首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the molecular characterization of disseminated vancomycin-resistant enterococci (VRE) in the intensive care units, 546 enterococci isolates were collected from different clinical samples in a prospective observational study. The results showed that a total number of 33 isolates (6 %) were resistant to vancomycin. Most of the VRE isolates 11 (34 %) were isolated from intensive care units (ICUs). 18 (55 %) VRE isolates were obtained from urinary tract infections. The results from pulsed-field gel electrophoresis showed five common types (CT) and 13 single types (ST) among the VRE isolates. The analysis showed two and one major CTs and ST among the ICUs isolates, respectively. Tn1546 transposon was analyzed using ClaI-digested long PCR (L-PCR) RFLP followed by sequencing. The results showed the presence of two different lineages of transposon among the two clonal groups. Lineage 1 with the arrangement of Tn1546 prototype in the first clonal group and the second lineage with 13 kb harboring two insertion sequences, IS1216 V and IS1542. DNA hybridization showed that vanA gene in all VRE isolates, with an exception of one isolate, was present in the same location on the genome. Overall, the results suggest that a few VRE clonal types were disseminated in ICUs in hospitals in Iran which were able to transfer their vanA with high conjugation frequency.  相似文献   

2.
Cases of bacteremia caused by vancomycin-resistant E. faecium (VRE-fm) increased significantly in Taiwan. The present multicenter surveillance study was performed to reveal the associated epidemiological characteristics. In 2012, 134 non-repetitive VRE-fm isolates were prospectively collected from 12 hospitals in Taiwan. Antimicrobial susceptibility, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and analysis of van genes and Tn1546 structures were investigated. Two isolates carried vanB genes, while all the remaining isolates carried vanA genes. Three isolates demonstrated a specific vanA genotype - vanB phenotype. Nine (6.7%) isolates demonstrated tigecycline resistance, and all were susceptible to daptomycin and linezolid. Molecular typing revealed 58 pulsotypes and 13 sequence types (STs), all belonged to three major lineages 17, 18, and 78. The most frequent STs were ST17 (n = 48, 35.8%), ST414 (n = 22, 16.4%), and ST78 (n = 16, 11.9%). Among the vanA harboring isolates, eight structure types of the Tn1546-like element were demonstrated. Type I (a partial deletion in the orf1 and insertion of IS1251-like between the vanS - vanH genes) and Type II (Type I with an additional insertion of IS1678 between orf2 - vanS genes) were the most predominant, consisted of 60 (45.5%) and 62 (47.0%) isolates, respectively. The increase of VRE-fm bacteremia in Taiwan may be associated with the inter- and intra-hospital spread of some major STs and horizontal transfer of vanA genes mostly carried on two efficient Tn1546-like elements. The prevailing ST414 and widespread of the Type II Tn1546-like elements are an emerging problem that requires continuous monitoring.  相似文献   

3.
The occurrence, structure, and mobility of Tn1546-like elements were studied in environmental vancomycin-resistant enterococci (VRE) isolated from municipal sewage, activated sludge, pharmaceutical waste derived from antibiotic production, seawater, blue mussels, and soil. Of 200 presumptive VRE isolates tested, 71 (35%) harbored vanA. Pulsed-field gel electrophoresis analysis allowed the detection of 26 subtypes, which were identified as Enterococcus faecium (n = 13), E. casseliflavus (n = 6), E. mundtii (n = 3), E. faecalis (n = 3), and E. durans (n = 1) by phenotypic tests and 16S ribosomal DNA sequencing. Long PCR-restriction fragment length polymorphism (L-PCR-RFLP) analysis of Tn1546-like elements and PCR analysis of internal regions revealed the presence of seven groups among the 29 strains studied. The most common group (group 1) corresponded to the structure of Tn1546 in the prototype strain E. faecium BM4147. Two novel L-PCR-RFLP patterns (groups 3 and 4) were found for E. casseliflavus strains. Indistinguishable Tn1546-like elements occurred in VRE strains belonging to different species or originating from different sources. Interspecies plasmid-mediated transfer of vancomycin resistance to E. faecium BM4105 was demonstrated for E. faecalis, E. mundtii, and E. durans. This study indicates that VRE, including species other than E. faecium and E. faecalis, are widespread in nature and in environments that are not exposed to vancomycin selection and not heavily contaminated with feces, such as seawater, blue mussels, and nonagricultural soil. Tn1546-like elements can readily transfer between enterococci of different species and ecological origins, therefore raising questions about the origin of these transposable elements and their possible transfer between environmental and clinical settings.  相似文献   

