首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a strategy to “sense” the micro-morphology of a breast tumor margin over a wide field of view by creating quantitative hyperspectral maps of the tissue optical properties (absorption and scattering), where each voxel can be deconstructed to provide information on the underlying histology. Information about the underlying tissue histology is encoded in the quantitative spectral information (in the visible wavelength range), and residual carcinoma is detected as a shift in the histological landscape to one with less fat and higher glandular content. To demonstrate this strategy, fully intact, fresh lumpectomy specimens (n = 88) from 70 patients were imaged intra-operatively. The ability of spectral imaging to sense changes in histology over large imaging areas was determined using inter-patient mammographic breast density (MBD) variation in cancer-free tissues as a model system. We discovered that increased MBD was associated with higher baseline β-carotene concentrations (p = 0.066) and higher scattering coefficients (p = 0.007) as measured by spectral imaging, and a trend toward decreased adipocyte size and increased adipocyte density as measured by histological examination in BMI-matched patients. The ability of spectral imaging to detect cancer intra-operatively was demonstrated when MBD-specific breast characteristics were considered. Specifically, the ratio of β-carotene concentration to the light scattering coefficient can report on the relative amount of fat to glandular density at the tissue surface to determine positive margin status, when baseline differences in these parameters between patients with low and high MBD are taken into account by the appropriate selection of threshold values. When MBD was included as a variable a priori, the device was estimated to have a sensitivity of 74% and a specificity of 86% in detecting close or positive margins, regardless of tumor type. Superior performance was demonstrated in high MBD tissue, a population that typically has a higher percentage of involved margins.  相似文献   

2.
Near-infrared (NIR) optical imaging is a noninvasive and nonionizing modality that is emerging as a diagnostic tool for breast cancer. The handheld optical devices developed to date using the NIR technology are predominantly developed for spectroscopic applications. A novel handheld probe-based optical imaging device has been recently developed toward area imaging and tomography applications. The three-dimensional (3D) tomographic imaging capabilities of the device have been demonstrated from previous fluorescence studies on tissue phantoms. In the current work, fluorescence imaging studies are performed on tissue phantoms, in vitro, and in vivo tissue models to demonstrate the fast two-dimensional (2D) surface imaging capabilities of this flexible handheld-based optical imaging device, toward clinical breast imaging studies. Preliminary experiments were performed using target(s) of varying volume (0.23 and 0.45 cm3) and depth (1–2 cm), using indocyanine green as the fluorescence contrast agent in liquid phantom, in vitro, and in vivo tissue models. The feasibility of fast 2D surface imaging (∼5 seconds) over large surface areas of 36 cm2 was demonstrated from various tissue models. The surface images could differentiate the target(s) from the background, allowing a rough estimate of the target''s location before extensive 3D tomographic analysis (future studies).  相似文献   

3.
This study investigated the feasibility of using near infrared hyperspectral imaging (NIR-HSI) technique for non-destructive identification of sesame oil. Hyperspectral images of four varieties of sesame oil were obtained in the spectral region of 874–1734 nm. Reflectance values were extracted from each region of interest (ROI) of each sample. Competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA) and x-loading weights (x-LW) were carried out to identify the most significant wavelengths. Based on the sixty-four, seven and five wavelengths suggested by CARS, SPA and x-LW, respectively, two classified models (least squares-support vector machine, LS-SVM and linear discriminant analysis,LDA) were established. Among the established models, CARS-LS-SVM and CARS-LDA models performed well with the highest classification rate (100%) in both calibration and prediction sets. SPA-LS-SVM and SPA-LDA models obtained better results (95.59% and 98.53% of classification rate in prediction set) with only seven wavelengths (938, 1160, 1214, 1406, 1656, 1659 and 1663 nm). The x-LW-LS-SVM and x-LW-LDA models also obtained satisfactory results (>80% of classification rate in prediction set) with the only five wavelengths (921, 925, 995, 1453 and 1663 nm). The results showed that NIR-HSI technique could be used to identify the varieties of sesame oil rapidly and non-destructively, and CARS, SPA and x-LW were effective wavelengths selection methods.  相似文献   

