首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Apoptosis contributes to tubular epithelial cell death and atrophy in aldosterone (Aldo)-induced renal injury. This study aimed to determine mechanisms underlying Aldo-induced reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress in tubular epithelial cells. Intracellular ROS generation was evaluated by 2',7'-dichlorofluorescin diacetate fluorescence. Apoptosis was detected by annexin V/propidium iodide staining and flow cytometry. ER stress induced protein and mRNA were evaluated by Western blot and real-time PCR, respectively. Aldo promoted tubular epithelial cell apoptosis, increased intracellular ROS production and induced ER stress, as evidenced by increased expression of glucose-regulated protein 78 (GRP78) and CAAT/enhancer-binding protein homologous protein (CHOP) in a dose- and time-dependent manner. Additionally, siRNA knockdown of CHOP and antioxidant N-acetyl-l-cysteine (NAC) attenuated ER stress-mediated apoptosis. NAC also could inhibit Aldo-induced expression of GRP78 and CHOP. Altogether, these observations suggest that Aldo induces apoptosis via ROS-mediated, CHOP-dependent activation in renal tubular epithelial cells.  相似文献   

2.
Shimoke K  Kudo M  Ikeuchi T 《Life sciences》2003,73(5):581-593
Glucose-regulated protein 78 (GRP78)/Immunoglobulin binding protein (Bip) is a chaperone which functions to protect cells from endoplasmic reticulum (ER) stress. GRP78/Bip is expressed following ER stress induced by thapsigargin, tunicamycin or chemical factors. However, the mechanism of progression of ER stress against stress factors is still obscure. We examined whether reactive oxygen species (ROS) were involved in GRP78/Bip expression and caspase-3 activity was induced in PC12 cells using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to produce ROS. We report that PC12 cells lost viability in the presence of MPTP for 24 hours as a partial effect of ROS. We also show that N-acetyl-L-cysteine diminished the MPTP-induced apoptosis with expunction of ROS. Furthermore, we observed that GRP78/Bip was not up-regulated and the caspase-3 activity was increased in the presence of MPTP. These results suggest that insubstantial ROS do not contribute to the ER stress-mediated cell death while caspase-3 is involved in ROS-promoted cell death in MPTP-treated cells.  相似文献   

3.
Huang HL  Wu JL  Chen MH  Hong JR 《PloS one》2011,6(8):e22935
Aquatic birnavirus induces mitochondria-mediated cell death, but whether connects to endoplasmic reticulum (ER) stress is still unknown. In this present, we characterized that IPNV infection triggers ER stress-mediated cell death via PKR/eIF2α phosphorylation signaling for regulating the Bcl-2 family protein expression in fish cells. The IPNV infection can induce ER stress as follows: (1) ER stress sensor ATF6 cleavaged; (2) ER stress marker GRP78 upregulation, and (3) PERK/eIF2α phosphorylation. Then, the IPNV-induced ER stress signals can induce the CHOP expression at early (6 h p.i.) and middle replication (12 h p.i.) stages. Moreover, IPNV-induced CHOP upregulation dramatically correlates to apparently downregulate the Bcl-2 family proteins, Bcl-2, Mcl-1 and Bcl-xL at middle replication stage (12 h p.i.) and produces mitochondria membrane potential (MMP) loss and cell death. Furthermore, with GRP78 synthesis inhibitor momitoxin (VT) and PKR inhibitor 2-aminopurine (2-AP) treatment for blocking GRP78 expression and eIF2α phosphorylation, PKR/PERK may involve in eIF2α phosphorylation/CHOP upregulation pathway that enhances the downstream regulators Bcl-2 family proteins expression and increased cell survival. Taken together, our results suggest that IPNV infection activates PKR/PERK/eIF2α ER stress signals for regulating downstream molecules CHOP upregulation and Bcl-2 family downregulation that led to induce mitochondria-mediated cell death in fish cells, which may provide new insight into RNA virus pathogenesis and disease.  相似文献   

