首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/β-catenin pathway, we challenged the allele combinations by genetically restricting intracellular β-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/β-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/β-catenin signaling capacity similar to that in the germline of the Apcmin mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apcmin mice arise independently of intestinal tumorigenesis. Together, the present genotype–phenotype analysis suggests tissue-specific response levels for the Wnt/β-catenin pathway that regulate both physiological and pathophysiological conditions.  相似文献   

2.
Intestinal barrier function defects and dysregulation of intestinal immune responses are two key contributory factors in the pathogenesis of ulcerative colitis (UC). Phenazine biosynthesis-like domain-containing protein (PBLD) was recently identified as a tumor suppressor in gastric cancer, hepatocellular carcinoma, and breast cancer; however, its role in UC remains unclear. Therefore, we analyzed colonic tissue samples from patients with UC and constructed specific intestinal epithelial PBLD-deficient (PBLDIEC−/−) mice to investigate the role of this protein in UC pathogenesis. We found that epithelial PBLD was decreased in patients with UC and was correlated with levels of tight junction (TJ) and inflammatory proteins. PBLDIEC−/− mice were more susceptible to dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid-induced colitis compared with wild-type (WT) mice. In DSS-induced colitis, PBLDIEC−/− mice had impaired intestinal barrier function and greater immune cell infiltration in colonic tissue than WT mice. Furthermore, TJ proteins were markedly reduced in PBLDIEC−/− mice compared with WT mice with colitis. Nuclear factor (NF)-κB activation was markedly elevated and resulted in higher expression levels of downstream effectors (C–C motif chemokine ligand 20, interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) in colonic epithelial cells isolated from PBLDIEC−/− mice than WT mice with colitis. PBLD overexpression in intestinal epithelial cells (IECs) consistently inhibited TNF-α/interferon-γ-induced intestinal barrier disruption and TNF-α-induced inflammatory responses via the suppression of NF-κB. In addition, IKK inhibition (IKK-16) rescued excessive inflammatory responses induced by TNF-α in PBLD knockdown FHC cells. Co-immunoprecipitation assays showed that PBLD may interact with IKKα and IKKβ, thus inhibiting NF-κB signaling, decreasing inflammatory mediator production, attenuating colonic inflammation, and improving intestinal barrier function. Modulating PBLD expression may provide a novel approach for treatment in patients with UC.Subject terms: Ulcerative colitis, Chronic inflammation  相似文献   

3.
Kremen1 and Kremen2 (Krm1 and Krm2) are transmembrane coreceptors for Dickkopf1 (Dkk1), an antagonist of Wnt/β-catenin signaling. The physiological relevance of Kremen proteins in mammals as Wnt modulators is unresolved. We generated and characterized Krm mutant mice and found that double mutants show enhanced Wnt signaling accompanied by ectopic postaxial forelimb digits and expanded apical ectodermal ridges. Triple mutant Krm1−/ Krm2−/ Dkk1+/ mice show enhanced growth of ectopic digits, indicating that Dkk1 and Krm genes genetically interact during limb development. Wnt/β-catenin signaling also plays a critical role in bone formation. Single Krm mutants show normal bone formation and bone mass, while double mutants show increased bone volume and bone formation parameters. Our study provides the first genetic evidence for a functional interaction of Kremen proteins with Dkk1 as negative regulators of Wnt/β-catenin signaling and reveals that Kremen proteins are not universally required for Dkk1 function.  相似文献   

4.
The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2−/− mice adoptively transferred with CD4+CD45RBhigh T cells; and IL-10−/− mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11bCD11clowPDCA-1+ plasmacytoid dendritic cells (DCs) abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4+CD45RBhigh T cell-transferred RAG-2−/− mice and IL-10−/− mice in parallel with the emergence of macrophages (Mφs) and conventional DCs (cDCs). Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS)-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.  相似文献   