4.
The molecular structure and transferability of Tn1546 in 143 vancomycin-resistant Enterococcus faecium (VREF) isolates obtained from patients (n = 49), surface water (n = 28), and urban and hospital sewage (n = 66) in Tehran, Iran, were investigated. Molecular characterization of Tn1546 elements in vanA VREF was performed using a combination of restriction fragment length polymorphism analysis and DNA sequencing of the internal PCR fragments of vanA transposons. Long-PCR amplification showed that the molecular size of Tn1546 elements varied from 10.8 to 12.8 kb. The molecular analysis of Tn1546 showed that 45 isolates (31.5%) harbored a deletion/mutation upstream from nucleotide 170. No horizontal transfer of Tn1546 was observed following filter-mating conjugation with these isolates. Nevertheless, the rates of transferability for other isolates were 10−5 to 10−6 per donor. Insertion sequences IS1216V and IS1542 were present in 103 (72%) and 138 (96.5%) of the isolates, respectively. The molecular analysis of Tn1546 elements resulted in three genomic organizations. The genomic organization lineage 1 was dominated by the isolates from clinical samples (3.4%), lineage 2 was dominated mostly by sewage isolates (24.5%), and lineage 3 contained isolates obtained from all sources (72.1%). The genetic diversity determined using pulsed-field gel electrophoresis (PFGE) revealed a single E. faecium clone, designated 44, which was common to the samples obtained from clinical specimens and hospital and municipal sewage. Furthermore, the results suggest that lineage 3 Tn1546 was highly disseminated among our enterococcal isolates in different PFGE patterns.  相似文献   

5.
In this study, internal size variations in the VanA gene cluster Tn1546, encoding resistance to glycopeptides, is described. Studies of previously uncharacterized size variations of an internal region, encoding the vanX and vanY genes of Tn1546, revealed that these variations were due to the presence of the IS sequence, IS1216V. This IS sequence has previously been found integrated in Tn1546. Integration of the IS1216V element created both deletions and a duplication in a non-essential region of Tn1546. In several isolates, the entire vanY gene was deleted, proving that this gene is non-essential for vancomycin resistance.  相似文献   

6.
The 46.4-kb nucleotide sequence of pSK41, a prototypical multiresistance plasmid from Staphylococcus aureus, has been determined, representing the first completely sequenced conjugative plasmid from a gram-positive organism. Analysis of the sequence has enabled the identification of the probable replication, maintenance, and transfer functions of the plasmid and has provided insights into the evolution of a clinically significant group of plasmids. The basis of deletions commonly associated with pSK41 family plasmids has been investigated, as has the observed insertion site specificity of Tn552-like β-lactamase transposons within them. Several of the resistance determinants carried by pSK41-like plasmids were found to be located on up to four smaller cointegrated plasmids. pSK41 and related plasmids appear to represent a consolidation of antimicrobial resistance functions, collected by a preexisting conjugative plasmid via transposon insertion and IS257-mediated cointegrative capture of other plasmids.  相似文献   

7.
Methicillin-resistant Staphylococcus aureus (MRSA) with ST59/SCCmecV and Panton-Valentine leukocidin gene is a major community-acquired MRSA (CA-MRSA) lineage in Taiwan and has been multidrug-resistant since its initial isolation. In this study, we studied the acquisition mechanism of multidrug resistance in an ST59 CA-MRSA strain (PM1) by comparative genomics. PM1’s non-β-lactam resistance was encoded by two unique genetic traits. One was a 21,832-bp composite mobile element structure (MESPM1), which was flanked by direct repeats of enterococcal IS1216V and was inserted into the chromosomal sasK gene; the target sequence (att) was 8 bp long and was duplicated at both ends of MESPM1. MESPM1 consisted of two regions: the 5′-end side 12.4-kb region carrying Tn551 (with ermB) and Tn5405-like (with aph[3′]-IIIa and aadE), similar to an Enterococcus faecalis plasmid, and the 3′-end side 6,587-bp region (MEScat) that carries cat and is flanked by inverted repeats of IS1216V. MEScat possessed att duplication at both ends and additional two copies of IS1216V inside. MESPM1 represents the first enterococcal IS1216V-mediated composite transposon emerged in MRSA. IS1216V-mediated deletion likely occurred in IS1216V-rich MESPM1, resulting in distinct resistance patterns in PM1-derivative strains. Another structure was a 6,025-bp tet-carrying element (MEStet) on a 25,961-bp novel mosaic penicillinase plasmid (pPM1); MEStet was flanked by direct repeats of IS431, but with no target sequence repeats. Moreover, the PM1 genome was deficient in a copy of the restriction and modification genes (hsdM and hsdS), which might have contributed to the acquisition of enterococcal multidrug resistance.  相似文献   

