit studies of numerous other nanoconjugate systems.  相似文献   

15.
16.
Antisense properties of duplex- and triplex-forming PNAs.   总被引:9,自引:3,他引:9       下载免费PDF全文
The potential of peptide nucleic acids (PNAs) as specific inhibitors of translation has been studied. PNAs with a mixed purine/pyrimidine sequence form duplexes, while homopyrimidine PNAs form (PNA)2/RNA triplexes with complementary sequences on RNA. We show here that neither of these PNA/RNA structures are substrates for RNase H. Translation experiments in cell-free extracts showed that a 15mer duplex-forming PNA blocked translation in a dose-dependent manner when the target was 5'-proximal to the AUG start codon on the RNA, whereas similar 10-, 15- or 20mer PNAs had no effect when targeted towards sequences in the coding region. Triplex-forming 10mer PNAs were efficient and specific antisense agents with a target overlapping the AUG start codon and caused arrest of ribosome elongation with a target positioned in the coding region of the mRNA. Furthermore, translation could be blocked with a 6mer bisPNA or with a clamp PNA, forming partly a triplex, partly a duplex, with its target sequence in the coding region of the mRNA.  相似文献   

17.
Synthesis of water-soluble 5-mer peptide nucleic acids (PNAs) functionalized at their 5'- and 3'-ends with two original precursors of pentamethine cyanine dye synthesis is reported. The successful use of these PNA probes for sensing DNA hairpin structures in vitro was also demonstrated where specific hairpin formation was associated with the appearance of a characteristic fluorescence signal at 660 nm. A comparative study between three different strategies where PNAs were targeting either the stem or the loop of the hairpin was carried out. Best sensitivity was obtained using PNA sequences complementary to the loop sequence and directing both functional moieties toward the base of loop. Unprecedented proof-of-concept for the simultaneous sensing of hairpin and quadruplex DNAs with a nonoverlapping two-color system (C3 and C5) is also demonstrated.  相似文献   

18.
19.
Fluorescently labeled peptide nucleic acids (PNAs) are important tools in fundamental research and biomedical applications. However, synthesis of labeled PNAs, especially using modern and expensive dyes, is less explored than similar preparations of oligonucleotide dye conjugates. Herein, we present a simple procedure for labeling of the PNA N-terminus with HiLyte Fluor 488 as the last step of solid phase PNA synthesis. A minimum excess of 1.25 equiv of activated carboxylic acid achieved labeling yields close to 90% providing a good compromise between the price of dye and the yield of product and significant improvement over previous literature procedures. The HiLyte Fluor 488-labeled PNAs retained the RNA binding ability and in live cell fluorescence microscopy experiments were brighter and significantly more photostable than PNA labeled with carboxyfluorescein. In contrast to fluorescein-labeled PNA, the fluorescence of PNAs labeled with HiLyte Fluor 488 was independent of pH in the biologically relevant range of 5–8. The potential of HiLyte Fluor 488-labeling for studies of PNA cellular uptake and distribution was demonstrated in several cell lines.  相似文献   

20.
The peptide nucleic acids (PNAs) constitute a remarkable new class of synthetic nucleic acid analogues, based on their peptide-like backbone. This structure gives to PNAs the capacity to hybridize with high affinity and specificity to complementary RNA and DNA sequences and a great resistance to nucleases and proteinases. Originally conceived as ligands for the study of double-stranded DNA, the unique physicochemical properties of PNAs have led to the development of a large variety of research and diagnostic assays, including antigene and antisense therapy, genome mapping, and mutation detection. Over the past few years, PNAs have been shown to be powerful tools in cytogenetics for the rapid in situ identification of human chromosomes and the detection of aneuploidies. Recent studies have reported the successful use of chromosome-specific PNA probes on human lymphocytes, amniocytes, and spermatozoa, as well as on isolated oocytes and blastomeres. Multicolor PNA protocols have been described for the identification of several human chromosomes, indicating that PNAs could become a powerful complement to FISH for in situ chromosomal investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号