4.
Molecular optoacoustic (photoacoustic) imaging typically relies on the spectral identification of absorption signatures from molecules of interest. To achieve this, two or more excitation wavelengths are employed to sequentially illuminate tissue. Due to depth‐related spectral dependencies and detection related effects, the multispectral optoacoustic tomography (MSOT) spectral unmixing problem presents a complex non‐linear inversion operation. So far, different studies have showcased the spectral capacity of optoacoustic imaging, without however relating the performance achieved to the number of wavelengths employed. Overall, the dependence of the sensitivity and accuracy of optoacoustic imaging as a function of the number of illumination wavelengths has not been so far comprehensively studied. In this paper we study the impact of the number of excitation wavelengths employed on the sensitivity and accuracy achieved by molecular optoacoustic tomography. We present a quantitative analysis, based on synthetic MSOT datasets and observe a trend of sensitivity increase for up to 20 wavelengths. Importantly we quantify this relation and demonstrate an up to an order of magnitude sensitivity increase of multi‐wavelength illumination vs. single or dual wavelength optoacoustic imaging. Examples from experimental animal studies are finally utilized to support the findings.

In vivo MSOT imaging of a mouse brain bearing a tumor that is expressing a near‐infrared fluorescent protein. ( a ) Monochromatic optoacoustic imaging at the peak excitation wavelength of the fluorescent protein. ( b ) Overlay of the detected bio‐distribution of the protein (red pseudocolor) on the monochromatic optoacoustic image. ( c ) Ex vivo validation by means of cryoslicing fluorescence imaging.  相似文献   


5.
Hyperspectral imaging is a promising technique for resection margin assessment during cancer surgery. Thereby, only a specific amount of the tissue below the resection surface, the clinically defined margin width, should be assessed. Since the imaging depth of hyperspectral imaging varies with wavelength and tissue composition, this can have consequences for the clinical use of hyperspectral imaging as margin assessment technique. In this study, a method was developed that allows for hyperspectral analysis of resection margins in breast cancer. This method uses the spectral slope of the diffuse reflectance spectrum at wavelength regions where the imaging depth in tumor and healthy tissue is equal. Thereby, tumor can be discriminated from healthy breast tissue while imaging up to a similar depth as the required tumor‐free margin width of 2 mm. Applying this method to hyperspectral images acquired during surgery would allow for robust margin assessment of resected specimens. In this paper, we focused on breast cancer, but the same approach can be applied to develop a method for other types of cancer.  相似文献   

6.
IntroductionProstate and breast cancer are the most prevalent primary malignant human tumors globally. Prostatectomy and breast conservative surgery remain the most common definitive treatment option for the >500,000 men and women newly diagnosed with localized prostate and breast cancer each year only in the US. Morphological examination is the mainstay of diagnosis but margin under-sampling of the excised cancer tissue may lead to local recurrence. In despite of the progress of non-invasive optical imaging, there is still a clinical need for targeted optical imaging probes that could rapidly and globally visualize cancerous tissues.MethodsElevated expression of junctional adhesion molecule-A (JAM-A) on tumor cells and its multiple pro-tumorigenic activity make the JAM-A a candidate for molecular imaging. Near-infrared imaging probe, which employed anti-JAM-A monoclonal antibody (mAb) phthalocyanine dye IR700 conjugates (JAM-A mAb/IR700), was synthesized and used to identify and visualize heterotopic human prostate and breast tumor mouse xenografts in vivo.ResultsThe intravenously injected JAM-A mAb/IR700 conjugates enabled the non-invasive detection of prostate and breast cancerous tissue by fluorescence imaging. A single dose of JAM-A mAb/IR700 reduced number of mitotic cancer cells in vivo, indicating theranostic ability of this imaging agent. The JAM-A mAb/IR700 conjugates allowed us to image a specific receptor expression in prostate and breast tumors without post-image processing.ConclusionThis agent demonstrates promise as a method to image the extent of prostate and breast cancer in vivo and could assist with real-time visualization of extracapsular extension of cancerous tissue.  相似文献   

