首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Both G-quadruplex and Z-DNA can be formed in G-rich and repetitive sequences on genome, and their formation and biological functions are controlled by specific proteins. Z-DNA binding proteins, such as human ADAR1, have a highly conserved Z-DNA binding domain having selective affinity to Z-DNA. Here, our study identifies the Z-DNA binding domain of human ADAR1 (hZαADAR1) as a novel G-quadruplex binding protein that recognizes c-myc promoter G-quadruplex formed in NHEIII1 region and represses the gene expression. An electrophoretic migration shift assay shows the binding of hZαADAR1 to the intramolecular c-myc promoter G-quadruplex-forming DNA oligomer. To corroborate the binding of hZαADAR1 to the G-quadruplex, we conducted CD and NMR chemical shift perturbation analyses. CD results indicate that hZαADAR1 stabilizes the parallel-stranded conformation of the c-myc G-quadruplex. The NMR chemical shift perturbation data reveal that the G-quadruplex binding region in hZαADAR1 was almost identical with the Z-DNA binding region. Finally, promoter assay and Western blot analysis show that hZαADAR1 suppresses the c-myc expression promoted by NHEIII1 region containing the G-quadruplex-forming sequence. This finding suggests a novel function of Z-DNA binding protein as a regulator of G-quadruplex-mediated gene expression.  相似文献   

5.
Effects of natural isoflavones on the structural competition of human telomeric G-quadruplex d[AG3(T2AG3)3] and its related Watson–Crick duplex d[AG3(T2AG3)3-(C3TA2)3C3T] are investigated by using circular dichroism (CD), ESI-MS, fluorescence quenching measurement, CD stopped-flow kinetic experiment, UV spectroscopy and molecular modeling methods. It is intriguing to find out that isoflavones can stabilize the G-quadruplex structure but destabilize its corresponding Watson–Crick duplex and this discriminated interaction is intensified by molecular crowding environments. Kinetic experiments indicate that the dissociation rate of quadruplex (kobs290 nm) is decreased by 40.3% at the daidzin/DNA molar ratio of 1.0 in K+, whereas in Na+ the observed rate constant is reduced by about 12.0%. Furthermore, glycosidic daidzin significantly induces a structural transition of the polymorphic G-quadruplex into the antiparallel conformation in K+. This is the first report on the recognition of isoflavones with conformational polymorphism of G-quadruplex, which suggests that natural isoflavone constituents potentially exhibit distinct regulation on the structural competition of quadruplex versus duplex in human telomeric DNA.  相似文献   

6.
Kan ZY  Lin Y  Wang F  Zhuang XY  Zhao Y  Pang DW  Hao YH  Tan Z 《Nucleic acids research》2007,35(11):3646-3653
Chromosomes in vertebrates are protected at both ends by telomere DNA composed of tandem (TTAGGG)n repeats. DNA replication produces a blunt-ended leading strand telomere and a lagging strand telomere carrying a single-stranded G-rich overhang at its end. The G-rich strand can form G-quadruplex structure in the presence of K+ or Na+. At present, it is not clear whether quadruplex can form in the double-stranded telomere region where the two complementary strands are constrained in close vicinity and quadruplex formation, if possible, has to compete with the formation of the conventional Watson–Crick duplex. In this work, we studied quadruplex formation in oligonucleotides and double-stranded DNA containing both the G- and C-rich sequences to better mimic the in vivo situation. Under such competitive condition only duplex was observed in dilute solution containing physiological concentration of K+. However, quadruplex could preferentially form and dominate over duplex structure under molecular crowding condition created by PEG as a result of significant quadruplex stabilization and duplex destabilization. This observation suggests quadruplex may potentially form or be induced at the blunt end of a telomere, which may present a possible alternative form of structures at telomere ends.  相似文献   

7.
8.
G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions.  相似文献   

9.
We completed a biophysical characterization of the c-MYC proto-oncogene P1 promoter quadruplex and its interaction with a cationic porphyrin, 5,10,15,20-tetra(N-methyl-4-pyridyl)porphyrin (TMPyP4), using differential scanning calorimetry, isothermal titration calorimetry, and circular dichroism spectroscopy. We examined three different 24-mer oligonucleotides, including the wild-type (WT) sequence found in the c-MYC P1 promoter and two mutant G→T sequences that are known to fold into single 1:2:1 and 1:6:1 loop isomer quadruplexes. Biophysical experiments were performed on all three oligonucleotide sequences at two different ionic strengths (30 mM [K+] and 130 mM [K+]). Differential scanning calorimetry experiments demonstrated that the WT quadruplex consists of a mixture of at least two different folded conformers at both ionic strengths, whereas both mutant sequences exhibit a single two-state melting transition at both ionic strengths. Isothermal titration calorimetry experiments demonstrated that both mutant sequences bind 4 mols of TMPyP4 to 1 mol of DNA, in similarity to the WT sequence. The circular dichroism spectroscopy signatures for all three oligonucleotides at both ionic strengths are consistent with an intramolecular parallel stranded G-quadruplex structure, and no change in quadruplex structure is observed upon addition of saturating amounts of TMPyP4 (i.e., 4:1 TMPyP4/DNA).  相似文献   