4.
DY Lu  CS Chang  WL Yeh  CH Tang  CW Cheung  YM Leung  JF Liu  KL Wong 《Phytomedicine》2012,19(12):1093-1100
Prenyl-phloroglucinol derivatives from hop plants have been shown to have anticancer activities. This study is the first to investigate the anticancer effects of the new phloroglucinol derivative (2,4-bis(4-fluorophenylacetyl)phloroglucinol; BFP). BFP induced cell death and anti-proliferation in three glioma, U251, U87 and C6 cells, but not in primary human astrocytes. BFP-induced concentration-dependently cell death in glioma cells was determined by MTT and SRB assay. Moreover, BFP-induced apoptotic cell death in glioma cells was measured by Hochest 33258 staining and fluorescence-activated cell sorter (FACS) of propidine iodine (PI) analysis. Treatment of U251 human glioma cells with BFP was also found to induce reactive oxygen species (ROS) generation, which was detected by a fluorescence dye used FACS analysis. Treatment of BFP also increased a number of signature endoplasmic reticulum (ER) stress markers glucose-regulated protein (GRP)-78, GRP-94, IRE1, phosphorylation of eukaryotic initiation factor-2α (eIF-2α) and up-regulation of CAAT/enhancer-binding protein homologous protein (CHOP). Moreover, treatment of BFP also increased the down-stream caspase activation, such as pro-caspase-7 and pro-caspase-12 degradation, suggesting the induction of ER stress. Furthermore, BFP also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Treatment of antioxidants, or pre-transfection of cells with GRP78 or CHOP siRNA reduced BFP-mediated apoptotic-related protein expression. Taken together, the present study provides evidences to support that ROS generation, GRP78 and CHOP activation are mediating the BFP-induced human glioma cell apoptosis.  相似文献   

5.
Endothelial cells (ECs) are directly exposed to hypoxia and contribute to injury during myocardial ischemia/reperfusion. Hypoxic preconditioning (HPC) protects ECs against hypoxia injury. This study aimed to explore whether HPC attenuates hypoxia/reoxygenation (H/R) injury by suppressing excessive endoplasmic reticulum stress (ERS) in cultured microvascular ECs (MVECs) from rat heart. MVECs injury was measured by lactate dehydrogenase (LDH) leakage, cytoskeleton destruction, and apoptosis. Expression of glucose regulating protein 78 (GRP78) and C/EBP homologous protein (CHOP), activation of caspase-12 (pro-apoptosis factors) and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) were detected by western blot analysis. HPC attenuated H/R-induced LDH leakage, cytoskeleton destruction, and cell apoptosis, as shown by flow cytometry, Bax/Bcl-2 ratio, caspase-3 activation and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling. HPC suppressed H/R-induced ERS, as shown by a decrease in expression of GRP78 and CHOP, and caspase-12 activation. HPC enhanced p38 MAPK phosphorylation but decreased that of protein kinase R-like ER kinase (PERK, upstream regulator of CHOP). SB202190 (an inhibitor of p38 MAPK) abolished HPC-induced cytoprotection, downregulation of GRP78 and CHOP, and activation of caspase-12, as well as PERK phosphorylation. HPC may protect MVECs against H/R injury by suppressing CHOP-dependent apoptosis through p38 MAPK mediated downregulation of PERK activation.  相似文献   

6.
7.
We previously reported that nicotine protected against tunicamycin (Tm)-induced ER stress-mediated apoptosis, but not thapsigargin (Tg)-induced apoptosis in PC12 cells. In the present study, we report that the expression of glucose-regulated protein 78 (GRP78) was suppressed by nicotine in Tm-treated PC12 cells. Interestingly, the GRP78 expression was not changed by nicotine in Tg-treated cells. Moreover, nicotine reduced the activation of caspase-12 in Tm-treated cells, but not in Tg-treated cells. These results suggest that nicotine prevented Tm-induced ER stress-mediated apoptosis by attenuating an early stage of Tm-induced ER stress. It was possible that the suppression of GRP78 expression by nicotine was achieved through the suppression of the Ire1-XBP1 and/or ATF6 pathways. We observed that nicotine suppressed the Tm-induced, but not Tg-induced, splicing of XBP1 mRNA, and also suppressed the Tm-induced, but not Tg-induced, production of cleaved ATF6 in PC12 cells. These results indicate that the suppression of Ire1-XBP1 and ATF6 pathways contributes to the suppression of GRP78 expression by nicotine in Tm-treated PC12 cells, suggesting that nicotine suppresses a common step upstream of both the Ire1-XBP1 and ATF6 pathways which are required for the expression of GRP78 during Tm-induced ER stress.  相似文献   