5.
Both β-catenin and NF-κB have been implicated in our laboratory as candidate factors in driving proliferation in an in vivo model of Citrobacter rodentium (CR)-induced colonic crypt hyper-proliferation and hyperplasia. Herein, we test the hypothesis that β-catenin and not necessarily NF-κB regulates colonic crypt hyperplasia or tumorigenesis in response to CR infection. When C57Bl/6 wild type (WT) mice were infected with CR, sequential increases in proliferation at days 9 and 12 plateaued off at day 19 and paralleled increases in NF-κB signaling. In Tlr4−/− (KO) mice, a sequential but sustained proliferation which tapered off only marginally at day 19, was associated with TLR4-dependent and independent increases in NF-κB signaling. Similarly, increases in either activated or total β-catenin in the colonic crypts of WT mice as early as day 3 post-infection coincided with cyclinD1 and c-myc expression and associated crypt hyperplasia. In KO mice, a delayed kinetics associated predominantly with increases in non-phosphorylated (active) β-catenin coincided with increases in cyclinD1, c-myc and crypt hyperplasia. Interestingly, PKCζ-catalyzed Ser-9 phosphorylation and inactivation of GSK-3β and not loss of wild type APC protein accounted for β-catenin accumulation and nuclear translocation in either strain. In vitro studies with Wnt2b and Wnt5a further validated the interplay between the Wnt/β-catenin and NF-κB pathways, respectively. When WT or KO mice were treated with nanoparticle-encapsulated siRNA to β-catenin (si- β-Cat), almost complete loss of nuclear β-catenin coincided with concomitant decreases in CD44 and crypt hyperplasia without defects in NF-κB signaling. si-β-Cat treatment to Apc Min/+ mice attenuated CR-induced increases in β-catenin and CD44 that halted the growth of mutated crypts without affecting NF-κB signaling. The predominant β-catenin-induced crypt proliferation was further validated in a Castaneus strain (B6.CAST.11M) that exhibited significant crypt hyperplasia despite an attenuated NF-κB signaling. Thus, β-catenin and not necessarily NF-κB regulates crypt hyperplasia in response to bacterial infection.  相似文献   

6.
Retinal Müller cells are major producers of inflammatory and angiogenic cytokines which contribute to diabetic retinopathy (DR). Over-activation of the Wnt/β-catenin pathway has been shown to play an important pathogenic role in DR. However, the roles of Müller cell-derived Wnt/β-catenin signaling in retinal neovascularization (NV) and DR remain undefined. In the present study, mice with conditional β-catenin knockout (KO) in Müller cells were generated and subjected to oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced diabetes. Wnt signaling was evaluated by measuring levels of β-catenin and expression of its target genes using immunoblotting. Retinal vascular permeability was measured using Evans blue as a tracer. Retinal NV was visualized by angiography and quantified by counting pre-retinal nuclei. Retinal pericyte loss was evaluated using retinal trypsin digestion. Electroretinography was performed to examine visual function. No abnormalities were detected in the β-catenin KO mice under normal conditions. In OIR, retinal levels of β-catenin and VEGF were significantly lower in the β-catenin KO mice than in littermate controls. The KO mice also had decreased retinal NV and vascular leakage in the OIR model. In the STZ-induced diabetic model, disruption of β-catenin in Müller cells attenuated over-expression of inflammatory cytokines and ameliorated pericyte dropout in the retina. These findings suggest that Wnt signaling activation in Müller cells contributes to retinal NV, vascular leakage and inflammation and represents a potential therapeutic target for DR.  相似文献   