10.
Linear heteroareneanthracenediones have been shown to interfere with DNA functions, thereby causing death of human tumor cells and their drug resistant counterparts. Here we report the interaction of our novel antiproliferative agent 4,11-bis[(2-{[acetimido]amino}ethyl)amino]anthra[2,3-b]thiophene-5,10-dione with telomeric DNA structures studied by isothermal titration calorimetry, circular dichroism and UV absorption spectroscopy. New compound demonstrated a high affinity (Kass∼106 M−1) for human telomeric antiparallel quadruplex d(TTAGGG)4 and duplex d(TTAGGG)4∶d(CCCTAA)4. Importantly, a ∼100-fold higher affinity was determined for the ligand binding to an unordered oligonucleotide d(TTAGGG TTAGAG TTAGGG TTAGGG unable to form quadruplex structures. Moreover, in the presence of Na+ the compound caused dramatic conformational perturbation of the telomeric G-quadruplex, namely, almost complete disordering of G-quartets. Disorganization of a portion of G-quartets in the presence of K+ was also detected. Molecular dynamics simulations were performed to illustrate how the binding of one molecule of the ligand might disrupt the G-quartet adjacent to the diagonal loop of telomeric G-quadruplex. Our results provide evidence for a non-trivial mode of alteration of G-quadruplex structure by tentative antiproliferative drugs.  相似文献   

11.
Human telomeric G-quadruplex structures are known to be promising targets for an anticancer therapy. In the past decade, several research groups have been focused on the design of new ligands trying to optimize the interactions between these small molecules and the G-quadruplex motif. In most of these studies, the target structures were the single quadruplex units formed by short human DNA telomeric sequences (typically 21-26 nt). However, the 3′-terminal single-stranded human telomeric DNA is actually 100-200 bases long and can form higher-order structures by clustering several consecutive quadruplex units (multimers). Despite the increasing number of structural information on longer DNA telomeric sequences, very few data are available on the binding properties of these sequences compared with the shorter DNA telomeric sequences.In this paper we use a combination of spectroscopic (CD, UV and fluorescence) and calorimetric techniques (ITC) to compare the binding properties of the (TTAGGG)8TT structure formed by two adjacent quadruplex units with the binding properties of the (AG3TT)4 single quadruplex structure. The three side-chained triazatruxene derivative azatrux and TMPyP4 cationic porphyrin were used as quadruplex ligands. We found that, depending on the drug, the number of binding sites per quadruplex unit available in the multimer structure was smaller or greater than the one expected on the basis of the results obtained from individual quadruplex binding studies. This work suggests that the quadruplex units along a multimer structure do not behave as completely independent. The presence of adjacent quadruplexes results in a diverse binding ability not predictable from single quadruplex binding studies. The existence of quadruplex-quadruplex interfaces in the full length telomeric overhang may provide an advantageous factor in drug design to enhance both affinity and selectivity for DNA telomeric quadruplexes.  相似文献   

12.
We introduce designed ankyrin repeat binding proteins (DARPins) as a novel class of highly specific and structure-selective DNA-binding proteins, which can be functionally expressed within all cells. Human telomere quadruplex was used as target to select specific binders with ribosome display. The selected DARPins discriminate the human telomere quadruplex against the telomeric duplex and other quadruplexes. Affinities of the selected binders range from 3 to 100 nM. CD studies confirm that the quadruplex fold is maintained upon binding. The DARPins show different specificity profiles: some discriminate human telomere quadruplexes from other quadruplex-forming sequences like ILPR, c-MYC and c-KIT, while others recognize two of the sequences tested or even all quadruplexes. None of them recognizes dsDNA. Quadruplex-binding DARPins constitute valuable tools for specific detection at very small scales and for the in vivo investigation of quadruplex DNA.  相似文献   

13.
14.
15.
The potential formation of G-quadruplexes in many regions of the genome makes them an attractive target for drug design. A large number of small molecules synthesized in recent years display an ability to selectively target and stabilize G-quadruplexes. To screen for G4 ligands, we modified a G4-FID (G-quadruplex Fluorescent Intercalator Displacement) assay. This test is based on the displacement of an “on/off” fluorescence probe, Thiazole Orange (TO), from quadruplex or duplex DNA matrices by increasing amounts of a putative ligand. Selectivity measurements can easily be achieved by comparing the ability of the ligand to displace TO from various quadruplex and duplex structures. G4-FID requires neither modified oligonucleotides nor specific equipment and is an isothermal experiment. This test was adapted for high throughput screening onto 96-well plates allowing the comparison of more than twenty different structures. Fifteen different known G4 ligands belonging to different families were tested. Most compounds showed a good G4 vs duplex selectivity but exhibited little, if any, specificity for one quadruplex sequence over the others. The quest for the “perfect” specific G4 ligand is not over yet!  相似文献   