8.
Malignant gliomas are common primary tumors of the central nervous system. The prognosis of patients with malignant glioma is poor in spite of current intensive therapy and thus novel therapeutic modalities are necessary. Bufalin is the major component of Chan-Su (a traditional Chinese medicine) extracts from the venom of Bufo gargarizan. In this study, we evaluated the growth inhibitory effect of bufalin on glioma cells and explored the underlying molecular mechanisms. Our results showed that bufalin inhibited the growth of glioma cells significantly. Mechanistic studies demonstrated that bufalin induced apoptosis through mitochondrial apoptotic pathway. In addition, bufalin was also found to induce ER stress-mediated apoptosis, which was supported by the up- regulation of ER stress markers, CHOP and GRP78, and augmented phosphorylation of PERK and eIF2α as well as cleavage of caspase-4. Downregulation of CHOP using siCHOP RNA attenuated bufalin-induced apoptosis, further confirming the role of ER stress response in mediating bufalin-induced apoptosis. Evidence of bufalin-induced autophagy included formation of the acidic vesicular organelles, increase of autophagolysosomes and LC3-II accumulation. Further experiments showed that the mechanism of bufalin-induced autophagy associated with ATP deleption involved an increase in the active form of AMPK, decreased phosphorylation levels of mTOR and its downstream targets 4EBP1 and p70S6K1. Furthermore, TUDC and silencing of eIF2α or CHOP partially blocked bufalin-induced accumulation of LC3-II, which indicated that ER stress preceded bufalin-induced autophagy and PERK/eIF2α/CHOP signaling pathway played a major part in the process. Blockage of autophagy increased expression of ER stress associated proteins and the ratio of apoptosis, indicating that autophagy played a cytoprotective role in bufalin induced ER stress and cell death. In conclusion, bufalin inhibits glioma cell growth and induces interplay between apoptosis and autophagy through endoplasmic reticulum stress. It will provide molecular bases for developing bufalin into a drug candidate for the treatment of maglinant glioma.  相似文献   

9.
In this report, we investigated a role of endoplasmic reticulum (ER) stress in cigarette smoke (CS)-induced apoptosis of human bronchial epithelial cells (hBEC). Exposure of hBEC to CS or CS extract (CSE) caused expression of endogenous ER stress markers GRP78 and CHOP and induction of apoptosis evidenced by nuclear condensation, membrane blebbing, and activation of caspase-3 and caspase-4. In vivo exposure of mice to CS also caused induction of GRP78 and CHOP in the lung. Attenuation of ER stress by overexpression of ER chaperone GRP78 or ORP150 significantly attenuated CSE-triggered apoptosis. Exposure of hBEC to CSE caused generation of reactive oxygen species, and treatment with antioxidants inhibited CSE-induced apoptosis. Interestingly, antioxidants including a scavenger of O(2)(*-) blunted induction of CHOP by CSE without affecting the level of GRP78, and dominant-negative inhibition of CHOP abolished CSE-induced apoptosis. Furthermore, a generator of O(2)(*-) selectively induced CHOP and apoptosis in hBEC. Our results revealed that: (1) CS induces ER stress in vitro and in vivo, (2) ER stress mediates CS-triggered apoptosis downstream of oxidative stress, (3) CS-initiated apoptosis is caused through oxidative stress-dependent induction of CHOP, (4) O(2)(*-) may play a dominant role in this process, and (5) oxidative stress-independent induction of GRP78 counterbalances the proapoptotic action of CHOP.  相似文献   