7.
In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS), our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI) system utilizing a wide-field (imaging area = 17cm2) 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR) was found to be greater than 40dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0–8.9cm-1) and scattering (μs’ = 7.0–9.7cm-1) coefficients. Very low inter-channel and CCD crosstalk was observed (2% max) when used on turbid media (including breast tissue). A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75mm spatially resolved diffuse reflectance images (λ = 450–600nm) of an entire margin (area = 17cm2) in 13.8 minutes (1.23cm2/min). Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing <1% variation across repeated scans of clinical specimens. We demonstrate the clinical utility of this device through a pilot 20-patient study of high-resolution optical parameter maps of the ratio of the β-carotene concentration to the reduced scattering coefficient. An empirical cumulative distribution function (eCDF) analysis is used to reduce optical property maps to quantitative distributions representing the morphological landscape of breast tumor margins. The optimizations presented in this work provide an avenue to rapidly survey large tissue areas on intra-operative time scales with improved sensitivity to regions of focal disease that may otherwise be overlooked.  相似文献   

8.
Electrical responses (ERG) to light flashes of various wavelengths and energies were obtained from the dorsal median ocellus and lateral compound eye of Limulus under dark and chromatic light adaptation. Spectral mechanisms were studied by analyzing (a) response waveforms, e.g. response area, rise, and fall times as functions of amplitude, (b) slopes of amplitude-energy functions, and (c) spectral sensitivity functions obtained by the criterion amplitude method. The data for a single spectral mechanism in the lateral eye are (a) response waveforms independent of wavelength, (b) same slope for response-energy functions at all wavelengths, (c) a spectral sensitivity function with a single maximum near 520 mµ, and (d) spectral sensitivity invariance in chromatic adaptation experiments. The data for two spectral mechanisms in the median ocellus are (a) two waveform characteristics depending on wavelength, (b) slopes of response-energy functions steeper for short than for long wavelengths, (c) two spectral sensitivity peaks (360 and 530–535 mµ) when dark-adapted, and (d) selective depression of either spectral sensitivity peak by appropriate chromatic adaptation. The ocellus is 200–320 times more sensitive to UV than to visible light. Both UV and green spectral sensitivity curves agree with Dartnall's nomogram. The hypothesis is favored that the ocellus contains two visual pigments each in a different type of receptor, rather than (a) various absorption bands of a single visual pigment, (b) single visual pigment and a chromatic mask, or (c) fluorescence. With long duration light stimuli a steady-state level followed the transient peak in the ERG from both types of eyes.  相似文献   

9.
Cancer is associated with specific cellular morphological changes, such as increased nuclear size and crowding from rapidly proliferating cells. In situ tissue imaging using fluorescent stains may be useful for intraoperative detection of residual cancer in surgical tumor margins. We developed a widefield fluorescence structured illumination microscope (SIM) system with a single-shot FOV of 2.1×1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 µm). The objectives of this work were to measure the relationship between illumination pattern frequency and optical sectioning strength and signal-to-noise ratio in turbid (i.e. thick) samples for selection of the optimum frequency, and to determine feasibility for detecting residual cancer on tumor resection margins, using a genetically engineered primary mouse model of sarcoma. The SIM system was tested in tissue mimicking solid phantoms with various scattering levels to determine impact of both turbidity and illumination frequency on two SIM metrics, optical section thickness and modulation depth. To demonstrate preclinical feasibility, ex vivo 50 µm frozen sections and fresh intact thick tissue samples excised from a primary mouse model of sarcoma were stained with acridine orange, which stains cell nuclei, skeletal muscle, and collagenous stroma. The cell nuclei were segmented using a high-pass filter algorithm, which allowed quantification of nuclear density. The results showed that the optimal illumination frequency was 31.7 µm−1 used in conjunction with a 4×0.1 NA objective ( = 0.165). This yielded an optical section thickness of 128 µm and an 8.9×contrast enhancement over uniform illumination. We successfully demonstrated the ability to resolve cell nuclei in situ achieved via SIM, which allowed segmentation of nuclei from heterogeneous tissues in the presence of considerable background fluorescence. Specifically, we demonstrate that optical sectioning of fresh intact thick tissues performed equivalently in regards to nuclear density quantification, to physical frozen sectioning and standard microscopy.  相似文献   