16.
We describe the NMR structural characterisation of a bimolecular anti-parallel DNA quadruplex d(G3ACGTAGTG3)2 containing an autonomously stable mini-hairpin motif inserted within the diagonal loop. A folding topology is identified that is different from that observed for the analogous d(G3T4G3)2 dimer with the two structures differing in the relative orientation of the diagonal loops. This appears to reflect specific base stacking interactions at the quadruplex-duplex interface that are not present in the structure with the T4-loop sequence. A truncated version of the bimolecular quadruplex d(G2ACGTAGTG2)2, with only two core G-tetrads, is less stable and forms a heterogeneous mixture of three 2-fold symmetric quadruplexes with different loop arrangements. We demonstrate that the nature of the loop sequence, its ability to form autonomously stable structure, the relative stabilities of the hairpin loop and core quadruplex, and the ability to form favourable stacking interactions between these two motifs are important factors in controlling DNA G-quadruplex topology.  相似文献   

17.
In the present study, electrospray ionization mass spectrometry (ESI-MS) and spectroscopy have been used to evaluate the non-covalent interaction, stoichiometry, and selectivity of two synthetic coumarin-attached nucleoside and non-nucleoside 1,2,3-triazoles, namely, (1-(5-(hydroxymethyl)-4-(4-((2-oxo-2H-chromen-4-yloxy)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-furan-2-yl)5-methyl pyrimidine-2,4(1H,3H)-dione (Tr1) and 4-((1-((-1-methyl-1H-indol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)-2H-chromen-2-one (Tr2) with two different human telomeric intermolecular G-quadruplex DNA structures formed by d(T2AG3) and d(T2AG3)2 sequences. ESI-MS studies indicate that Tr1 specifically interacts with four-stranded intermolecular parallel quadruplex complex, whereas Tr2 interacts with two hairpin as well as four-stranded intermolecular parallel quadruplex complexes. UV–Visible spectroscopic studies suggest that Tr1 and Tr2 interact with G-quadruplex structure and unwind them. Job plots show that stoichiometry of ligand:quadruplex DNA is 1:1. Circular dichroism (CD) studies of G-quadruplex DNA and Tr1/Tr2 ligands manifest that they unfold DNA on interaction. Fluorescence studies demonstrate that ligand molecules intercalate between the two stacks of quadruplex DNA and non-radiative energy transfer occurs between the excited ligand molecules (donor) and quadruplex DNA (acceptor), resulting in enhancement of fluorescence emission intensity. Thus, these studies suggest that nucleoside and non-nucleoside ligands efficiently interact with d(T2AG3) and d(T2AG3)2 G-quadruplex DNA but the interaction is not alike with all kinds of quadruplex DNA, this is probably due to the variation in the pharmacophores and structure of the ligand molecules.  相似文献   

18.
O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs.  相似文献   

19.
The present study has employed a combination of spectroscopic, calorimetric and computational methods to explore the binding of the three side-chained triazatruxene derivative, termed azatrux, to a human telomeric G-quadruplex sequence, under conditions of molecular crowding. The binding of azatrux to the tetramolecular parallel [d(TGGGGT)]4 quadruplex in the presence and absence of crowding conditions, was also characterized. The data indicate that azatrux binds in an end-stacking mode to the parallel G-quadruplex scaffold and highlights the key structural elements involved in the binding. The selectivity of azatrux for the human telomeric G-quadruplex relative to another biologically relevant G-quadruplex (c-Kit87up) and to duplex DNA was also investigated under molecular crowding conditions, showing that azatrux has good selectivity for the human telomeric G-quadruplex over the other investigated DNA structures.  相似文献   

20.
The stable trioxatriangulenium ion (TOTA) has previously been shown to bind to and photooxidize duplex DNA, leading to cleavage at G residues, particularly 5'-GG-3' repeats. Telomeric DNA consists of G-rich sequences that may exist in either duplex or G-quadruplex forms. We have employed electrospray ionization mass spectrometry (ESI-MS) to investigate the interactions between TOTA and duplex DNA or G-quadruplex DNA. A variety of duplex decamer oligodeoxynucleotides form complexes with TOTA that can be detected by ESI-MS, and the stoichiometry and fragmentation patterns observed are commensurate with an intercalative binding mode. TOTA also forms complexes with four-stranded and hairpin-dimer G-quadruplex oligodeoxynucleotides that can be detected by ESI-MS. Both the stoichiometry and the fragmentation patterns observed by ESI-MS are different than those observed for G-tetrad end-stacking binding ligands. We have carried out (1)H NMR titrations of a four-stranded G-quadruplex in the presence of TOTA. Addition of up to 1 equiv of TOTA is accompanied by pronounced upfield shifts of the G-tetrad imino proton resonances in the NMR, which is similar to the effect observed for G-tetrad end-stacking ligands. At higher ratios of added TOTA, there is evidence for additional binding modes. Duplex DNA containing either human telomeric repeats (T(2)AG(3))(4) or the Tetrahymena telomeric repeats (T(2)G(4))(4) are readily photooxidized by TOTA, the major sites of oxidation being the central guanine residues in each telomeric repeat. These telomeric repeats were incorporated into duplex/quadruplex chimeras in which the repeats adopt a G-quadruplex structure. Analysis by denaturing polyacrylamide gel electrophoresis reveals significantly less TOTA photocleavage of these quadruplex telomeric repeats when compared to the duplex repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号