10.
11.
12.
Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes.  相似文献   

13.
14.
15.
16.
ω-Hydroxyundec-9-enoic acid (ω-HUA), a hydroxyl unsaturated fatty acid derivative, is involved in the antifungal activity of wild rice (Oryza officinalis). Here, we investigated the anti-cancer activity of ω-HUA on a non-small cell lung cancer (NSCLC) cell line. ω-HUA increased apoptosis and induced cleavages of caspase-6, caspase-9, and poly (ADP-ribose) polymerase (PARP). ω-HUA treatment significantly induced endoplasmic reticulum (ER) stress response. Suppression of CHOP expression and inhibiting ER stress by 4-phenylbutyrate (4-PBA) significantly attenuated the ω-HUA treatment-induced activation of caspase-6, caspase-9, and PARP, and subsequent apoptotic cell death, indicating a role for ER stress in ω-HUA-induced apoptosis. In addition, cells subjected to ω-HUA exhibited significantly increased quantity of reactive oxygen species (ROS), and the ROS scavenger N-acetyl-l-cysteine (NAC) inhibited ω-HUA-induced apoptotic cell death and ER stress signals, indicating a role for ROS in ER stress-mediated apoptosis in ω-HUA-treated cells. Taken together, these results suggest that sequential ROS generation and ER stress activation are critical in ω-HUA treatment-induced apoptosis and that ω-HUA represents a promising candidate for NSCLC treatment.  相似文献   

17.

Osteogenic activity was identified in medicarpin (Med), a natural pterocarpan. Further, it was decided to study the differentially regulated protein expression during osteoblast differentiation in the presence of Med. Using 2D proteomic approach, we found that Med treatment to osteoblasts significantly downregulated GRP78, an ER chaperone with anti-apoptotic properties which also controls the activation of unfolded protein response signaling, a pro-survival strategy for normal ER functioning. However, severe stress leads to triggering of apoptotic responses and signaling switches to pro-apoptotic. In order to elucidate the effect of Med downregulation of GRP78, osteoblasts were transfected with SiGRP78 or SiGRP78+ Med or Med alone. It was seen that mRNA and protein levels of ER stress markers like GRP78, ATF-4, and CHOP were decreased in all the three groups with maximum reduction in SiGRP78+ Med group. Med targets GRP78 by inhibiting mitochondrial-mediated apoptosis which is evident by reduced levels of cytochrome c, caspase-3, Bax/BCL2 ratio, and enhanced expression of survivin. Finally, Annexin-PI staining of apoptotic cells revealed that MED inhibition of GRP78 leads to reduced osteoblast apoptosis and increased osteoblast survival. Altogether, our data show that Med inhibits ER stress-induced apoptosis and promotes osteoblast cell survival by targeting GRP78.

  相似文献   

18.
Whether viral pathogens that induce ER stress responses benefit the host or the virus remains controversial. In this study we show that betanodavirus induced ER stress responses up-regulate GRP78, which regulates the viral replication and host cellular mitochondrial-mediated cell death. Betanodavirus (redspotted grouper nervous necrosis virus, RGNNV) infection resulted in the following increased ER stress responses in fish GF-1 grouper fin cells: (1) IRE-1 and ATF-6 sensors at 48 h post-infection (p.i.) that up-regulated chaperone protein GRP78; (2) activation of caspase-12; and (3) PERK phosphorylation and down-regulation of Bcl-2. Analyses of GRP78 functions during viral replication using either loss-of-function or gain-of-function approaches showed that GRP78 over-expression also enhanced viral replication and induced cell death. Then, we found that zfGRP78 localization gradually increased in mitochondria after RGNNV infection by EGFP tagging approach. Furthermore, zfGRP78 can interact with viral RNA-dependent RNA polymerase (RdRp) by using immunofluorescent and immunoprecipitation assays. Finally, we found that blocking GRP78-mediated ER signals can reduce the viral death factors protein α and protein B2 expression and decrease the Bcl-2 down-regulation mediated mitochondria-dependent cell death, which also enhances host cellular viability. Taken together, our results suggest that RGNNV infection and expression can trigger ER stress responses, which up-regulate the chaperone GRP78 at early replication stage. Then, GRP78 can interact with RdRp that may enhance the viral replication for increasing viral death factors’ expressions at middle-late replication stage, which can enhance mitochondrial-mediated cell death pathway and viral spreading. These results may provide new insights into the mechanism of ER stress-mediated cell death in RNA viruses.  相似文献   