10.
We present a method for depth discrimination in parallel-plate, transmission mode, diffuse optical imaging. The method is based on scanning a set of detector pairs, where the two detectors in each pair are separated by a distance δDi along direction δ D i within the x-y scanning plane. A given optical inhomogeneity appears shifted by αi δ D i (with 0≤ αi ≤1) in the images collected with the two detection fibers of the i-th pair. Such a spatial shift can be translated into a measurement of the depth z of the inhomogeneity, and the depth measurements based on each detector pair are combined into a specially designed weighted average. This depth assessment is demonstrated on tissue-like phantoms for simple inhomogeneities such as straight rods in single-rod or multiple-rod configurations, and for more complex curved structures which mimic blood vessels in the female breast. In these phantom tests, the method has recovered the depth of single inhomogeneities in the central position of the phantom to within 4 mm of their actual value, and within 7 mm for more superficial inhomogeneities, where the thickness of the phantom was 65 mm. The application of this method to more complex images, such as optical mammograms, requires a robust approach to identify corresponding structures in the images collected with the two detectors of a given pair. To this aim, we propose an approach based on the inner product of the skeleton images collected with the two detectors of each pair, and we present an application of this approach to optical in vivo images of the female breast. This depth discrimination method can enhance the spatial information content of 2D projection images of the breast by assessing the depth of detected structures, and by allowing for 3D localization of breast tumors.  相似文献   

11.
This study reports the optical characterization and quantitative oximetry of human breast cancer using spectrally-resolved images collected with a broadband, continuous-wave optical mammography instrument. On twenty-six cancer patients, we collected two-dimensional optical mammograms and created maps of the concentrations of hemoglobin, water, and lipids, as well as the oxygen saturation of hemoglobin. For each cancerous breast, we analyzed the difference between the tumor region (as identified by x-ray and optical mammography) and the remainder of breast tissue. With respect to the surrounding tissue, we found that cancer regions have significantly higher concentrations of total hemoglobin (+2.4±0.4 μM) and water (+7±1% v/v), and significantly lower lipid concentration (8±2% v/v) and oxygen saturation of hemoglobin (5±1%). We also found a significant correlation between the tumor optical contrast and the grade of breast cancer as quantified by the Nottingham histologic score; this demonstrates how optical signatures may be representative of metabolic and morphological features, as well as the aggressive potential of the tumor.  相似文献   

12.
Breast conserving surgery (BCS) is a recommended treatment for breast cancer patients where the goal is to remove the tumor and a surrounding rim of normal tissue. Unfortunately, a high percentage of patients return for additional surgeries to remove all of the cancer. Post-operative pathology is the gold standard for evaluating BCS margins but is limited due to the amount of tissue that can be sampled. Frozen section analysis and touch-preparation cytology have been proposed to address the surgical needs but also have sampling limitations. These issues represent an unmet clinical need for guidance in resecting malignant tissue intra-operatively and for pathological sampling. We have developed a quantitative spectral imaging device to examine margins intra-operatively. The context in which this technology is applied (intra-operative or post-operative setting) is influenced by time after excision and surgical factors including cautery and the presence of patent blue dye (specifically Lymphazurin™, used for sentinel lymph node mapping). Optical endpoints of hemoglobin ([THb]), fat ([β-carotene]), and fibroglandular content via light scattering (<µs’>) measurements were quantified from diffuse reflectance spectra of lumpectomy and mastectomy specimens using a Monte Carlo model. A linear longitudinal mixed-effects model was used to fit the optical endpoints for the cautery and kinetics studies. Monte Carlo simulations and tissue mimicking phantoms were used for the patent blue dye experiments. [THb], [β-carotene], and <µs’> were affected by <3.3% error with <80 µM of patent blue dye. The percent change in [β-carotene], <µs’>, and [β-carotene]/<µs’> was <14% in 30 minutes, while percent change in [THb] was >40%. [β-carotene] and [β-carotene]/<µs’> were the only parameters not affected by cautery. This work demonstrates the importance of understanding the post-excision kinetics of ex-vivo tissue and the presence of cautery and patent blue dye for breast tumor margin assessment, to accurately interpret data and exploit underling sources of contrast.  相似文献   