8.
Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.  相似文献   

9.
《Gene》1996,171(1):9-17
A striking feature of recent outbreaks of vancomycin-resistant (VmR) enterococci is the apparent horizontal dissemination of resistance determinants. The plasmids pHKK702 and pHKK703 from Enterococcus faecium clinical isolate R7 have been implicated in the conjugal transfer of VmR. pHKK702 is a 41-kb plasmid that contains an element indistinguishable from the glycopeptide-resistance transposon Tn1546. pHKK703 is an approx. 55-kb putative sex pheromone-response plasmid that is required for conjugative mobilization of pHKK702. During experiments in which strain R7 was used as a donor, a highly conjugative VmR transconjugant was isolated that formed constitutive cellular aggregates. Restriction analyses and DNA hybridizations revealed that the transconjugant harbored a single plasmid of approx. 92 kb and this plasmid (pHKK701) was composed of DNA from both pHKK702 and pHKK703. Results from DNA sequence analyses showed that a 39-kb composite transposon (Tn5506) from pHKK702 had inserted into pHKK703. The left end of Tn5506 contained a single insertion sequence (IS) element, IS1216V2, whereas the right end was composed of a tandem IS structure consisting of the novel 1065-bp IS1252 nested within an IS1216V1 element. Transposition of Tn5506 from pHKK702 to pHKK703 created an 8-bp target sequence duplication at the site of insertion and interrupted an ORF (ORFX) that was 91% identical to that of prgX, a gene proposed to negatively regulate sex pheromone response of the E. faecalis plasmid, pCF10. We propose that the interruption of ORFX by Tn5506 led to the constitutive cellular aggregation phenotype and thereby enhanced the efficiency with which VmR was transferred. Similar IS1216V-mediated transposition events may contribute to the horizontal spread of glycopeptide resistance among enterococci in nature.  相似文献   

10.
Tn5385 is a ca. 65-kb element integrated into the chromosomes of clinical Enterococcus faecalis strains CH19 and CH116. It confers resistance to erythromycin, gentamicin, mercuric chloride, streptomycin, tetracycline-minocycline, and penicillin via β-lactamase production. Tn5385 is a composite structure containing regions previously found in staphylococcal and enterococcal plasmids. Several transposons and transposon-like elements within Tn5385 have been identified, including conjugative transposon Tn5381, composite transposon Tn5384, and elements indistinguishable from staphylococcal transposons Tn4001 and Tn552. The divergent regions of Tn5385 are linked by a series of insertion sequence (IS) elements (IS256, IS257, and IS1216) of staphylococcal and enterococcal origin. The ends of Tn5385 consist of directly repeated copies of enterococcal IS1216. Within the chromosomes of strains CH19 and CH116, Tn5385 has interrupted an open reading frame with substantial homology to previously described alkyl hydrogen peroxide reductase genes. Segments of this open reading frame in both CH19 and CH116 have been deleted, but the amount of deleted DNA differs for the two insertions. Transfer of Tn5385 from both donors into E. faecalis recipients occurs at a low frequency. Two types of transconjugants have been identified. In one type, the target alkyl hydrogen peroxide reductase open reading frame has been deleted, and sequences flanking Tn5385 in the respective donors are carried over to the transconjugants. These data suggest that the mechanism of Tn5385 insertion into the recipient chromosome in these transconjugants was recombination across flanking regions in the donors and homologous sequences in the recipients. The second type of transconjugant appears to have resulted from excision of Tn5385 from the CH19 chromosome by recombination across the terminal IS1216 elements and insertion into the recipient chromosome by recombination across Tn5381 (within Tn5385) and a previously transferred Tn5381 copy in the recipient chromosome. These data confirm that Tn5385 is a composite structure with genetic material from diverse genera and suggest that it is a functional transposon. They also suggest that chromosomal recombination is a mechanism of genetic exchange in enterococci.  相似文献   