7.
8.
Canonical Wnt/β-catenin signaling regulates stem/progenitor cells and, when perturbed, induces many human cancers. A significant proportion of human breast cancer is associated with loss of secreted Wnt antagonists and mice expressing MMTV-Wnt1 and MMTV-ΔN89β-catenin develop mammary adenocarcinomas. Many studies have assumed these mouse models of breast cancer to be equivalent. Here we show that MMTV-Wnt1 and MMTV-ΔN89β-catenin transgenes induce tumors with different phenotypes. Using axin2/conductin reporter genes we show that MMTV-Wnt1 and MMTV-ΔN89β-catenin activate canonical Wnt signaling within distinct cell-types. ΔN89β-catenin activated signaling within a luminal subpopulation scattered along ducts that exhibited a K18+ERPRCD24highCD49flow profile and progenitor properties. In contrast, MMTV-Wnt1 induced canonical signaling in K14+ basal cells with CD24/CD49f profiles characteristic of two distinct stem/progenitor cell-types. MMTV-Wnt1 produced additional profound effects on multiple cell-types that correlated with focal activation of the Hedgehog pathway. We document that large melanocytic nevi are a hitherto unreported hallmark of early hyperplastic Wnt1 glands. These nevi formed along the primary mammary ducts and were associated with Hedgehog pathway activity within a subset of melanocytes and surrounding stroma. Hh pathway activity also occurred within tumor-associated stromal and K14+/p63+ subpopulations in a manner correlated with Wnt1 tumor onset. These data show MMTV-Wnt1 and MMTV-ΔN89β-catenin induce canonical signaling in distinct progenitors and that Hedgehog pathway activation is linked to melanocytic nevi and mammary tumor onset arising from excess Wnt1 ligand. They further suggest that Hedgehog pathway activation maybe a critical component and useful indicator of breast tumors arising from unopposed Wnt1 ligand.  相似文献   

9.

Background/Aims

Intestinal mucositis is a common side-effect in patients who receive aggressive chemotherapy. The Wnt signaling pathway is critical for establishing and maintaining the proliferative compartment of the intestine. In the present study, we tested whether Wnt/β-catenin signaling is involved in methotrexate (MTX)-induced intestinal damage in a rat model.

Methods

Non-pretreated and pretreated with MTX Caco-2 cells were evaluated for cell proliferation and apoptosis using FACS analysis. Adult rats were divided into three experimental groups: Control rats; MTX-2 animals were treated with a single dose of MTX given IP and were sacrificed on day 2, and MTX-4 rats were treated with MTX similar to group B and were sacrificed on day 4. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation, and enterocyte apoptosis were measured at sacrifice. Real Time PCR and Western blot was used to determine the level of Wnt/β-catenin related genes and protein expression.

Results

In the vitro experiment, treatment with MTX resulted in marked decrease in early cell proliferation rates following by a 17-fold increase in late cell proliferation rates compared to early proliferation. Treatment with MTX resulted in a significant increase in early and late apoptosis compared to Caco-2 untreated cells. In the vivo experiment, MTX-2 and MTX-4 rats demonstrated intestinal mucosal hypoplasia. MTX-2 rats demonstrated a significant decrease in FRZ-2, Wnt 3A Wnt 5A, β-catenin, c-myc mRNA expression and a significant decrease in β-catenin and Akt protein levels compared to control animals. Four days following MTX administration, rats demonstrated a trend toward a restoration of Wnt/β-catenin signaling especially in ileum.

Conclusions

Wnt/β-catenin signaling is involved in enterocyte turnover during MTX-induced intestinal mucositis in a rat.  相似文献   

10.
11.
Kidney disease progression can be affected by Na+ abundance. A key regulator of Na+ homeostasis is the ubiquitin ligase NEDD4-2 and its deficiency leads to increased Na+ transport activity and salt-sensitive progressive kidney damage. However, the mechanisms responsible for high Na+ induced damage remain poorly understood. Here we show that a high Na+ diet compromised kidney function in Nedd4-2-deficient mice, indicative of progression toward end-stage renal disease. Injury was characterized by enhanced tubule dilation and extracellular matrix accumulation, together with sustained activation of both Wnt/β-catenin and TGF-β signaling. Nedd4-2 knockout in cortical collecting duct cells also activated these pathways and led to epithelial–mesenchymal transition. Furthermore, low dietary Na+ rescued kidney disease in Nedd4-2-deficient mice and silenced Wnt/β-catenin and TGF-β signaling. Our study reveals the important role of NEDD4-2-dependent ubiquitination in Na+ homeostasis and protecting against aberrant Wnt/β-catenin/TGF-β signaling in progressive kidney disease.Subject terms: Stress signalling, End-stage renal disease  相似文献   