19.
Endoplasmic reticulum (ER) stress and the related apoptosis and inflammation damage play key roles in osteoarthritis development. The aim of the present work was to investigate the exact role and potential underlying mechanism of pyruvate kinase M2 (PKM2) in rat chondrocytes exposed to interleukin-Iβ (IL-1β). We observed that IL-1β stimulation resulted in an apparent enhancement in PKM2 expression. Additionally, loss of PKM2 evidently ascended cell viability in response to IL-1β exposure. Simultaneously, elimination of PKM2 manifestly repressed IL-1β-stimulated chondrocyte apoptosis, concomitant with attenuated in the proapoptotic protein markers Bax and cleaved caspase-3, and elevated the antiapoptotic protein Bcl-2. In the meanwhile, knockdown of PKM2 ameliorated ER stress in IL-1β-treated chondrocytes, as evidenced by reduced expression of the ER stress-associated proteins GRP78, CHOP, and cleaved caspase-12. Furthermore, PKM2 silencing protected chondrocytes against IL-1β-triggered inflammatory response, as reflected by the downregulated release of proinflammatory mediators, including tumor necrosis factor-α, IL-6, inducible nitric oxide synthase, cyclooxygenase-2, and prostaglandin E2, as well as decreased nitric oxide generation. More important, abrogating PKM2 expression caused a marked decline in Rspo2 expression, and subsequently blocked Wnt/β-catenin signaling. Mechanistically, the Wnt/β-catenin signaling activator Licl effectively impeded the beneficial effects of PKM2 ablation on IL-1β-stimulated apoptosis and inflammatory response. These findings collectively implicated that PKM2 inhibition protected against ER stress-mediated cell apoptosis and inflammatory injury in rat chondrocytes stimulated with IL-1β by inactivating Rspo2-mediated Wnt/β-catenin pathway, and may represented a novel therapeutic target for osteoarthritis.  相似文献   

20.
目的:研究佛手苷内酯(BP)对磷酸三钙(TCP)磨损颗粒诱导骨细胞损伤的影响,并阐明其可能作用机制。方法:将TCP磨损颗粒与小鼠骨细胞MLO-Y4细胞共孵育48 h建立骨细胞体外损伤模型,随机分为正常对照(Control)组、TCP磨损颗粒(TCP,0.1 mg/ml)组、佛手苷内酯(1 μmol/L)组、佛手苷内酯(5 μmol/L)组和佛手苷内酯(20 μmol/L)组。MTT法和Calcein-AM染色检测各组骨细胞活性和形态改变;Hoechst 33342染色和流式细胞术分析各组骨细胞凋亡情况;实时荧光定量PCR检测各组骨细胞特征蛋白牙本质基质蛋白-1(DMP-1)、骨硬化蛋白(SOST)、成纤维细胞生长因子23(FGF23)的mRNA水平;Western blot法检测各组骨细胞中内质网应激标志蛋白葡萄糖调节蛋白78(GRP78)、蛋白激酶R样内质网激酶(PERK)、磷酸化PERK(p-PERK)、真核细胞翻译起始因子2α (eIF2α)、磷酸化eIF2α(p-eIF2α)、活性转录因子(ATF4)和 C/EBP 同源蛋白(CHOP)等的表达及caspase-3的活化变化。结果:与Control组比较,TCP组骨细胞的活性和DMP-1的mRNA水平显著降低(P<0.05),骨细胞凋亡率及SOST、FGF23的mRNA水平显著增加(P<0.05),GRP78、ATF4和CHOP等蛋白质表达、p-PERK/PERK值和p-eIF2α/eIF2α值显著升高;与TCP组比较,佛手苷内酯组骨细胞损伤明显减轻,骨细胞凋亡率显著减少(P< 0.05),GRP78、ATF4和CHOP等蛋白质表达、p-PERK/PERK值和p-eIF2α/PERK值也明显下降(P<0.05)。结论:佛手苷内酯可明显抑制TCP磨损颗粒所致的骨细胞损伤,其机制可能与减弱TCP磨损颗粒诱导的内质网应激反应及PERK通路的活化密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号