11.
Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons – Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element “captured” with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements.  相似文献   

12.
AIMS: The aim of this study was to examine two VanA-type vancomycin-resistant Enterococcus faecium (VRE) strains that had been isolated from patients resident in mainland China. This is the first molecular analysis of clinical VRE strains being isolated in mainland China. METHODS AND RESULTS: Two VanA-type VRE isolates were isolated from in-patients at hospitals located in the Chinese cities Beijing and Dalian and were designated C264 and I125. The plasmids pC264V (40 kbp) and pI125V (370 kbp) that were isolated from C264 and I125, respectively, carried a Tn1546-like element encoding VanA resistance. The vancomycin-resistant plasmids pC264V and pI125V were transferred by filter mating at frequencies of 10(-7) and 10(-4) respectively. Sequence analysis of pC264V revealed that two IS1216V sequences and an IS1542 sequence were present within the Tn1546-like element. pI125V had two IS1216V insertions in the Tn1546-like element. CONCLUSIONS: The two VanA-type vancomycin-resistant E. faecium (VRE) strains C264 and I125 were isolated from in-patients in Chinese hospitals. The vancomycin-resistant conjugative plasmids pC264V and pI125V plasmids isolated from these strains carried the Tn1546-like element. The Tn1546-like element was found to contain the insertion sequences IS1216V and IS1542. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first molecular analysis of VanA-type VRE strains from patients resident in mainland China.  相似文献   

13.
Vancomycin-resistant enterococci (VRE) were detected in samples of sewage obtained downstream of hospitals of the Porto area in Portugal, and in samples from the Douro Estuary. Clonal analysis, Tn1546 typing, and presence of putative virulence traits indicate the clinical origin of these isolates. This observation highlights the importance of hospital sewage in the VRE contamination of the environment.  相似文献   

14.
Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.  相似文献   

15.
Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3’-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa.  相似文献   

16.
Employing the biparental exogenous plasmid isolation method, conjugative plasmids conferring mercury resistance were isolated from the microbial community of the rhizosphere of field grown alfalfa plants. Five different plasmids were identified, designated pSB101–pSB105. One of the plasmids, pSB102, displayed broad host range (bhr) properties for plasmid replication and transfer unrelated to the known incompatibility (Inc) groups of bhr plasmids IncP-1, IncW, IncN and IncA/C. Nucleotide sequence analysis of plasmid pSB102 revealed a size of 55 578 bp. The transfer region of pSB102 was predicted on the basis of sequence similarity to those of other plasmids and included a putative mating pair formation apparatus most closely related to the type IV secretion system encoded on the chromosome of the mammalian pathogen Brucella sp. The region encoding replication and maintenance functions comprised genes exhibiting different degrees of similarity to RepA, KorA, IncC and KorB of bhr plasmids pSa (IncW), pM3 (IncP-9), R751 (IncP-1β) and RK2 (IncP-1α), respectively. The mercury resistance determinants were located on a transposable element of the Tn5053 family designated Tn5718. No putative functions could be assigned to a quarter of the coding capacity of pSB102 on the basis of comparisons with database entries. The genetic organization of the pSB102 transfer region revealed striking similarities to plasmid pXF51 of the plant pathogen Xylella fastidiosa.  相似文献   

17.
A native composite transposon was isolated from Corynebacterium glutamicum ATCC 14751. This transposon comprises two functional copies of a corynebacterial IS31831-like insertion sequence organized as converging terminal inverted repeats. This novel 20.3-kb element, Tn14751, carries 17.4 kb of C. glutamicum chromosomal DNA containing various genes, including genes involved in purine biosynthesis but not genes related to bacterial warfare, such as genes encoding mediators of antibiotic resistance or extracellular toxins. A derivative of this element carrying a kanamycin resistance cassette, minicomposite Tn14751, transposed into the genome of C. glutamicum at an efficiency of 1.8 × 102 transformants per μg of DNA. Random insertion of the Tn14751 derivative carrying the kanamycin resistance cassette into the chromosome was verified by Southern hybridization. This work paves the way for realization of the concept of minimum genome factories in the search for metabolic engineering via genome-scale directed evolution through a combination of random and directed approaches.  相似文献   