13.
Microscopic analysis of tumor vasculature plays an important role in understanding the progression and malignancy of colorectal carcinoma. However, due to the geometry of blood vessels and their connections, standard microtome-based histology is limited in providing the spatial information of the vascular network with a 3-dimensional (3-D) continuum. To facilitate 3-D tissue analysis, we prepared transparent human colorectal biopsies by optical clearing for in-depth confocal microscopy with CD34 immunohistochemistry. Full-depth colons were obtained from colectomies performed for colorectal carcinoma. Specimens were prepared away from (control) and at the tumor site. Taking advantage of the transparent specimens, we acquired anatomic information up to 200 μm in depth for qualitative and quantitative analyses of the vasculature. Examples are given to illustrate: (1) the association between the tumor microstructure and vasculature in space, including the perivascular cuffs of tumor outgrowth, and (2) the difference between the 2-D and 3-D quantitation of microvessels. We also demonstrate that the optically cleared mucosa can be retrieved after 3-D microscopy to perform the standard microtome-based histology (H&E staining and immunohistochemistry) for systematic integration of the two tissue imaging methods. Overall, we established a new tumor histological approach to integrate 3-D imaging, illustration, and quantitation of human colonic microvessels in normal and cancerous specimens. This approach has significant promise to work with the standard histology to better characterize the tumor microenvironment in colorectal carcinoma.  相似文献   

14.
Gold nanoparticles (GNPs) enhance the damaging absorbance effects of high-energy photons in radiation therapy by increasing the emission of Auger-photoelectrons in the nm-μm range. It has been shown that the incorporation of GNPs has a significant effect on radiosensitivity of cells and their dose-dependent clonogenic survival. One major characteristic of GNPs is also their diameter-dependent cellular uptake and retention. In this article, we show by means of an established embodiment of localization microscopy, spectral position determination microscopy (SPDM), that imaging with nanometer resolution and systematic counting of GNPs becomes feasible, because optical absorption and plasmon resonance effects result in optical blinking of GNPs at a size-dependent wavelength. To quantify cellular uptake and retention or release, SPDM with GNPs that have diameters of 10 and 25 nm was performed after 2 h and after 18 h. The uptake of the GNPs in HeLa cells was either achieved via incubation or transfection via DNA labeling. On average, the uptake by incubation after 2 h was approximately double for 10 nm GNPs as compared to 25 nm GNPs. In contrast, the uptake of 25 nm GNPs by transfection was approximately four times higher after 2 h. The spectral characteristics of the fluorescence of the GNPs seem to be environment-dependent. In contrast to fluorescent dyes that show blinking characteristics due to reversible photobleaching, the blinking of GNPs seems to be stable for long periods of time, and this facilitates their use as an appropriate dye analog for SPDM imaging.  相似文献   

15.
We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, β-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 μm and chlorophyll a and b absorption in the wavelength range from 0.6 to 0.7 μm. The integral of the scaled chlorophyll a and b absorption feature (I0.68) varies with algal concentration (Ca). Using the relationship Ca = 81019.2 I0.68 + 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km2 region imaged, the mean algal concentration was 1,306 cells ml−1, the standard deviation was 1,740 cells ml−1, and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km2 snow-covered area, which gave an areal biomass concentration of 0.033 g/m2.  相似文献   