12.
13.
Intestinal epithelial cells (IECs) have critical roles in maintaining homeostasis of intestinal epithelium. Endoplasmic reticulum (ER) stress is implicated in intestinal epithelium homeostasis and inflammatory bowel disease; however, it remains elusive whether IRE1α, a major sensor of ER stress, is directly involved in these processes. We demonstrate here that genetic ablation of Ire1α in IECs leads to spontaneous colitis in mice. Deletion of IRE1α in IECs results in loss of goblet cells and failure of intestinal epithelial barrier function. IRE1α deficiency induces cell apoptosis through induction of CHOP, the pro-apoptotic protein, and sensitizes cells to lipopolysaccharide, an endotoxin from bacteria. IRE1α deficiency confers upon mice higher susceptibility to chemical-induced colitis. These results suggest that IRE1α functions to maintain the intestinal epithelial homeostasis and plays an important role in defending against inflammation bowel diseases.  相似文献   

14.
The colony stimulating factor-1 (CSF-1) receptor (CSF-1R) directly regulates the development of Paneth cells (PC) and influences proliferation and cell fate in the small intestine (SI). In the present study, we have examined the role of CSF-1 and the CSF-1R in the large intestine, which lacks PC, in the steady state and in response to acute inflammation induced by dextran sulfate sodium (DSS). As previously shown in mouse, immunohistochemical (IHC) analysis of CSF-1R expression showed that the receptor is baso-laterally expressed on epithelial cells of human colonic crypts, indicating that this expression pattern is shared between species. Colons from Csf1r null and Csf1op/op mice were isolated and sectioned for IHC identification of enterocytes, enteroendocrine cells, goblet cells and proliferating cells. Both Csf1r−/− and Csf1op/op mice were found to have colon defects in enterocytes and enteroendocrine cell fate, with excessive goblet cell staining and reduced cell proliferation. In addition, the gene expression profiles of the cell cycle genes, cyclinD1, c-myc, c-fos, and c-myb were suppressed in Csf1r−/− colonic crypt, compared with those of WT mice and the expression of the stem cell marker gene Lgr5 was markedly reduced. However, analysis of the proliferative responses of immortalized mouse colon epithelial cells (lines; Immorto-5 and YAMC) indicated that CSF-1R is not a major regulator of colonocyte proliferation and that its effects on proliferation are indirect. In an examination of the acute inflammatory response, Csf1r +/− male mice were protected from the adverse affects of DSS-induced colitis compared with WT mice, while Csf1r +/− female mice were significantly less protected. These data indicate that CSF-1R signaling plays an important role in colon homeostasis and stem cell gene expression but that the receptor exacerbates the response to inflammatory challenge in male mice.  相似文献   

15.
Germline mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP), an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/β-catenin signaling. Notably, genotype–phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/β-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/β-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc+/1572T mice suggests that specific dosages of Wnt/β-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.  相似文献   

16.
17.
Wnt/β-catenin signaling induced by the Norrin/Frizzled-4 pathway has been shown to improve capillary repair following oxygen induced retinopathy (OIR) in the mouse, a model for retinopathy of prematurity. Here we investigated if treatment with the monovalent cation lithium that has been shown to augment Wnt/β-catenin signaling in vitro and in vivo has similar effects. In cultured human microvascular endothelial cells, LiCl as well as SB 216763, another small molecule that activates Wnt/β-catenin signaling, induced proliferation, survival and migration, which are all common parameters for angiogenic properties in vitro. Moreover, treatment with both agents caused an increase in the levels of β-catenin and their translocation to nuclei while quercetin, an inhibitor of Wnt/β-catenin signaling, completely blocked the effects of LiCl on proliferation. In mice with OIR, intraperitonal or intravitreal treatment with LiCl markedly increased the retinal levels of β-catenin, but did not improve capillary repair. In contrast, repair was significantly improved following intravitreal treatment with Norrin. The effects of LiCl on HDMEC in vitro have minor relevance for OIR in vivo, and the influence of the Norrin/Frizzled-4 pathway on capillary repair in OIR is not reproducible upon enhancing Wnt/β-catenin signaling by LiCl treatment strongly indicating the presence of additional and essential mechanisms.  相似文献   