18.
The extent and nature of tetracycline resistance in bacterial populations of two apple orchards with no or a limited history of oxytetracycline usage were assessed. Tetracycline-resistant (Tcr) bacteria were mostly gram negative and represented from 0 to 47% of the total bacterial population on blossoms and leaves (versus 26 to 84% for streptomycin-resistant bacteria). A total of 87 isolates were screened for the presence of specific Tcr determinants. Tcr was determined to be due to the presence of Tet B in Pantoea agglomerans and other members of the family Enterobacteriacae and Tet A, Tet C, or Tet G in most Pseudomonas isolates. The cause of Tcr was not identified in 16% of the isolates studied. The Tcr genes were almost always found on large plasmids which also carried the streptomycin resistance transposon Tn5393. Transposable elements with Tcr determinants were detected by entrapment following introduction into Escherichia coli. Tet B was found within Tn10. Two of eighteen Tet B-containing isolates had an insertion sequence within Tn10; one had IS911 located within IS10-R and one had Tn1000 located upstream of Tet B. Tet A was found within a novel variant of Tn1721, named Tn1720, which lacks the left-end orfI of Tn1721. Tet C was located within a 19-kb transposon, Tn1404, with transposition genes similar to those of Tn501, streptomycin (aadA2) and sulfonamide (sulI) resistance genes within an integron, Tet C flanked by direct repeats of IS26, and four open reading frames, one of which may encode a sulfate permease. Two variants of Tet G with 92% sequence identity were detected.  相似文献   

19.
ISCR Elements: Novel Gene-Capturing Systems of the 21st Century?   总被引:9,自引:0,他引:9       下载免费PDF全文
“Common regions” (CRs), such as Orf513, are being increasingly linked to mega-antibiotic-resistant regions. While their overall nucleotide sequences show little identity to other mobile elements, amino acid alignments indicate that they possess the key motifs of IS91-like elements, which have been linked to the mobility ent plasmids in pathogenic Escherichia coli. Further inspection reveals that they possess an IS91-like origin of replication and termination sites (terIS), and therefore CRs probably transpose via a rolling-circle replication mechanism. Accordingly, in this review we have renamed CRs as ISCRs to give a more accurate reflection of their functional properties. The genetic context surrounding ISCRs indicates that they can procure 5′ sequences via misreading of the cognate terIS, i.e., “unchecked transposition.” Clinically, the most worrying aspect of ISCRs is that they are increasingly being linked with more potent examples of resistance, i.e., metallo-β-lactamases in Pseudomonas aeruginosa and co-trimoxazole resistance in Stenotrophomonas maltophilia. Furthermore, if ISCR elements do move via “unchecked RC transposition,” as has been speculated for ISCR1, then this mechanism provides antibiotic resistance genes with a highly mobile genetic vehicle that could greatly exceed the effects of previously reported mobile genetic mechanisms. It has been hypothesized that bacteria will surprise us by extending their “genetic construction kit” to procure and evince additional DNA and, therefore, antibiotic resistance genes. It appears that ISCR elements have now firmly established themselves within that regimen.  相似文献   

20.
From Bradyrhizobium japonicum highly reiterated sequence-possessing (HRS) strains indigenous to Niigata and Tokachi in Japan with high copy numbers of the repeated sequences RSα and RSβ (K. Minamisawa, T. Isawa, Y. Nakatsuka, and N. Ichikawa, Appl. Environ. Microbiol. 64:1845–1851, 1998), several insertion sequence (IS)-like elements were isolated by using the formation of DNA duplexes by denaturation and renaturation of total DNA, followed by treatment with S1 nuclease. Most of these sequences showed structural features of bacterial IS elements, terminal inverted repeats, and homology with known IS elements and transposase genes. HRS and non-HRS strains of B. japonicum differed markedly in the profiles obtained after hybridization with all the elements tested. In particular, HRS strains of B. japonicum contained many copies of IS1631, whereas non-HRS strains completely lacked this element. This association remained true even when many field isolates of B. japonicum were examined. Consequently, IS1631 occurrence was well correlated with B. japonicum HRS strains possessing high copy numbers of the repeated sequence RSα or RSβ. DNA sequence analysis indicated that IS1631 is 2,712 bp long. In addition, IS1631 belongs to the IS21 family, as evidenced by its two open reading frames, which encode putative proteins homologous to IstA and IstB of IS21, and its terminal inverted repeat sequences with multiple short repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号