16.
《Translational oncology》2020,13(2):254-261
PURPOSE: To determine the accuracy of a handheld ultrasound-guided optoacoustic tomography (US-OT) probe developed for human deep-tissue imaging in ex vivo assessment of tumor margins postlumpectomy. METHODS: A custom-built two-dimensional (2D) US-OT–handheld probe was used to scan 15 lumpectomy breast specimens. Optoacoustic signals acquired at multiple wavelengths between 700 and 1100 nm were reconstructed using model linear algorithm, followed by spectral unmixing for lipid and deoxyhemoglobin (Hb). Distribution maps of lipid and Hb on the anterior, posterior, superior, inferior, medial, and lateral margins of the specimens were inspected for margin involvement, and results were correlated with histopathologic findings. The agreement in tumor margin assessment between US-OT and histopathology was determined using the Bland–Altman plot. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of margin assessment using US-OT were calculated. RESULTS: Ninety margins (6 × 15 specimens) were assessed. The US-OT probe resolved blood vessels and lipid up to a depth of 6 mm. Negative and positive margins were discriminated by marked differences in the distribution patterns of lipid and Hb. US-OT assessments were concordant with histopathologic findings in 87 of 89 margins assessed (one margin was uninterpretable and excluded), with diagnostic accuracy of 97.9% (kappa = 0.79). The sensitivity, specificity, PPV, and NPV were 100% (4/4), 97.6% (83/85), 66.7% (4/6), and 100% (83/83), respectively. CONCLUSION: US-OT was capable of providing distribution maps of lipid and Hb in lumpectomy specimens that predicted tumor margins with high sensitivity and specificity, making it a potential tool for intraoperative tumor margin assessment.  相似文献   

17.
Fast functional and molecular photoacoustic microscopy requires pulsed laser excitations at multiple wavelengths with enough pulse energy and short wavelength‐switching time. Recent development of stimulated Raman scattering in optical fiber offers a low‐cost laser source for multiwavelength photoacoustic imaging. In this approach, long fibers temporally separate different wavelengths via optical delay. The time delay between adjacent wavelengths may eventually limits the highest A‐line rate. In addition, a long‐time delay in fiber may limit the highest pulse energy, leading to poor image quality. In order to achieve high pulse energy and ultrafast dual‐wavelength excitation, we present optical‐resolution photoacoustic microscopy with ultrafast dual‐wavelength excitation and a signal separation method. The signal separation method is validated in numerical simulation and phantom experiments. We show that when two photoacoustic signals are partially overlapped with a 50‐ns delay, they can be recovered with 98% accuracy. We apply this ultrafast dual‐wavelength excitation technique to in vivo OR‐PAM. Results demonstrate that A‐lines at two wavelengths can be successfully separated, and sO2 values can be reliably computed from the separated data. The ultrafast dual‐wavelength excitation enables fast functional photoacoustic microscopy with negligible misalignment among different wavelengths and high pulse energy, which is important for in vivo imaging of microvascular dynamics.  相似文献   

18.
19.
This study investigated the feasibility of using hyperspectral imaging technique for nondestructive measurement of color components (ΔL*, Δa* and Δb*) and classify tea leaves during different drying periods. Hyperspectral images of tea leaves at five drying periods were acquired in the spectral region of 380–1030 nm. The three color features were measured by the colorimeter. Different preprocessing algorithms were applied to select the best one in accordance with the prediction results of partial least squares regression (PLSR) models. Competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) were used to identify the effective wavelengths, respectively. Different models (least squares-support vector machine [LS-SVM], PLSR, principal components regression [PCR] and multiple linear regression [MLR]) were established to predict the three color components, respectively. SPA-LS-SVM model performed excellently with the correlation coefficient (rp) of 0.929 for ΔL*, 0.849 for Δa*and 0.917 for Δb*, respectively. LS-SVM model was built for the classification of different tea leaves. The correct classification rates (CCRs) ranged from 89.29% to 100% in the calibration set and from 71.43% to 100% in the prediction set, respectively. The total classification results were 96.43% in the calibration set and 85.71% in the prediction set. The result showed that hyperspectral imaging technique could be used as an objective and nondestructive method to determine color features and classify tea leaves at different drying periods.  相似文献   

20.
For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号