18.
The intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis, which is regulated by multiple signaling pathways. The Wnt/β-catenin pathway has a critical role in this process. Previously, we have shown that the calcineurin-dependent nuclear factor of activated T cell (NFAT) is involved in the regulation of intestinal cell differentiation, as noted by the alteration of brush-border enzyme intestinal alkaline phosphatase (IAP) activity. Here, we show that calcineurin-independent NFAT5 interacts with β-catenin to repress Wnt signaling. We found that overexpression of NFAT5 inhibits, whereas knockdown of NFAT5 increases, TOPflash reporter activity and the expression of Wnt/β-catenin target genes, suggesting that NFAT5 inhibits Wnt signaling. In addition, we demonstrated that NFAT5 directly interacts with the C-terminal transactivation domain (TAD) of β-catenin, inhibits CBP interaction with β-catenin, and inhibits CBP-mediated β-catenin acetylation. Moreover, NFAT5 is expressed in the mucosa of human intestine, with the most pronounced staining in the most differentiated region near the epithelial surface. Knockdown of NFAT5 attenuated sodium butyrate (NaBT)-mediated induction of IAP and sucrase activities; overexpression of NFAT5 induced IAP promoter activity. In summary, we provide evidence showing that NFAT5 is a regulator of Wnt signaling. Importantly, our results suggest that NFAT5 regulation of intestinal cell differentiation may be through inhibition of Wnt/β-catenin signaling.  相似文献   

19.
The bile acid receptor farnesoid X receptor (FXR) is expressed in adipose tissue, but its function remains poorly defined. Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipocyte differentiation and function. The aim of this study was to analyze the role of FXR in adipocyte function and to assess whether it modulates PPARγ action. Therefore, we tested the responsiveness of FXR-deficient mice (FXR−/−) and cells to the PPARγ activator rosiglitazone. Our results show that genetically obese FXR−/−/ob/ob mice displayed a resistance to rosiglitazone treatment. In vitro, rosiglitazone treatment did not induce normal adipocyte differentiation and lipid droplet formation in FXR−/− mouse embryonic fibroblasts (MEFs) and preadipocytes. Moreover, FXR−/− MEFs displayed both an increased lipolysis and a decreased de novo lipogenesis, resulting in reduced intracellular triglyceride content, even upon PPARγ activation. Retroviral-mediated FXR re-expression in FXR−/− MEFs restored the induction of adipogenic marker genes during rosiglitazone-forced adipocyte differentiation. The expression of Wnt/β-catenin pathway and target genes was increased in FXR−/− adipose tissue and MEFs. Moreover, the expression of several endogenous inhibitors of this pathway was decreased early during the adipocyte differentiation of FXR−/− MEFs. These findings demonstrate that FXR regulates adipocyte differentiation and function by regulating two counteracting pathways of adipocyte differentiation, the PPARγ and Wnt/β-catenin pathways.  相似文献   

20.
IQGAPs are multidomain scaffolding proteins that integrate Rho GTPase and Ca2+/calmodulin signals with cell adhesive and cytoskeletal reorganizational events. Targeted disruption of the murine Iqgap2 gene resulted in the age-dependent development of apoptosis and hepatocellular carcinoma (HCC), characterized by the overexpression of IQGAP1, the loss of membrane E-cadherin expression, the cytoplasmic translocation (and activation) of β-catenin, and the overexpression of a nuclear target of β-catenin, cyclin D1. In normal hepatocytes, IQGAP2 was found to exist as one component of a multifunctional scaffolding complex comprising IQGAP1, β-catenin, and E-cadherin, with no evidence for direct IQGAP1-IQGAP2 interactions. Interbreeding of Iqgap2−/− mice into the Iqgap1−/− background resulted in the phenotypic correction of the preexisting hepatopathy, decreases in the incidence and sizes of HCC tumors, and the normalization of overall survival rates compared to those of Iqgap2−/− mice, suggesting that maximal penetrance of the Iqgap2−/− HCC phenotype requires the coordinate expression of IQGAP1. These results identify Iqgap2 as a novel tumor suppressor gene specifically linked to the development of HCC and the activation of the Wnt/β-catenin signaling pathway, while also suggesting that IQGAP1 and IQGAP2 retain functionally divergent roles in hepatocellular carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号